1
|
Wang S, He Q, Qu Y, Yin W, Zhao R, Wang X, Yang Y, Guo ZN. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy. Neural Regen Res 2024; 19:2430-2443. [PMID: 38526280 PMCID: PMC11090435 DOI: 10.4103/1673-5374.391313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 03/26/2024] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
Collapse
Affiliation(s)
- Siji Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qianyan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenjing Yin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuyutian Wang
- Department of Breast Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Svendsen SP, Svendsen CN. Cell therapy for neurological disorders. Nat Med 2024; 30:2756-2770. [PMID: 39407034 DOI: 10.1038/s41591-024-03281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
Cell therapies for neurological disorders are entering the clinic and present unique challenges and opportunities compared with conventional medicines. They have the potential to replace damaged nervous tissue and integrate into the brain or spinal cord to produce functional effects for the lifetime of the patient, which could revolutionize the way clinicians treat debilitating neurological disorders. The major challenge has been cell sourcing, which historically relied mainly on fetal brain tissue. This has largely been overcome with the advent of pluripotent stem cell technology and the ability to make almost any cell of the nervous system at scale. Furthermore, advances in gene editing now allow the generation of genetically modified cells that could perform better and evade the immune system. With all the remarkable new approaches to treat neurological disorders, we take a critical look at the state of current clinical trials and how challenges may be overcome with the evolving technology and innovation occurring in the stem cell field.
Collapse
Affiliation(s)
- Soshana P Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Clive N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Rahimi Darehbagh R, Seyedoshohadaei SA, Ramezani R, Rezaei N. Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives. Eur J Med Res 2024; 29:386. [PMID: 39054501 PMCID: PMC11270957 DOI: 10.1186/s40001-024-01987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Stem cell-based therapies have emerged as a promising approach for treating various neurological disorders by harnessing the regenerative potential of stem cells to restore damaged neural tissue and circuitry. This comprehensive review provides an in-depth analysis of the current state of stem cell applications in primary neurological conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), stroke, spinal cord injury (SCI), and other related disorders. The review begins with a detailed introduction to stem cell biology, discussing the types, sources, and mechanisms of action of stem cells in neurological therapies. It then critically examines the preclinical evidence from animal models and early human trials investigating the safety, feasibility, and efficacy of different stem cell types, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). While ESCs have been studied extensively in preclinical models, clinical trials have primarily focused on adult stem cells such as MSCs and NSCs, as well as iPSCs and their derivatives. We critically assess the current state of research for each cell type, highlighting their potential applications and limitations in different neurological conditions. The review synthesizes key findings from recent, high-quality studies for each neurological condition, discussing cell manufacturing, delivery methods, and therapeutic outcomes. While the potential of stem cells to replace lost neurons and directly reconstruct neural circuits is highlighted, the review emphasizes the critical role of paracrine and immunomodulatory mechanisms in mediating the therapeutic effects of stem cells in most neurological disorders. The article also explores the challenges and limitations associated with translating stem cell therapies into clinical practice, including issues related to cell sourcing, scalability, safety, and regulatory considerations. Furthermore, it discusses future directions and opportunities for advancing stem cell-based treatments, such as gene editing, biomaterials, personalized iPSC-derived therapies, and novel delivery strategies. The review concludes by emphasizing the transformative potential of stem cell therapies in revolutionizing the treatment of neurological disorders while acknowledging the need for rigorous clinical trials, standardized protocols, and multidisciplinary collaboration to realize their full therapeutic promise.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanoclub Elites Association, Tehran, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | | | - Rojin Ramezani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2024. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies agrees more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Evans D, Barcons AM, Basit RH, Adams C, Chari DM. Evaluating the Feasibility of Hydrogel-Based Neural Cell Sprays. J Funct Biomater 2023; 14:527. [PMID: 37888192 PMCID: PMC10607175 DOI: 10.3390/jfb14100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Neurological injuries have poor prognoses with serious clinical sequelae. Stem cell transplantation enhances neural repair but is hampered by low graft survival (ca. 80%) and marker expression/proliferative potential of hydrogel-sprayed astrocytes was retained. Combining a cell spray format with polymer encapsulation technologies could form the basis of a non-invasive graft delivery method, offering potential advantages over current cell delivery approaches.
Collapse
Affiliation(s)
- Daisy Evans
- Keele University School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Aina Mogas Barcons
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3AZ, UK;
| | - Raja Haseeb Basit
- Department of General Surgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
| | - Christopher Adams
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| | - Divya Maitreyi Chari
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
6
|
Imai R, Tamura R, Yo M, Sato M, Fukumura M, Takahara K, Kase Y, Okano H, Toda M. Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury. Stem Cells 2023; 41:603-616. [PMID: 37029780 PMCID: PMC10267696 DOI: 10.1093/stmcls/sxad028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Despite developing neurosurgical procedures, few treatment options have achieved functional recovery from traumatic brain injury (TBI). Neural stem/progenitor cells (NS/PCs) may produce a long-term effect on neurological recovery. Although induced pluripotent stem cells (iPSCs) can overcome ethical and practical issues of human embryonic or fetal-derived tissues in clinical applications, the tumorigenicity of iPSC-derived populations remains an obstacle to their safe use in regenerative medicine. We herein established a novel treatment strategy for TBI using iPSCs expressing the enzyme-prodrug gene yeast cytosine deaminase-uracil phosphoribosyl transferase (yCD-UPRT). NS/PCs derived from human iPSCs displayed stable and high transgene expression of yCD-UPRT following CRISPR/Cas9-mediated genome editing. In vivo bioluminescent imaging and histopathological analysis demonstrated that NS/PCs concentrated around the damaged cortex of the TBI mouse model. During the subacute phase, performances in both beam walking test and accelerating rotarod test were significantly improved in the treatment group transplanted with genome-edited iPSC-derived NS/PCs compared with the control group. The injury area visualized by extravasation of Evans blue was smaller in the treatment group compared with the control group, suggesting the prevention of secondary brain injury. During the chronic phase, cerebral atrophy and ventricle enlargement were significantly less evident in the treatment group. Furthermore, after 5-fluorocytosine (5-FC) administration, 5-fluorouracil converted from 5-FC selectively eliminated undifferentiated NS/PCs while preserving the adjacent neuronal structures. NS/PCs expressing yCD-UPRT can be applied for safe regenerative medicine without the concern for tumorigenesis.
Collapse
Affiliation(s)
- Ryotaro Imai
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Yo
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mizuto Sato
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mariko Fukumura
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kento Takahara
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
7
|
Cao SY, Tao MD, Lou SN, Yang D, Lin YH, Wu HY, Chang L, Luo CX, Xu Y, Liu Y, Zhu DY. Functional reconstruction of the impaired cortex and motor function by hMGEOs transplantation in stroke. Biochem Biophys Res Commun 2023; 671:87-95. [PMID: 37300945 DOI: 10.1016/j.bbrc.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Stroke is the leading cause of death and long-term disability worldwide. But treatments are not available to promote functional recovery, and efficient therapies need to be investigated. Stem cell-based therapies hold great promise as potential technologies to restore function in brain disorders. Loss of GABAergic interneurons after stroke may result in sensorimotor defects. Here, by transplanting human brain organoids resembling the MGE domain (human MGE organoids, hMGEOs) derived from human induced pluripotent stem cells (hiPSCs) into the infarcted cortex of stroke mice, we found that grafted hMGEOs survived well and primarily differentiated into GABAergic interneurons and significantly restored the sensorimotor deficits of stroke mice for a long time. Our study offers the feasibility of stem cell replacement therapeutics strategy for stroke.
Collapse
Affiliation(s)
- Shi-Ying Cao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, 210008, China
| | - Meng-Dan Tao
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Shu-Ning Lou
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Di Yang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, 210008, China
| | - Yan Liu
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China.
