1
|
Zhao M, Taniguchi Y, Shimono C, Jonouchi T, Cheng Y, Shimizu Y, Nalbandian M, Yamamoto T, Nakagawa M, Sekiguchi K, Sakurai H. Heparan Sulfate Chain-Conjugated Laminin-E8 Fragments Advance Paraxial Mesodermal Differentiation Followed by High Myogenic Induction from hiPSCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308306. [PMID: 38685581 PMCID: PMC11234437 DOI: 10.1002/advs.202308306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have great therapeutic potential. The cell source differentiated from hiPSCs requires xeno-free and robust methods for lineage-specific differentiation. Here, a system is described for differentiating hiPSCs on new generation laminin fragments (NGLFs), a recombinant form of a laminin E8 fragment conjugated to the heparan sulfate chains (HS) attachment domain of perlecan. Using NGLFs, hiPSCs are highly promoted to direct differentiation into a paraxial mesoderm state with high-efficiency muscle lineage generation. HS conjugation to the C-terminus of Laminin E8 fragments brings fibroblast growth factors (FGFs) bound to the HS close to the cell surface of hiPSCs, thereby facilitating stronger FGF signaling pathways stimulation and initiating HOX gene expression, which triggers the paraxial mesoderm differentiation of hiPSCs. This highly efficient differentiation system can provide a roadmap for paraxial mesoderm development and an infinite source of myocytes and muscle stem cells for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
- Center for Medical EpigeneticsSchool of Basic Medical SciencesChongqing Medical University1 Yixueyuan Road, Yuzhong DistrictChongqing400016China
| | - Yukimasa Taniguchi
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Chisei Shimono
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Tatsuya Jonouchi
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yushen Cheng
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yasuhiro Shimizu
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Minas Nalbandian
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Takuya Yamamoto
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Masato Nakagawa
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Hidetoshi Sakurai
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| |
Collapse
|
2
|
Poudel BH, Fletcher S, Wilton SD, Aung-Htut M. Limb Girdle Muscular Dystrophy Type 2B (LGMD2B): Diagnosis and Therapeutic Possibilities. Int J Mol Sci 2024; 25:5572. [PMID: 38891760 PMCID: PMC11171558 DOI: 10.3390/ijms25115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Dysferlin is a large transmembrane protein involved in critical cellular processes including membrane repair and vesicle fusion. Mutations in the dysferlin gene (DYSF) can result in rare forms of muscular dystrophy; Miyoshi myopathy; limb girdle muscular dystrophy type 2B (LGMD2B); and distal myopathy. These conditions are collectively known as dysferlinopathies and are caused by more than 600 mutations that have been identified across the DYSF gene to date. In this review, we discuss the key molecular and clinical features of LGMD2B, the causative gene DYSF, and the associated dysferlin protein structure. We also provide an update on current approaches to LGMD2B diagnosis and advances in drug development, including splice switching antisense oligonucleotides. We give a brief update on clinical trials involving adeno-associated viral gene therapy and the current progress on CRISPR/Cas9 mediated therapy for LGMD2B, and then conclude by discussing the prospects of antisense oligomer-based intervention to treat selected mutations causing dysferlinopathies.