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
8
|
Huang H, Sanberg PR, Moviglia GA, Sharma A, Chen L, Chen D. Clinical results of neurorestorative cell therapies and therapeutic indications according to cellular bio-proprieties. Regen Ther 2023; 23:52-59. [PMID: 37122360 PMCID: PMC10130496 DOI: 10.1016/j.reth.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Cell therapies have been explored to treat patients with nervous diseases for over 20 years. Even though most kinds of cell therapies demonstrated neurorestorative effects in non-randomized clinical trials; the effects of the majority type cells could not be confirmed by randomized controlled trials. In this review, clinical therapeutic results of neurorestorative cell therapies according to cellular bio-proprieties or cellular functions were introduced. Currently it was demonstrated from analysis of this review that some indications of cell therapies were not appropriate, they might be reasons why their neurorestorative effects could not be proved by multicenter, randomized, double blind, placebo-controlled clinical trials. Theoretically if one kind of cell therapy has neurorestorative effects according to its cellular bio-proprieties, it should have appropriate indications. The cell therapies with special bio-properties is promising if the indication selections are appropriate, such as olfactory ensheathing cells for chronic ischemic stroke, and their neurorestorative effects can be confirmed by higher level clinical trials of evidence-based medicine.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing 100143, China
- Corresponding author.
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa 33612, Florida, USA
| | | | - Alok Sharma
- Department of Neurosurgery, LTM Medical College, LTMG Hospital, Mumbai, India
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Di Chen
- Beijing Hongtianji Neuroscience Academy, Beijing 100143, China
| |
Collapse
|
9
|
Cao SY, Yang D, Huang ZQ, Lin YH, Wu HY, Chang L, Luo CX, Xu Y, Liu Y, Zhu DY. Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke. NPJ Regen Med 2023; 8:27. [PMID: 37253754 DOI: 10.1038/s41536-023-00301-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Stroke usually causes prolonged or lifelong disability, owing to the permanent loss of infarcted tissue. Although a variety of stem cell transplantation has been explored to improve neuronal defect behavior by enhancing neuroplasticity, it remains unknown whether the infarcted tissue can be reconstructed. We here cultured human cerebral organoids derived from human pluripotent stem cells (hPSCs) and transplanted them into the junction of the infarct core and the peri-infarct zone of NOD-SCID mice subjected to stroke. Months later, we found that the grafted organoids survived well in the infarcted core, differentiated into target neurons, repaired infarcted tissue, sent axons to distant brain targets, and integrated into the host neural circuit and thereby eliminated sensorimotor defect behaviors of stroke mice, whereas transplantation of dissociated single cells from organoids failed to repair the infarcted tissue. Our study offers a new strategy for reconstructing infarcted tissue via organoids transplantation thereby reversing stroke-induced disability.
Collapse
Affiliation(s)
- Shi-Ying Cao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, 210008, China
| | - Di Yang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen-Quan Huang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, 210008, China
| | - Yan Liu
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China.
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
Fauzi AA, Thamrin AMH, Permana AT, Ranuh IGMAR, Hidayati HB, Hamdan M, Wahyuhadi J, Suroto NS, Lestari P, Chandra PS. Comparison of the Administration Route of Stem Cell Therapy for Ischemic Stroke: A Systematic Review and Meta-Analysis of the Clinical Outcomes and Safety. J Clin Med 2023; 12:jcm12072735. [PMID: 37048818 PMCID: PMC10094955 DOI: 10.3390/jcm12072735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Stem cell treatment is emerging as an appealing alternative for stroke patients, but there still needs to be an agreement on the protocols in place, including the route of administration. This systematic review aimed to assess the efficacy and safety of the administration routes of stem cell treatment for ischemic stroke. A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A comprehensive literature search was undertaken using the PubMed, Scopus, and Cochrane databases. A total of 21 publications on stem cell therapy for ischemic stroke were included. Efficacy outcomes were measured using the National Institutes of Health Stroke Scale (NIHSS), the modified Rankin Scale (mRS), and the Barthel index (BI). Intracerebral administration showed a better outcome than other routes, but a greater number of adverse events followed due to its invasiveness. Adverse events were shown to be related to the natural history of stroke not to the treatment. However, further investigation is required, since studies have yet to compare the different administration methods directly.
Collapse
Affiliation(s)
- Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Ahmad Muslim Hidayat Thamrin
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Andhika Tomy Permana
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - I. G. M. Aswin R. Ranuh
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Hanik Badriyah Hidayati
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Muhammad Hamdan
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Joni Wahyuhadi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Nur Setiawan Suroto
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Pudji Lestari
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Poodipedi Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 110608, India
| |
Collapse
|
11
|
Andreu M, Sanchez LMQ, Spurlock MS, Hu Z, Mahavadi A, Powell HR, Lujan MM, Nodal S, Cera M, Ciocca I, Bullock R, Gajavelli S. Injury-Transplantation Interval-Dependent Amelioration of Axonal Degeneration and Motor Deficit in Rats with Penetrating Traumatic Brain Injury. Neurotrauma Rep 2023; 4:225-235. [PMID: 37095855 PMCID: PMC10122235 DOI: 10.1089/neur.2022.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Penetrating traumatic brain injury (pTBI) is increasingly survivable, but permanently disabling as adult mammalian nervous system does not regenerate. Recently, our group demonstrated transplant location-dependent neuroprotection and safety of clinical trial-grade human neural stem cell (hNSC) transplantation in a rodent model of acute pTBI. To evaluate whether longer injury-transplantation intervals marked by chronic inflammation impede engraftment, 60 male Sprague-Dawley rats were randomized to three sets. Each set was divided equally into two groups: 1) with no injury (sham) or 2) pTBI. After either 1 week (groups 1 and 2), 2 weeks (groups 3 and 4), or 4 weeks after injury (groups 5 and 6), each animal received 0.5 million hNSCs perilesionally. A seventh group of pTBI animals treated with vehicle served as the negative control. All animals were allowed to survive 12 weeks with standard chemical immunosuppression. Motor capacity was assessed pre-transplant to establish injury-induced deficit and followed by testing at 8 and 12 weeks after transplantation. Animals were euthanized, perfused, and examined for lesion size, axonal degeneration, and engraftment. Compared to vehicle, transplanted groups showed a trend for reduced lesion size and axonal injury across intervals. Remote secondary axonal injury was significantly reduced in groups 2 and 4, but not in group 6. The majority of animals showed robust engraftment independent of the injury-transplant time interval. Modest amelioration of motor deficit paralleled the axonal injury trend. In aggregate, pTBI-induced remote secondary axonal injury was resolved by early, but not delayed, hNSC transplantation.
Collapse
Affiliation(s)
- MaryLourdes Andreu
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | | | - Markus S. Spurlock
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Zhen Hu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anil Mahavadi
- University of Alabama Birmingham, Birmingham, Alabama, USA
| | - Henry R. Powell
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Maria M. Lujan
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Samuel Nodal
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Melissa Cera
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Isabella Ciocca
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Ross Bullock
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Shyam Gajavelli
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Address correspondence to: Shyam Gajavelli, PhD, Miami Project to Cure Paralysis, University of Miami, 1095 Northwest 14th Terrace, Miami, FL 33136, USA.
| |
Collapse
|
12
|
Weber RZ, Mulders G, Perron P, Tackenberg C, Rust R. Molecular and anatomical roadmap of stroke pathology in immunodeficient mice. Front Immunol 2022; 13:1080482. [PMID: 36569903 PMCID: PMC9785704 DOI: 10.3389/fimmu.2022.1080482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Background Stroke remains a leading cause of disability and death worldwide. It has become apparent that inflammation and immune mediators have a pre-dominant role in initial tissue damage and long-term recovery. Still, different immunosuppressed mouse models are necessary in stroke research e.g., to evaluate therapies using human cell grafts. Despite mounting evidence delineating the importance of inflammation in the stroke pathology, it is poorly described to what extent immune deficiency influences overall stroke outcome. Methods Here, we assessed the stroke pathology of popular genetic immunodeficient mouse models, i.e., NOD scid gamma (NSG) and recombination activating gene 2 (Rag2-/-) mice as well as pharmacologically immunosuppressed mice and compared them to immune competent, wildtype (WT) C57BL/6J mice three weeks after injury. We performed histology, gene expression, blood serum and behavioural analysis to identify the impact of immunosuppression on stroke progression. Results We detected changes in microglia activation/macrophage infiltration, scar-forming and vascular repair in immune-suppressed mice three weeks after injury. Transcriptomic analysis of stroked tissue revealed the strongest deviation from WT was observed in NSG mice affecting immunological and angiogenic pathways. Pharmacological immunosuppression resulted in the least variation in gene expression compared with the WT. These anatomical and genetic changes did not affect functional recovery in a time course of three weeks. To determine whether timing of immunosuppression is critical, we compared mice with acute and delayed pharmacological immunosuppression after stroke. Mice with delayed immunosuppression (7d) showed increased inflammatory and scarring responses compared to animals acutely treated with tacrolimus, thus more closely resembling WT pathology. Transplantation of human cells in the brains of immunosuppressed mice led to prolonged cell survival in all immunosuppressed mouse models, which was most consistent in NSG and Rag2-/- mice. Conclusions We detected distinct anatomical and molecular changes in the stroke pathology between individual immunosuppressed mouse models that should be considered when selecting an appropriate mouse model for stroke research.
Collapse
Affiliation(s)
- Rebecca Z. Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Geertje Mulders
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Patrick Perron
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland,*Correspondence: Ruslan Rust,
| |
Collapse
|
13
|
Nistor-Cseppentö DC, Jurcău MC, Jurcău A, Andronie-Cioară FL, Marcu F. Stem Cell- and Cell-Based Therapies for Ischemic Stroke. Bioengineering (Basel) 2022; 9:717. [PMID: 36421118 PMCID: PMC9687728 DOI: 10.3390/bioengineering9110717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 09/12/2023] Open
Abstract
Stroke is the second cause of disability worldwide as it is expected to increase its incidence and prevalence. Despite efforts to increase the number of patients eligible for recanalization therapies, a significant proportion of stroke survivors remain permanently disabled. This outcome boosted the search for efficient neurorestorative methods. Stem cells act through multiple pathways: cell replacement, the secretion of growth factors, promoting endogenous reparative pathways, angiogenesis, and the modulation of neuroinflammation. Although neural stem cells are difficult to obtain, pose a series of ethical issues, and require intracerebral delivery, mesenchymal stem cells are less immunogenic, are easy to obtain, and can be transplanted via intravenous, intra-arterial, or intranasal routes. Extracellular vesicles and exosomes have similar actions and are easier to obtain, also allowing for engineering to deliver specific molecules or RNAs and to promote the desired effects. Appropriate timing, dosing, and delivery protocols must be established, and the possibility of tumorigenesis must be settled. Nonetheless, stem cell- and cell-based therapies for stroke have already entered clinical trials. Although safe, the evidence for efficacy is less impressive so far. Hopefully, the STEP guidelines and the SPAN program will improve the success rate. As such, stem cell- and cell-based therapy for ischemic stroke holds great promise.
Collapse
Affiliation(s)
- Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | - Anamaria Jurcău
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Felicia Liana Andronie-Cioară
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
14
|
Xie C, Wang K, Peng J, Jiang X, Pan S, Wang L, Wu Y, Guan Y. Efficacy and safety of human-derived neural stem cell in patients with ischaemic stroke: study protocol for a randomised controlled trial. BMJ Open 2022; 12:e055108. [PMID: 36351721 PMCID: PMC9644315 DOI: 10.1136/bmjopen-2021-055108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Stroke is the most common cause of neurological disability in adults worldwide. Neural stem cell (NSC) transplantation has shown promising results as a treatment for stroke in animal experiments. The pilot investigation of stem cells in stroke phase 1 and phase 2 trials showed that transplantation of the highest dose (20 million cells) was well tolerated. Preliminary clinical benefits have also been observed. However, the trials were open-label and had a small sample size. Furthermore, human NSCs (hNSCs) were intracerebrally implanted, and some serious adverse events were considered to be related to the surgical procedure. Therefore, we plan to conduct a double-blinded, randomised controlled trial to test the safety and efficacy of intranasal injection of hNSCs. METHODS AND ANALYSIS This single-centre, randomised, double-blinded, parallel-controlled trial will be conducted in China. Sixty patients with ischaemic stroke who met the qualification criteria will be randomly divided into two groups: the NSCs and control groups. All participants will receive intranasal administration of hNSCs or placebo for 4 consecutive weeks. Patients will be followed up at baseline and at 4, 12, 24 and 48 weeks after intervention. The primary outcome is the National Institutes of Health Stroke Scale score (4, 12, 24 weeks after intervention). Secondary outcomes include the modified Rankin scale, Barthel index, Mini-Mental State Examination score (4, 12, 24 weeks after intervention) and cranial MRI changes (24 and 48 weeks after intervention). All adverse events will be recorded during the study period. ETHICS AND DISSEMINATION The study protocol was approved by the Ethics Committee of Ren Ji Hospital (2018-009). All subjects will provide informed consent. The results will be accessible in peer-reviewed publications and will be presented at academic conferences. TRIAL REGISTRATION ChiCTR1900022741; Chinese Clinical Trial Registry.
Collapse
Affiliation(s)
- Chong Xie
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Kan Wang
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Jing Peng
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Xianguo Jiang
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Shuting Pan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Liping Wang
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yifan Wu
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yangtai Guan
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
15
|
Mortimer KRH, Vernon-Browne H, Zille M, Didwischus N, Boltze J. Potential effects of commonly applied drugs on neural stem cell proliferation and viability: A hypothesis-generating systematic review and meta-analysis. Front Mol Neurosci 2022; 15:975697. [PMID: 36277493 PMCID: PMC9581168 DOI: 10.3389/fnmol.2022.975697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neural stem cell (NSC) transplantation is an emerging and promising approach to combat neurodegenerative diseases. While NSCs can differentiate into neural cell types, many therapeutic effects are mediated by paracrine, "drug-like" mechanisms. Neurodegenerative diseases are predominantly a burden of the elderly who commonly suffer from comorbidities and thus are subject to pharmacotherapies. There is substantial knowledge about drug-drug interactions but almost nothing is known about a potential impact of pharmacotherapy on NSCs. Such knowledge is decisive for designing tailored treatment programs for individual patients. Previous studies revealed preliminary evidence that the anti-depressants fluoxetine and imipramine may affect NSC viability and proliferation. Here, we derive a hypothesis on how commonly applied drugs, statins and antihypertensives, may affect NSC viability, proliferation, and differentiation. We conducted a systematic review and meta-analysis looking at potential effects of commonly prescribed antihypertensive and antihyperlipidemic medication on NSC function. PubMed and Web of Science databases were searched on according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Publications were assessed against a priori established selection criteria for relevancy. A meta-analysis was then performed on data extracted from publications eligible for full text review to estimate drug effects on NSC functions. Our systematic review identified 1,017 potential studies, 55 of which were eligible for full text review. Out of those, 21 were included in the qualitative synthesis. The meta-analysis was performed on 13 publications; the remainder were excluded as they met exclusion criteria or lacked sufficient data to perform a meta-analysis. The meta-analysis revealed that alpha-2 adrenoceptor agonists, an anti-hypertensive drug class [p < 0.05, 95% confidence intervals (CI) = -1.54; -0.35], and various statins [p < 0.05, 95% CI = -3.17; -0.0694] had an inhibiting effect on NSC proliferation. Moreover, we present preliminary evidence that L-type calcium channel blockers and statins, particularly lovastatin, may reduce NSC viability. Although the data available in the literature is limited, there are clear indications for an impact of commonly applied drugs, in particular statins, on NSC function. Considering the modes of action of the respective drugs, we reveal plausible mechanisms by which this impact may be mediated, creating a testable hypothesis, and providing insights into how future confirmative research on this topic may be conducted.