Collapse
Affiliation(s)
- Bal Hari Poudel
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| | - May Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Shoji M, Ohashi T, Nagase S, Yuri H, Ichihashi K, Takagishi T, Nagata Y, Nomura Y, Fukunaka A, Kenjou S, Miyake H, Hara T, Yoshigai E, Fujitani Y, Sakurai H, Dos Santos HG, Fukada T, Kuzuhara T. Possible involvement of zinc transporter ZIP13 in myogenic differentiation. Sci Rep 2024; 14:8052. [PMID: 38609428 PMCID: PMC11014994 DOI: 10.1038/s41598-024-56912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Ehlers-Danlos syndrome spondylodysplastic type 3 (EDSSPD3, OMIM 612350) is an inherited recessive connective tissue disorder that is caused by loss of function of SLC39A13/ZIP13, a zinc transporter belonging to the Slc39a/ZIP family. We previously reported that patients with EDSSPD3 harboring a homozygous loss of function mutation (c.221G > A, p.G64D) in ZIP13 exon 2 (ZIP13G64D) suffer from impaired development of bone and connective tissues, and muscular hypotonia. However, whether ZIP13 participates in the early differentiation of these cell types remains unclear. In the present study, we investigated the role of ZIP13 in myogenic differentiation using a murine myoblast cell line (C2C12) as well as patient-derived induced pluripotent stem cells (iPSCs). We found that ZIP13 gene expression was upregulated by myogenic stimulation in C2C12 cells, and its knockdown disrupted myotubular differentiation. Myocytes differentiated from iPSCs derived from patients with EDSSPD3 (EDSSPD3-iPSCs) also exhibited incomplete myogenic differentiation. Such phenotypic abnormalities of EDSSPD3-iPSC-derived myocytes were corrected by genomic editing of the pathogenic ZIP13G64D mutation. Collectively, our findings suggest the possible involvement of ZIP13 in myogenic differentiation, and that EDSSPD3-iPSCs established herein may be a promising tool to study the molecular basis underlying the clinical features caused by loss of ZIP13 function.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| | - Takuto Ohashi
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Saki Nagase
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Haato Yuri
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Kenta Ichihashi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Teruhisa Takagishi
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yuji Nagata
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yuki Nomura
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-City, Gunma, Japan
| | - Sae Kenjou
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Hatsuna Miyake
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Takafumi Hara
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Emi Yoshigai
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-City, Gunma, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto-City, Kyoto, Japan
| | | | - Toshiyuki Fukada
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| |
Collapse
|
4
|
Soma H, Sakai D, Nakamura Y, Tamagawa S, Warita T, Schol J, Matsushita E, Naiki M, Sato M, Watanabe M. Recombinant Laminin-511 Fragment (iMatrix-511) Coating Supports Maintenance of Human Nucleus Pulposus Progenitor Cells In Vitro. Int J Mol Sci 2023; 24:16713. [PMID: 38069038 PMCID: PMC10706138 DOI: 10.3390/ijms242316713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The angiopoietin-1 receptor (Tie2) marks specific nucleus pulposus (NP) progenitor cells, shows a rapid decline during aging and intervertebral disc degeneration, and has thus sparked interest in its utilization as a regenerative agent against disc degeneration. However, the challenge of maintaining and expanding these progenitor cells in vitro has been a significant hurdle. In this study, we investigated the potential of laminin-511 to sustain Tie2+ NP progenitor cells in vitro. We isolated cells from human NP tissue (n = 5) and cultured them for 6 days on either standard (Non-coat) or iMatrix-511 (laminin-511 product)-coated (Lami-coat) dishes. We assessed these cells for their proliferative capacity, activation of Erk1/2 and Akt pathways, as well as the expression of cell surface markers such as Tie2, GD2, and CD24. To gauge their regenerative potential, we examined their extracellular matrix (ECM) production capacity (intracellular type II collagen (Col2) and proteoglycans (PG)) and their ability to form spherical colonies within methylcellulose hydrogels. Lami-coat significantly enhanced cell proliferation rates and increased Tie2 expression, resulting in a 7.9-fold increase in Tie2-expressing cell yields. Moreover, the overall proportion of cells positive for Tie2 also increased 2.7-fold. Notably, the Col2 positivity rate was significantly higher on laminin-coated plates (Non-coat: 10.24% (±1.7%) versus Lami-coat: 26.2% (±7.5%), p = 0.010), and the ability to form spherical colonies also showed a significant improvement (Non-coat: 40.7 (±8.8)/1000 cells versus Lami-coat: 70.53 (±18.0)/1000 cells, p = 0.016). These findings demonstrate that Lami-coat enhances the potential of NP cells, as indicated by improved colony formation and proliferative characteristics. This highlights the potential of laminin-coating in maintaining the NP progenitor cell phenotype in culture, thereby supporting their translation into prospective clinical cell-transplantation products.
Collapse
Affiliation(s)
- Hazuki Soma
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Takayuki Warita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
| | | | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
5
|
Li L, Huang C, Pang J, Huang Y, Chen X, Chen G. Advances in research on cell models for skeletal muscle atrophy. Biomed Pharmacother 2023; 167:115517. [PMID: 37738794 DOI: 10.1016/j.biopha.2023.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Skeletal muscle, the largest organ in the human body, plays a crucial role in supporting and defending the body and is essential for movement. It also participates in regulating the processes of protein synthesis and degradation. Inhibition of protein synthesis and activation of degradation metabolism can both lead to the development of skeletal muscle atrophy, a pathological condition characterized by a decrease in muscle mass and fiber size. Many physiological and pathological conditions can cause a decline in muscle mass, but the underlying mechanisms of its pathogenesis remain incompletely understood, and the selection of treatment strategies and efficacy evaluations vary. Moreover, the early symptoms of this condition are often not apparent, making it easily overlooked in clinical practice. Therefore, it is necessary to develop and use cell models to understand the etiology and influencing factors of skeletal muscle atrophy. In this review, we summarize the methods used to construct skeletal muscle cell models, including hormone, inflammation, cachexia, genetic engineering, drug, and physicochemical models. We also analyze, compare, and evaluate the various construction and assessment methods.