Collapse
Affiliation(s)
- Katherine R. H. Mortimer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Marietta Zille
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition and Center for Neuroscience, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
16
|
Zhao T, Zhu T, Xie L, Li Y, Xie R, Xu F, Tang H, Zhu J. Neural Stem Cells Therapy for Ischemic Stroke: Progress and Challenges. Transl Stroke Res 2022; 13:665-675. [PMID: 35032307 DOI: 10.1007/s12975-022-00984-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Ischemic stroke, with its high morbidity and mortality, is the most common cerebrovascular accident and results in severe neurological deficits. Despite advances in medical and surgical intervention, post-stroke therapies remain scarce, which seriously affects the quality of life of patients. Over the past decades, stem cell transplantation has been recognized as very promising therapy for neurological diseases. Neural stem cell (NSC) transplantation is the optimal choice for ischemic stroke as NSCs inherently reside in the brain and can potentially differentiate into a variety of cell types within the central nervous system. Recent research has demonstrated that NSC transplantation can facilitate neural recovery after ischemic stroke, but the mechanisms still remain unclear, and basic/clinical studies of NSC transplantation for ischemic stroke have not yet been thoroughly elucidated. We thus, in this review, provide a futher understanding of the therapeutic role of NSCs for ischemic stroke, and evaluate their prospects for future application in clinical patients of ischemic stroke.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Tongming Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Liqian Xie
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yao Li
- Med-X Research Institute, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Rong Xie
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Feng Xu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Hailiang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Jianhong Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
17
|
Feng L, He Y, Dong S, Wang R, Long S, He L. An exploratory descriptive cohort study of 90-day prognosis after acute ischaemic stroke with mechanical thrombectomy. Contemp Nurse 2022; 58:264-275. [PMID: 36052463 DOI: 10.1080/10376178.2022.2107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM To evaluate the relationship between nursing assessment findings at discharge and acute ischaemic stroke (AIS) patient prognosis after mechanical thrombectomy (MT). METHODS We analysed the characteristics of 144 AIS patients with MT treatment admitted to a university affiliated teaching hospital in Chengdu, Sichuan Province China, from January 2020 to December 2020. The modified Rankin Scale (mRS) score was used to assess outcomes 90-days after discharge. Exploratory analyses were undertaken using IBM SPSS Statistics (Version 26.0). RESULTS At 90-days, 47.9% (n = 69) had a good prognosis (mRS ≤ 2) including 22.2%(n = 32) fully recovered patients. There were 5 (3.5%) deceased patients and 48.6% (n =70) of patients had a poor prognosis (mRS ≥ 3). In univariate analysis, clinical prognosis correlated with the need for inpatient endotracheal intubation (p = 0.02), nasogastric tube (p<0.001), indwelling urinary catheter (p<0.001), central venous catheter (p = 0.03), health knowledge needs of pressure injury prevention (p = 0.03), National Institute of Health Stroke Scale (NIHSS) score (p<0.001) and Activities of Daily Living (ADL) score (p<0.001) at the time of discharge from hospital. The average hospitalisation time of the 144 patients was 12[IQR, 9-25] days, and the average cost of hospitalisation was $Y$21291.93 (SD 9165.01). CONCLUSION Almost half of the surviving patients had a poor prognosis. In our country, this surgery and rehabilitation impose a significant financial burden that needs to be addressed. However, the longer length of hospital stay and higher costs at discharge may be contributing factors to worse outcomes. The outcomes of comprehensive nursing assessment of the patients, including nursing needs, activities of daily living, and neurological function, can predict their outcome. IMPACT STATEMENT We recommend a comprehensive nursing assessment at discharge that predicts patient outcomes and can be used for subsequent targeted interventions. The prognosis of patients with acute ischaemic stroke after mechanical thrombectomy is poor, and the financial burden needs to be considered.
Collapse
Affiliation(s)
- Ling Feng
- West China School of Nursing,Sichuan University/Department of Neurology,West China Hospital,Sichuan University, Chengdu China
| | - Yueyue He
- West China School of Nursing,Sichuan University/Department of Neurology,West China Hospital,Sichuan University, Chengdu China
| | - Shuju Dong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu China
| | - Rui Wang
- West China School of Nursing,Sichuan University/Department of Neurology,West China Hospital,Sichuan University, Chengdu China
| | - Shiyan Long
- West China School of Nursing,Sichuan University/Department of Neurology,West China Hospital,Sichuan University, Chengdu China
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu China
| |
Collapse
|
18
|
Huang H, Al Zoubi ZM, Moviglia G, Sharma HS, Sarnowska A, Sanberg PR, Chen L, Xue Q, Siniscalco D, Feng S, Saberi H, Guo X, Xue M, Dimitrijevic MR, Andrews RJ, Mao G, Zhao RC, Han F. Clinical cell therapy guidelines for neurorestoration (IANR/CANR 2022). JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Assessing fetal human neural stem cells tumorigenicity potential in athymic rats with penetrating traumatic brain injury (pTBI). Brain Res 2022; 1791:148002. [PMID: 35810769 DOI: 10.1016/j.brainres.2022.148002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Traumatic brain injuries (TBI) often produce disability in survivors due to unresolved inflammation and progressive neurodegeneration. The central nervous system in mammals is incapable of self-repair. Two decades of preclinical studies and clinical trials have provided insights into TBI pathophysiology that could be utilized to develop clinically relevant therapy. Our laboratory recently reported efficacy of clinical trial grade fetal human neural stem cells (hNSCs) in immunosuppressed rats with penetrating traumatic brain injury (pTBI). Next, in compliance with the United States Food and Drug Administration (USFDA) guidance, this study explores safety by assessing the tumorigenicity potential of intracranial hNSC transplants in athymic rats with pTBI. First, the maximum tolerated dose (MTD) was determined. Then, forty athymic pTBI rats were randomized to either: Group A. pTBI + vehicle or Group B. pTBI + hNSCs at MTD one week after injury with 6-months survival, sufficient time to uncover transplant associated tumorigenicity. A board-certified Pathologist examined hematoxylin-eosin (H&E), Ki67 immunostained brain and spinal cord, serial sections along with several abnormal peripheral masses for evidence of lesion, transplant, and oncogenesis. There was no evidence of transplant derived tumors or oncogenic tissue necrosis. Consistent with athymic literature, the lesion remained unchanged even after robust hNSC engraftment. This safety study supports the conclusion that hNSCs are safe for transplantation in pTBI. The differences in lesion expansion between immunosuppressed and athymic rats in the presence of hNSCs suggests an unexpected role for thymus derived cells in resolution of trauma induced inflammation.
Collapse
|
20
|
Permana AT, Bajamal AH, Parenrengi MA, Suroto NS, Lestari P, Fauzi AA. Clinical outcome and safety of stem cell therapy for ischemic stroke: A systematic review and meta-analysis. Surg Neurol Int 2022; 13:206. [PMID: 35673677 PMCID: PMC9168316 DOI: 10.25259/sni_1174_2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background Several reports on stem cell administration have emerged proving it to be an ideal therapeutic approach for improving neurological functions in ischemic stroke patients. However, some studies also show disappointing results, with some reporting no statistically significant improvements among several different parameters. Several challenges also arise relating to safety and nonscientific aspects, such as ethics. Methods We performed a systematic review and meta-analysis to evaluate the effect of stem cell therapy on the clinical outcomes of ischemic stroke patients. A systematic review and meta-analysis were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A thorough literature search was conducted on PubMed, Scopus, and Cochrane databases. Articles were selected systematically based on the PRISMA protocol and reviewed completely. A total of 19 publications pertaining to stem cell therapy on the ischemic route were included and reviewed. Efficacy outcomes were measured with the National Institutes of Health Stroke Scale, modified Rankin Scale, or Barthel Index. Results The results of the meta-analysis indicate that the efficacy outcomes suggest favorable results after stem cell therapy, although not all study results are statistically significant. Stem cell therapy in stroke cases showed a better outcome than standard conservative therapy alone, although our analysis shows that many factors can influence this outcome, and significant effects can only be seen after several months. Conclusion The results of this study show promising and satisfying efficacy and a relatively low rate of serious adverse events.