Collapse
Affiliation(s)
- Liwei Li
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Chunman Huang
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Jingqun Pang
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Yongbin Huang
- Guangdong Medical University, Wenming East Road 2, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Xinxin Chen
- Institute of Health Promotion and Medical Communication Studies, Affliated Hospital of Guangdong Medical University, South Renmin Road 57, Xiashan District, Zhanjiang 524000, Guangdong, China
| | - Guanghua Chen
- Orthopaedic Center, Affliated Hospital of Guangdong Medical University, South Renmin Road 57, Xiashan District, Zhanjiang 524000, Guangdong, China.
| |
Collapse
|
6
|
Otomo J, Woltjen K, Sakurai H. Uniform transgene activation in Tet-On systems depends on sustained rtTA expression. iScience 2023; 26:107685. [PMID: 37701566 PMCID: PMC10494183 DOI: 10.1016/j.isci.2023.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Application of the tetracycline-inducible gene expression system (Tet-On) in human induced pluripotent stem cells (hiPSCs) has become a fundamental transgenic tool owing to its regulatable gene expression. One of the major hurdles in hiPSC application is non-uniform transgene activation. Here, we report that the supplementation of reverse tetracycline transactivator (rtTA) in polyclonal hiPSCs populations can achieve the uniform transgene activation of Tet-On. Furthermore, the choice of antibiotic selection markers connected by an internal ribosomal entry site (IRES) can influence the expression of upstream transgenes. In particular, expression of the rtTA is more uniform in cell populations when linked to puromycin as compared to neomycin, obviating the need for sub-cloning or supplementation of rtTA. Finally, to expand the range of applications, we adopted our findings to tetracycline-inducible MyoD vector (Tet-MyoD). Our Tet-MyoD promises efficient, robust, and reproducible directed myogenic differentiation of hiPSCs.
Collapse
Affiliation(s)
- Jun Otomo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
Namatame I, Ishii K, Shin T, Shimojo D, Yamagishi Y, Asano H, Kishimoto Y, Fuse H, Nishi Y, Sakurai H, Nakahata T, Sasaki-Iwaoka H. Screening Station, a novel laboratory automation system for physiologically relevant cell-based assays. SLAS Technol 2023; 28:351-360. [PMID: 37121549 DOI: 10.1016/j.slast.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Due to their physiological relevance, cell-based assays using human-induced pluripotent stem cell (iPSC)-derived cells are a promising in vitro pharmacological evaluation system for drug candidates. However, cell-based assays involve complex processes such as long-term culture, real-time and continuous observation of living cells, and detection of many cellular events. Automating multi-sample processing through these assays will enhance reproducibility by limiting human error and reduce researchers' valuable time spent conducting these experiments. Furthermore, this integration enables continuous tracking of morphological changes, which is not possible with the use of stand-alone devices. This report describes a new laboratory automation system called the Screening Station, which uses novel automation control and scheduling software called Green Button Go to integrate various devices. To integrate the above-mentioned processes, we established three workflows in Green Button Go: 1) For long-term cell culture, culture plates and medium containers are transported from the automatic CO2 incubator and cool incubator, respectively, and the cell culture medium in the microplates is exchanged daily using the Biomek i7 workstation; 2) For time-lapse live-cell imaging, culture plates are automatically transferred between the CQ1 confocal quantitative image cytometer and the SCALE48W automatic CO2 incubator; 3) For immunofluorescence imaging assays, in addition to the above-mentioned devices, the 405LS microplate washer allows for formalin-fixation and immunostaining of cells. By scheduling various combinations of the three workflows, we successfully automated the culture and medium exchange processes for iPSCs derived from patients with facioscapulohumeral muscular dystrophy, confirmation of their differentiation status by live-cell imaging, and confirmation of the presence of differentiation markers by immunostaining. In addition, deep learning analysis enabled us to quantify the degree of iPSC differentiation from live-cell imaging data. Further, the results of the fully automated experiments could be accessed via the intranet, enabling experiments and analysis to be conducted remotely once the necessary reagents and labware were prepared. We expect that the ability to perform clinically and physiologically relevant cell-based assays from remote locations using the Screening Station will facilitate global research collaboration and accelerate the discovery of new drug candidates.