Collapse
Affiliation(s)
- Andhika Tomy Permana
- Department of Neurosurgery Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Abdul Hafid Bajamal
- Department of Neurosurgery Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Muhammad Arifin Parenrengi
- Department of Neurosurgery Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Nur Setiawan Suroto
- Department of Neurosurgery Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Pudji Lestari
- Department of Public Health, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Asra Al Fauzi
- Department of Neurosurgery Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| |
Collapse
|
21
|
Liu D, Bobrovskaya L, Zhou XF. Cell Therapy for Neurological Disorders: The Perspective of Promising Cells. BIOLOGY 2021; 10:1142. [PMID: 34827135 PMCID: PMC8614777 DOI: 10.3390/biology10111142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders are big public health challenges that are afflicting hundreds of millions of people around the world. Although many conventional pharmacological therapies have been tested in patients, their therapeutic efficacies to alleviate their symptoms and slow down the course of the diseases are usually limited. Cell therapy has attracted the interest of many researchers in the last several decades and has brought new hope for treating neurological disorders. Moreover, numerous studies have shown promising results. However, none of the studies has led to a promising therapy for patients with neurological disorders, despite the ongoing and completed clinical trials. There are many factors that may affect the outcome of cell therapy for neurological disorders due to the complexity of the nervous system, especially cell types for transplantation and the specific disease for treatment. This paper provides a review of the various cell types from humans that may be clinically used for neurological disorders, based on their characteristics and current progress in related studies.
Collapse
Affiliation(s)
| | | | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; (D.L.); (L.B.)
| |
Collapse
|
22
|
Jovanovich N, Habib A, Kodavali C, Edwards L, Amankulor N, Zinn PO. The Evolving Role of Induced Pluripotent Stem Cells and Cerebral Organoids in Treating and Modeling Neurosurgical Diseases. World Neurosurg 2021; 155:171-179. [PMID: 34454068 PMCID: PMC11572538 DOI: 10.1016/j.wneu.2021.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022]
Abstract
Over the past decade, the use of induced pluripotent stem cells (IPSCs), as both direct therapeutics and building blocks for 3D in vitro models, has exhibited exciting potential in both helping to elucidate pathogenic mechanisms and treating diseases relevant to neurosurgery. Transplantation of IPSCs is being studied in neurological injuries and diseases, such as spinal cord injury and Parkinson's disease, whose clinical manifestations stem from underlying neuronal and/or axonal degeneration. Both animal models and clinical trials have shown that IPSCs have the ability to regenerate damaged neural tissue. Such evidence makes IPSCs a potentially promising therapeutic modality for patients who suffer from these neurological injuries/diseases. In addition, the cerebral organoid, a 3D assembly of IPSC aggregates that develops heterogeneous brain regions, has become the first in vitro model to closely recapitulate the complexity of the brain extracellular matrix, a 3-dimensional network of molecules that structurally and biochemically support neighboring cells. Cerebral organoids have become an exciting prospect for modeling and testing drug susceptibility of brain tumors, such as glioblastoma and metastatic brain cancer. As patient-derived organoid models are becoming more faithful to the brain, they are becoming an increasingly accurate substitute for patient clinical trials; such patient-less trials would protect the patient from potentially ineffective drugs, and speed up trial results and optimize cost. In this review, we aim to describe the role of IPSCs and cerebral organoids in treating and modeling diseases that are relevant to neurosurgery.
Collapse
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ahmed Habib
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Chowdari Kodavali
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Lincoln Edwards
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Nduka Amankulor
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Pascal O Zinn
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
23
|
Fernandez-Muñoz B, Garcia-Delgado AB, Arribas-Arribas B, Sanchez-Pernaute R. Human Neural Stem Cells for Cell-Based Medicinal Products. Cells 2021; 10:2377. [PMID: 34572024 PMCID: PMC8469920 DOI: 10.3390/cells10092377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Neural stem cells represent an attractive tool for the development of regenerative therapies and are being tested in clinical trials for several neurological disorders. Human neural stem cells can be isolated from the central nervous system or can be derived in vitro from pluripotent stem cells. Embryonic sources are ethically controversial and other sources are less well characterized and/or inefficient. Recently, isolation of NSC from the cerebrospinal fluid of patients with spina bifida and with intracerebroventricular hemorrhage has been reported. Direct reprogramming may become another alternative if genetic and phenotypic stability of the reprogrammed cells is ensured. Here, we discuss the advantages and disadvantages of available sources of neural stem cells for the production of cell-based therapies for clinical applications. We review available safety and efficacy clinical data and discuss scalability and quality control considerations for manufacturing clinical grade cell products for successful clinical application.
Collapse
Affiliation(s)
- Beatriz Fernandez-Muñoz
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Ana Belen Garcia-Delgado
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Blanca Arribas-Arribas
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Rosario Sanchez-Pernaute
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| |
Collapse
|
24
|
Xin WQ, Wei W, Pan YL, Cui BL, Yang XY, Bähr M, Doeppner TR. Modulating poststroke inflammatory mechanisms: Novel aspects of mesenchymal stem cells, extracellular vesicles and microglia. World J Stem Cells 2021; 13:1030-1048. [PMID: 34567423 PMCID: PMC8422926 DOI: 10.4252/wjsc.v13.i8.1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation plays an important role in the pathological process of ischemic stroke, and systemic inflammation affects patient prognosis. As resident immune cells in the brain, microglia are significantly involved in immune defense and tissue repair under various pathological conditions, including cerebral ischemia. Although the differentiation of M1 and M2 microglia is certainly oversimplified, changing the activation state of microglia appears to be an intriguing therapeutic strategy for cerebral ischemia. Recent evidence indicates that both mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) regulate inflammation and modify tissue repair under preclinical stroke conditions. However, the precise mechanisms of these signaling pathways, especially in the context of the mutual interaction between MSCs or MSC-derived EVs and resident microglia, have not been sufficiently unveiled. Hence, this review summarizes the state-of-the-art knowledge on MSC- and MSC-EV-mediated regulation of microglial activity under ischemic stroke conditions with respect to various signaling pathways, including cytokines, neurotrophic factors, transcription factors, and microRNAs.
Collapse
Affiliation(s)
- Wen-Qiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Yong-Li Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Bao-Long Cui
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Xin-Yu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| |
Collapse
|
25
|
Huang H, Mao G, Chen L, Sharma HS. Clinical neurorestorative cell therapies for stroke. PROGRESS IN BRAIN RESEARCH 2021; 265:231-247. [PMID: 34560922 DOI: 10.1016/bs.pbr.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clinical neurorestorative cell therapies for stroke have been explored for over 20 years. Majority cell therapies have shown neurorestorative effects for stroke on non-double-blind studies. In this review, we summarize types of cell transplantation, transplanted routes, therapeutic time windows, dosage, results of exploring trials or clinical studies, results of multicenter, double-blind or observing-blind, randomized, placebo-controlled clinical trials. The clinical application prospects of majority cell therapies for stroke need to prove their neurorestorative effects through trials with higher-level evidence-based medical evidence. Currently olfactory ensheathing cell is only one kind of cell to show neurorestorative effects through multicenter, double-blind, randomized, placebo-controlled clinical trials, which should be explored to optimize themselves effects and combination with others.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, People Republic of China; Institute of Neurorestoratology, Third Medical Center of General Hospital of PLA, Beijing, People Republic of China.
| | - Gengsheng Mao
- Beijing Hongtianji Neuroscience Academy, Beijing, People Republic of China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
26
|
Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol 2021; 9:696434. [PMID: 34307372 PMCID: PMC8299560 DOI: 10.3389/fcell.2021.696434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal degeneration. MS patients typically present with a relapsing-remitting (RR) disease course, manifesting as sporadic attacks of neurological symptoms including ataxia, fatigue, and sensory impairment. While there are several effective disease-modifying therapies able to address the inflammatory relapses associated with RRMS, most patients will inevitably advance to a progressive disease course marked by a gradual and irreversible accrual of disabilities. Therapeutic intervention in progressive MS (PMS) suffers from a lack of well-characterized biological targets and, hence, a dearth of successful drugs. The few medications approved for the treatment of PMS are typically limited in their efficacy to active forms of the disease, have little impact on slowing degeneration, and fail to promote repair. In looking to address these unmet needs, the multifactorial therapeutic benefits of stem cell therapies are particularly compelling. Ostensibly providing neurotrophic support, immunomodulation and cell replacement, stem cell transplantation holds substantial promise in combatting the complex pathology of chronic neuroinflammation. Herein, we explore the current state of preclinical and clinical evidence supporting the use of stem cells in treating PMS and we discuss prospective hurdles impeding their translation into revolutionary regenerative medicines.