Collapse
Affiliation(s)
- Ichiji Namatame
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | - Kana Ishii
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Takashi Shin
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Daisuke Shimojo
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Yukiko Yamagishi
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53, Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidemitsu Asano
- Rorze Lifescience Inc., 430-1, Kamiyokoba, Tsukuba-shi, Ibaraki, 305-0854, Japan
| | - Yuuki Kishimoto
- Yokogawa Electric Co., 2-9-32, Naka-machi, Musashino-shi, Tokyo, 180-8750, Japan
| | - Hiromitsu Fuse
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53, Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yohei Nishi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53, Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53, Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53, Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | | |
Collapse
|
8
|
Ding H, Zhu G, Lin H, Chu J, Yuan D, Yao Y, Gao Y, Chen F, Liu X. Screening of Potential Circulating Diagnostic Biomarkers and Molecular Mechanisms of Systemic Lupus Erythematosus-Related Myocardial Infarction by Integrative Analysis. J Inflamm Res 2023; 16:3119-3134. [PMID: 37520666 PMCID: PMC10378693 DOI: 10.2147/jir.s404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background The risk of acute myocardial infarction (AMI) is elevated in patients with systemic lupus erythematosus (SLE), and it is of great clinical value to identify potential molecular mechanisms and diagnostic markers of AMI associated with SLE by analyzing public database data and transcriptome sequencing data. Methods AMI and SLE-related sequencing datasets GSE62646, GSE60993, GSE50772 and GSE81622 were downloaded from the Gene Expression Omnibus (GEO) database and divided into prediction and validation cohorts. To identify the key genes associated with AMI related to SLE, WGCNA and DEGs analysis were performed for the prediction and validation cohorts, respectively. The related signaling pathways were identified by GO/KEGG enrichment analysis. Peripheral blood mononuclear cells (PBMCs) from patients with AMI were collected for transcriptome sequencing to validate the expression of key genes in patients with AMI. Least absolute shrinkage and selection operator (LASSO) regression analysis was applied to screen diagnostic biomarkers. The diagnostic efficacy of biomarkers was validated by ROC analysis, and the CIBERSORTx platform was used to analyze the composition of immune cells in AMI and SLE. Results A total of 108 genes closely related to AMI and SLE were identified in the prediction cohort, and GO/KEGG analysis showed significantly enriched signaling pathways. The results of differential analysis in validation cohort were consistent with them. By transcriptional sequencing of PBMCs from peripheral blood of AMI patients, combined with the results of prediction and validation cohort analysis, seven genes were finally screened out. LASSO analysis finally identifies DYSF, LRG1 and CSF3R as diagnostic biomarkers of SLE-related-AMI. CIBERSORTx analysis revealed that the biomarkers were highly correlated with neutrophils. Conclusion Neutrophil degranulation and NETs formation play important roles in SLE-related AMI, and DYSF, LRG1 and CSF3R were identified as important diagnostic markers for the development and progression of SLE-related AMI.