Collapse
Affiliation(s)
- Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, Cambridge, United Kingdom
| | - Alexandra M. Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Liu C, Wang X, Huang W, Meng W, Su Z, Xing Q, Shi H, Zhang D, Zhou M, Zhao Y, Wang H, Pan G, Zhong X, Pei D, Guo Y. Hypoproliferative human neural progenitor cell xenografts survived extendedly in the brain of immunocompetent rats. Stem Cell Res Ther 2021; 12:376. [PMID: 34215315 PMCID: PMC8254296 DOI: 10.1186/s13287-021-02427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
Background There is a huge controversy about whether xenograft or allograft in the “immune-privileged” brain needs immunosuppression. In animal studies, the prevailing sophisticated use of immunosuppression or immunodeficient animal is detrimental for the recipients, which results in a short lifespan of animals, confounds functional behavioral readout of the graft benefits, and discourages long-term follow-up. Methods Neuron-restricted neural progenitor cells (NPCs) were derived from human embryonic stem cells (ESCs, including H1, its gene-modified cell lines for better visualization, and HN4), propagated for different passages, and then transplanted into the brain of immunocompetent rats without immunosuppressants. The graft survivals, their cell fates, and HLA expression levels were examined over time (up to 4 months after transplantation). We compared the survival capability of NPCs from different passages and in different transplantation sites (intra-parenchyma vs. para- and intra-cerebroventricle). The host responses to the grafts were also investigated. Results Our results show that human ESC-derived neuron-restricted NPCs survive extendedly in adult rat brain parenchyma with no need of immunosuppression whereas a late-onset graft rejection seems inevitable. Both donor HLA antigens and host MHC-II expression level remain relatively low with little change over time and cannot predict the late-onset rejection. The intra-/para-cerebroventricular human grafts are more vulnerable to the immune attack than the intrastriatal counterparts. Prevention of graft hyperplasia by using hypoproliferative late passaged human NPCs further significantly extends the graft survival time. Our new data also shows that a subpopulation of host microglia upregulate MHC-II expression in response to the human graft, but fail to present the human antigen to the host immune system, suggestive of the immune-isolation role of the blood–brain barrier (BBB). Conclusions The present study confirms the “immune privilege” of the brain parenchyma and, more importantly, unveils that choosing hypoproliferative NPCs for transplantation can benefit graft outcome in terms of both lower tumor-genic risk and the prolonged survival time without immunosuppression. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02427-1.
Collapse
Affiliation(s)
- Chunhua Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005, China
| | - Xiaoyun Wang
- Guangdong Work Injury Rehabilitation Center, Guangzhou, 510440, China
| | - Wenhao Huang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Wei Meng
- Guangdong Work Injury Rehabilitation Center, Guangzhou, 510440, China
| | - Zhenghui Su
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Heng Shi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Min Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Yifan Zhao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005, China
| | - Haitao Wang
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Xiaofen Zhong
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005, China.
| | - Yiping Guo
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China. .,Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.
| |
Collapse
|
28
|
Rascón-Ramírez FJ, Esteban-García N, Barcia JA, Trondin A, Nombela C, Sánchez-Sánchez-Rojas L. Are We Ready for Cell Therapy to Treat Stroke? Front Cell Dev Biol 2021; 9:621645. [PMID: 34249901 PMCID: PMC8260969 DOI: 10.3389/fcell.2021.621645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Clinical trials of cell therapies that target stroke started at the beginning of this century and they have experienced a significant boost in recent years as a result of promising data from basic research studies. The increase in the information available has paved the way to carry out more innovative and varied human studies. Efforts have focused on the search for a safe and effective treatment to stimulate neuro-regeneration in the brain and to reduce the sequelae of stroke in patients. Therefore, this review aims to evaluate the clinical trials using cell therapy to treat stroke published to date and assess their limitations. From 2000 to date, most of the published clinical trials have focused on phases I or II, and the vast majority of them demonstrate that stem cells are essentially safe to use when administered by different routes, with transient and mild adverse events that do not generally have severe consequences for health. In general, there is considerable variation in the trials in terms of statistical design, sample size, the cells used, the routes of administration, and the functional assessments (both at baseline and follow-up), making it difficult to compare the studies. From this general description, possibly the experimental protocol is the main element to improve in future studies. Establishing an adequate experimental and statistical design will be essential to obtain favorable and reliable results when conducting phase III clinical trials. Thus, it is necessary to standardize the criteria used in these clinical trials in order to aid comparison. Shortly, cell therapy will be a key approach in the treatment of stroke if adequate and comprehensive levels of recovery are to be achieved.
Collapse
Affiliation(s)
| | - Noelia Esteban-García
- Regenerative Medicine and Advanced Therapies Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Cl nico San Carlos, Madrid, Spain
| | - Juan Antonio Barcia
- Department of Neurosurgery, Hospital Cl nico San Carlos, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Albert Trondin
- Department of Neurosurgery, Hospital Cl nico San Carlos, Madrid, Spain
| | - Cristina Nombela
- Department of Biological and Health Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
29
|
Ahmed N, Gandhi D, Melhem ER, Frenkel V. MRI Guided Focused Ultrasound-Mediated Delivery of Therapeutic Cells to the Brain: A Review of the State-of-the-Art Methodology and Future Applications. Front Neurol 2021; 12:669449. [PMID: 34220679 PMCID: PMC8248790 DOI: 10.3389/fneur.2021.669449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Stem cell and immune cell therapies are being investigated as a potential therapeutic modality for CNS disorders, performing functions such as targeted drug or growth factor delivery, tumor cell destruction, or inflammatory regulation. Despite promising preclinical studies, delivery routes for maximizing cell engraftment, such as stereotactic or intrathecal injection, are invasive and carry risks of hemorrhage and infection. Recent developments in MRI-guided focused ultrasound (MRgFUS) technology have significant implications for treating focal CNS pathologies including neurodegenerative, vascular and malignant processes. MRgFUS is currently employed in the clinic for treating essential tremor and Parkinson's Disease by producing precise, incisionless, transcranial lesions. This non-invasive technology can also be modified for non-destructive applications to safely and transiently open the blood-brain barrier (BBB) to deliver a range of therapeutics, including cells. This review is meant to familiarize the neuro-interventionalist with this topic and discusses the use of MRgFUS for facilitating cellular delivery to the brain. A detailed and comprehensive description is provided on routes of cell administration, imaging strategies for targeting and tracking cellular delivery and engraftment, biophysical mechanisms of BBB enhanced permeability, supportive proof-of-concept studies, and potential for clinical translation.
Collapse
Affiliation(s)
- Nabid Ahmed
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dheeraj Gandhi
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor Frenkel
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Brain morphological and connectivity changes on MRI after stem cell therapy in a rat stroke model. PLoS One 2021; 16:e0246817. [PMID: 33592008 PMCID: PMC7886198 DOI: 10.1371/journal.pone.0246817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
In animal models of stroke, behavioral assessments could be complemented by a variety of neuroimaging studies to correlate them with recovery and better understand mechanisms of improvement after stem cell therapy. We evaluated morphological and connectivity changes after treatment with human mesenchymal stem cells (hMSCs) in a rat stroke model, through quantitative measurement of T2-weighted images and diffusion tensor imaging (DTI). Transient middle cerebral artery occlusion rats randomly received PBS (PBS-only), FBS cultured hMSCs (FBS-hMSCs), or stroke patients’ serum cultured hMSCs (SS-hMSCs). Functional improvement was assessed using a modified neurological severity score (mNSS). Quantitative analyses of T2-weighted ischemic lesion and ventricular volume changes were performed. Brain microstructure/connectivity changes were evaluated in the ischemic recovery area by DTI-derived microstructural indices such as relative fractional anisotropy (rFA), relative axial diffusivity (rAD), and relative radial diffusivity (rRD), and relative fiber density (rFD) analyses. According to mNSS results, the SS-hMSCs group showed the most prominent functional improvement. Infarct lesion volume of the SS-hMSCs group was significantly decreased at 2 weeks when compared to the PBS-only groups, but there were no differences between the FBS-hMSCs and SS-hMSCs groups. Brain atrophy was significantly decreased in the SS-hMSCs group compared to the other groups. In DTI, rFA and rFD values were significantly higher and rRD value was significant lower in the SS-hMSCs group and these microstructure/connectivity changes were correlated with T2-weighted morphological changes. T2-weighted volume alterations (ischemic lesion and brain atrophy), and DTI microstructural indices and rFD changes, were well matched with the results of behavioral assessment. These quantitative MRI measurements could be potential outcome predictors of functional recovery after treatment with stem cells for stroke.
Collapse
|
31
|
Chen Q, Li L, Xie H. [Research progress of different types of stem cells in treatment of ischemic stroke]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:111-117. [PMID: 33448208 DOI: 10.7507/1002-1892.202004160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the recent research progress of different types of stem cells in the treatment of ischemic stroke. Methods By searching the PubMed database, a systematic review had been carried out for the results of applying different types of stem cells in the treatment of ischemic stroke between 2000 and 2020. Results Stem cells can be transplanted via intracranial, intravascular, cerebrospinal fluid, and intranasal route in the treatment of ischemic stroke. Paracrine and cell replacement are the two major mechanisms of the therapy. The researches have mainly focused on utilization of neural stem cells, embryonic stem cells, and mesenchymal stem cells. Each has its own advantages and disadvantages in terms of capability of migration, survival rate, and safety. Certain stem cell therapies have completed phase one clinical trial. Conclusion Stem cells transplantation is feasible and has a great potential for the treatment of ischemic stroke, albeit that certain obstacles, including the selection of stem cells, transplantation strategy, migration ability, survival rate, still wait to be solved.
Collapse
Affiliation(s)
- Qiuzhu Chen
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ling Li
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
32
|
Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen Res 2021; 16:80-92. [PMID: 32788451 PMCID: PMC7818886 DOI: 10.4103/1673-5374.286955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a main cause of death and disability worldwide. The ability of the brain to self-repair in the acute and chronic phases after stroke is minimal; however, promising stem cell-based interventions are emerging that may give substantial and possibly complete recovery of brain function after stroke. Many animal models and clinical trials have demonstrated that neural stem cells (NSCs) in the central nervous system can orchestrate neurological repair through nerve regeneration, neuron polarization, axon pruning, neurite outgrowth, repair of myelin, and remodeling of the microenvironment and brain networks. Compared with other types of stem cells, NSCs have unique advantages in cell replacement, paracrine action, inflammatory regulation and neuroprotection. Our review summarizes NSC origins, characteristics, therapeutic mechanisms and repair processes, then highlights current research findings and clinical evidence for NSC therapy. These results may be helpful to inform the direction of future stroke research and to guide clinical decision-making.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Yu-Wan Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei-Gong Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
33
|
Singh M, Pandey PK, Bhasin A, Padma MV, Mohanty S. Application of Stem Cells in Stroke: A Multifactorial Approach. Front Neurosci 2020; 14:473. [PMID: 32581669 PMCID: PMC7296176 DOI: 10.3389/fnins.2020.00473] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Stroke has a debilitating effect on the human body and a serious negative effect on society, with a global incidence of one in every six people. According to the World Health Organization, 15 million people suffer stroke worldwide each year. Of these, 5 million die and another 5 million are permanently disabled. Motor and cognitive deficits like hemiparesis, paralysis, chronic pain, and psychomotor and behavioral symptoms can persist long term and prevent the patient from fully reintegrating into society, therefore continuing to add to the costly healthcare burden of stroke. Regenerative medicine using stem cells seems to be a panacea for sequelae after stroke. Stem cell-based therapy aids neuro-regeneration and neuroprotection for neurological recovery in patients. However, the use of stem cells as a therapy in stroke patients still needs a lot of research at both basic and translational levels. As well as the mode of action of stem cells in reversing the symptoms not being clear, there are several clinical parameters that need to be addressed before establishing stem cell therapy in stroke, such as the type of stem cells to be administered, the number of stem cells, the timing of dosage, whether dose-boosters are required, the route of administration, etc. There are upcoming prospects of cell-free therapy also by using exosomes derived from stem cells. There are several ongoing pre-clinical studies aiming to answer these questions. Despite still being in the development stage, stem cell therapy holds great potential for neurological rehabilitation in patients suffering from stroke.
Collapse
Affiliation(s)
- Manisha Singh
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
- Dr. Solomon H. Snyder Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
| | - Pranav K. Pandey
- Dr. R.P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ashu Bhasin
- Department of Neurosciences, All India Institute of Medical Sciences, New Delhi, India
| | - M. V. Padma
- Department of Neurosciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
34
|
Promises and Limitations of Neural Stem Cell Therapies for Progressive Multiple Sclerosis. Trends Mol Med 2020; 26:898-912. [PMID: 32448751 DOI: 10.1016/j.molmed.2020.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
Multiple disease-modifying medications with regulatory approval to treat multiple sclerosis (MS) are unable to prevent inflammatory tissue damage in the central nervous system (CNS), and none directly promote repair. Thus, there is an unmet clinical need for therapies that can arrest and reverse the persistent accumulation of disabilities associated with progressive forms of MS (P-MS). Preclinical research has revealed an unexpected ability of neural stem cell (NSC) therapies to provide neurotrophic support and inhibit detrimental host immune responses in vivo following transplantation into the chronically inflamed CNS. We discuss NSC transplantation as a promising therapy for P-MS, elaborate on the necessities of clinical trial validation and formalized usage guidelines, and caution about unscrupulous 'clinics' marketing unproven therapies to patients.
Collapse
|
35
|
Hu Z, Gajavelli S, Spurlock MS, Mahavadi A, Quesada LS, Gajavelli GR, Andreoni CB, Di L, Janecki J, Lee SW, Rivera KN, Shear DA, Bullock RM. Human neural stem cell transplant location-dependent neuroprotection and motor deficit amelioration in rats with penetrating traumatic brain injury. J Trauma Acute Care Surg 2020; 88:477-485. [PMID: 31626023 PMCID: PMC7098436 DOI: 10.1097/ta.0000000000002510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Penetrating traumatic brain injury induces chronic inflammation that drives persistent tissue loss long after injury. Absence of endogenous reparative neurogenesis and effective neuroprotective therapies render injury-induced disability an unmet need. Cell replacement via neural stem cell transplantation could potentially rebuild the tissue and alleviate penetrating traumatic brain injury disability. The optimal transplant location remains to be determined. METHODS To test if subacute human neural stem cell (hNSC) transplant location influences engraftment, lesion expansion, and motor deficits, rats (n = 10/group) were randomized to the following four groups (uninjured and three injured): group 1 (Gr1), uninjured with cell transplants (sham+hNSCs), 1-week postunilateral penetrating traumatic brain injury, after establishing motor deficit; group 2 (Gr2), treated with vehicle (media, no cells); group 3 (Gr3), hNSCs transplanted into lesion core (intra); and group 4 (Gr4), hNSCs transplanted into tissue surrounding the lesion (peri). All animals were immunosuppressed for 12 weeks and euthanized following motor assessment. RESULTS In Gr2, penetrating traumatic brain injury effect manifests as porencephalic cyst, 22.53 ± 2.87 (% of intact hemisphere), with p value of <0.0001 compared with uninjured Gr1. Group 3 lesion volume at 17.44 ± 2.11 did not differ significantly from Gr2 (p = 0.36), while Gr4 value, 9.17 ± 1.53, differed significantly (p = 0.0001). Engraftment and neuronal differentiation were significantly lower in the uninjured Gr1 (p < 0.05), compared with injured groups. However, there were no differences between Gr3 and Gr4. Significant increase in cortical tissue sparing (p = 0.03), including motor cortex (p = 0.005) was observed in Gr4 but not Gr3. Presence of transplant within lesion or in penumbra attenuated motor deficit development (p < 0.05) compared with Gr2. CONCLUSION In aggregate, injury milieu supports transplanted cell proliferation and differentiation independent of location. Unexpectedly, cortical sparing is transplant location dependent. Thus, apart from cell replacement and transplant mediated deficit amelioration, transplant location-dependent neuroprotection may be key to delaying onset or preventing development of injury-induced disability. LEVEL OF EVIDENCE Preclinical study evaluation of therapeutic intervention, level VI.
Collapse
Affiliation(s)
- Zhen Hu
- From the Department of Neurosurgery (Z.H.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Miami Project to Cure Paralysis (Z.H., S.G., M.S.S., A.M., L.S.Q., G.R.G., C.B.A., L.D., J.J., S.W.L., K.N.R., R.M.D.), University of Miami, Miami, Florida; and Branch of Brain Trauma Neuroprotection and Neurorestoration (D.A.S.), Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Muir KW, Bulters D, Willmot M, Sprigg N, Dixit A, Ward N, Tyrrell P, Majid A, Dunn L, Bath P, Howell J, Stroemer P, Pollock K, Sinden J. Intracerebral implantation of human neural stem cells and motor recovery after stroke: multicentre prospective single-arm study (PISCES-2). J Neurol Neurosurg Psychiatry 2020; 91:396-401. [PMID: 32041820 PMCID: PMC7147186 DOI: 10.1136/jnnp-2019-322515] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Human neural stem cell implantation may offer improved recovery from stroke. We investigated the feasibility of intracerebral implantation of the allogeneic human neural stem cell line CTX0E03 in the subacute-chronic recovery phase of stroke and potential measures of therapeutic response in a multicentre study. METHODS We undertook a prospective, multicentre, single-arm, open-label study in adults aged >40 years with significant upper limb motor deficits 2-13 months after ischaemic stroke. 20 million cells were implanted by stereotaxic injection to the putamen ipsilateral to the cerebral infarct. The primary outcome was improvement by 2 or more points on the Action Research Arm Test (ARAT) subtest 2 at 3 months after implantation. FINDINGS Twenty-three patients underwent cell implantation at eight UK hospitals a median of 7 months after stroke. One of 23 participants improved by the prespecified ARAT subtest level at 3 months, and three participants at 6 and 12 months. Improvement in ARAT was seen only in those with residual upper limb movement at baseline. Transient procedural adverse effects were seen, but no cell-related adverse events occurred up to 12 months of follow-up. Two deaths were unrelated to trial procedures. INTERPRETATION Administration of human neural stem cells by intracerebral implantation is feasible in a multicentre study. Improvements in upper limb function occurred at 3, 6 and 12 months, but not in those with absent upper limb movement at baseline, suggesting a possible target population for future controlled trials. FUNDING ReNeuron, Innovate UK (application no 32074-222145). TRIAL REGISTRATION NUMBER EudraCT Number: 2012-003482-18.
Collapse
Affiliation(s)
- Keith W Muir
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Diederik Bulters
- Neurosurgery, Wessex Neurological Centre, Southampton, Southampton, UK
| | - Mark Willmot
- Neurology, Queen Elizabeth Hospital Birmingham, Birmingham, Birmingham, UK
| | - Nikola Sprigg
- Stroke Trials Unit, University of Nottingham, Nottingham, UK
| | - Anand Dixit
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Nick Ward
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,The National Hospital for Neurology and Neurosurgery, London, UK
| | - Pippa Tyrrell
- The University of Manchester, Manchester, Manchester, UK
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, Sheffield, UK
| | - Laurence Dunn
- Neurosurgery, Institute of Neurological Sciences, Glasgow, Glasgow, UK
| | - Philip Bath
- Stroke Trials Unit, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
37
|
Willis CM, Nicaise AM, Peruzzotti-Jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Res 2020; 1729:146615. [DOI: 10.1016/j.brainres.2019.146615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
|
38
|
Atala A. Most-read articles 2019: A year of noteworthy research. Stem Cells Transl Med 2020; 9:4-5. [PMID: 31926060 PMCID: PMC6954737 DOI: 10.1002/sctm.19-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 11/19/2022] Open
Affiliation(s)
- Anthony Atala
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
39
|
Huang H, Chen L, Mao G, Bach J, Xue Q, Han F, Guo X, Otom A, Chernykh E, Alvarez E, Bryukhovetskiy A, Sarnowaska A, He X, Dimitrijevic M, Shanti I, von Wild K, Ramón-Cueto A, Alzoubi Z, Moviglia G, Mobasheri H, Alzoubi A, Zhang W. The 2019 yearbook of Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Time is infinite movement in constant motion. We are glad to see that Neurorestoratology, a new discipline, has grown into a rich field involving many global researchers in recent years. In this 2019 yearbook of Neurorestoratology, we introduce the most recent advances and achievements in this field, including findings on the pathogenesis of neurological diseases, neurorestorative mechanisms, and clinical therapeutic achievements globally. Many patients have benefited from treatments involving cell therapies, neurostimulation/neuromodulation, brain–computer interface, neurorestorative surgery or pharmacy, and many others. Clinical physicians can refer to this yearbook with the latest knowledge and apply it to clinical practice.
Collapse
|
40
|
Huang H, Chen L, Mao G, Sharma HS. Clinical neurorestorative cell therapies: Developmental process, current state and future prospective. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Clinical cell therapies (CTs) for neurological diseases and cellular damage have been explored for more than 2 decades. According to the United States Food and Drug Administration, there are 2 types of cell categories for therapy, namely stem cell-derived CT products and mature/functionally differentiated cell-derived CT products. However, regardless of the type of CT used, the majority of reports of clinical CTs from either small sample sizes based on single-center phase 1 or 2 unblinded trials or retrospective clinical studies showed effects on neurological improvement and the ability to either partially or temporarily thwart the deteriorating cellular processes of the neurodegenerative diseases. There have been only a few prospective, multicenter, randomized, double- blind placebo-control clinical trials of CTs so far in this developing novel area that have shown negative results, and more clinical trials are needed. This will expand our knowledge in exploring the type of cells that yield promising results and restore damaged neurological structure and functions of the central nervous system based on higher level evidence-based medical data. In this review, we briefly introduce the developmental process, current state, and future prospective for clinical neurorestorative CT.
Collapse
|
41
|
Guo X, Xue Q, Zhao J, Yang Y, Yu Y, Liu D, Liu J, Yang W, Mu L, Zhang P, Wang T, Han H, Liu S, Zhu Y, Wang T, Qu C, Qu C. Clinical diagnostic and therapeutic guidelines of stroke neurorestoration (2020 China version). JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Stroke is the main cause of death and disability among Chinese, and neurorestoration is an effective therapeutic strategy for patients with stroke. In recent years, many achievements have been made in stroke neurorestoration, but viewpoints for managing stroke vary per discipline. In order to promote standardization of diagnosis and treatment for stroke neurorestoration, the Chinese Association of Neurorestoratology (CANR; Preparatory) and China Committee of International Association of Neurorestoratology (IANR-China Committee) organized professional experts in the field to integrate fragmented neurorestorative methods and establish clinical diagnostic and therapeutic guidelines for stroke neurorestoration. This guideline includes the diagnosis and staging of stroke and therapeutic recommendations for neurorestoration at different stages of stroke in order to improve survival and quality of life of stroke patients.
Collapse
|
42
|
Atkinson SP. Previews. Stem Cells Transl Med 2019. [PMCID: PMC6766597 DOI: 10.1002/sctm.19-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|