Collapse
Affiliation(s)
- Haoran Ding
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Guoqi Zhu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Hao Lin
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jiapeng Chu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Deqiang Yuan
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yi’an Yao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yanhua Gao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Caron L, Testa S, Magdinier F. Induced Pluripotent Stem Cells for Modeling Physiological and Pathological Striated Muscle Complexity. J Neuromuscul Dis 2023; 10:761-776. [PMID: 37522215 PMCID: PMC10578229 DOI: 10.3233/jnd-230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Leslie Caron
- Aix-Marseille Univ-INSERM, MMG, Marseille, France
| | | | | |
Collapse
|
10
|
Korokin MV, Kuzubova EV, Radchenko AI, Deev RV, Yakovlev IA, Deikin AV, Zhunusov NS, Krayushkina AM, Pokrovsky VM, Puchenkova OA, Chaprov KD, Ekimova NV, Bardakov SN, Chernova ON, Emelin AM, Limaev IS. В6.А-DYSFPRMD/GENEJ MICE AS A GENETIC MODEL OF DYSFERLINOPATHY. PHARMACY & PHARMACOLOGY 2022. [DOI: 10.19163/2307-9266-2022-10-5-483-496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the work was behavioral and pathomorphological phenotyping of the mice knockout for the DYSF gene, which plays an important role in the development and progression of dysferlinopathy.Materials and methods. A B6.A-Dysfprmd/GeneJ (Bla/J) mice subline was used in the work. During the study, a muscle activity was determined basing on the following tests: “Inverted grid”, “Grip strength”, “Wire Hanging”, “Weight-loaded swimming”, Vertical Pole”. Histological and immunofluorescent examinations of skeletal muscles (m. gastrocnemius, m. tibialis) were performed. The presence and distribution of the dysferlin protein was assessed, and general histological changes in the skeletal muscle characteristics of mice at the age of 12 and 24 weeks, were described. A morphometric analysis with the determination of the following parameters was performed: the proportion of necrotic muscle fibers; the proportion of fibers with centrally located nuclei; the mean muscle fiber diameter.Results. The “Grip strength” test and the “Weight-loaded swimming” test revealed a decrease in the strength of the forelimbs and endurance in the studied mice of the Bla/J subline compared to the control line. The safety of physical performance was checked using the “Wire Hanging” test and the “Vertical Pole” test, which showed a statistically significant difference between the studied mice and control. The coordination of movements and muscle strength of the limbs examined in the “Inverted Grid” test did not change in these age marks. Decreased grip strength of the forelimbs, decreased physical endurance with age, reflects the progression of the underlying muscular disease. Histological methods in the skeletal muscles revealed signs of a myopathic damage pattern: necrotic muscle fibers, moderate lympho-macrophage infiltration, an increase in the proportion of fibers with centrally located nuclei, and an increase in the average fiber diameter compared to the control. The dysferlin protein was not found out in the muscle tissues.Conclusion. Taking into account the results of the tests performed, it was shown that the absence of Dysf-/- gene expressionin Bla/J subline mice led to muscular dystrophy with the onset of the development of phenotypic disease manifestations at the age of 12 weeks and their peak at 24 weeks. Histopathological phenotypic manifestations of the disease are generally nonspecific and corresponded to the data of intravital pathoanatomical examination in diferlinopathy patients. The mice of the studied subline Bla/J are a representative model of dysferlinopathy and can be used to evaluate new therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | - R. V. Deev
- North-Western State Medical University named after I.I. Mechnikov;
PJSC “Human Stem Cells Institute”
| | | | | | | | | | | | | | - K. D. Chaprov
- Belgorod State National Research University;
Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS)
| | | | | | - O. N. Chernova
- North-Western State Medical University named after I.I. Mechnikov
| | - A. M. Emelin
- Belgorod State National Research University;
North-Western State Medical University named after I.I. Mechnikov
| | - I. S. Limaev
- North-Western State Medical University named after I.I. Mechnikov
| |
Collapse
|
11
|
Zhang X, He D, Xiang Y, Wang C, Liang B, Li B, Qi D, Deng Q, Yu H, Lu Z, Zheng F. DYSF promotes monocyte activation in atherosclerotic cardiovascular disease as a DNA methylation-driven gene. Transl Res 2022; 247:19-38. [PMID: 35460889 DOI: 10.1016/j.trsl.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Dysferlin (DYSF) has drawn much attention due to its involvement in dysferlinopathy and was reported to affect monocyte functions in recent studies. However, the role of DYSF in the pathogenesis of atherosclerotic cardiovascular diseases (ASCVD) and the regulation mechanism of DYSF expression have not been fully studied. In this study, Gene Expression Omnibus (GEO) database and epigenome-wide association study (EWAS) literatures were searched to find the DNA methylation-driven genes (including DYSF) of ASCVD. The hub genes related to DYSF were also identified through weighted correlation network analysis (WGCNA). Regulation of DYSF expression through its promoter methylation status was verified using peripheral blood leucocytes (PBLs) from ASCVD patients and normal controls, and experiments on THP1 cells and Apoe-/- mice. Similarly, the expressions of DYSF related hub genes, mainly contained SELL, STAT3 and TMX1, were also validated. DYSF functions were then evaluated by phagocytosis, transwell and adhesion assays in DYSF knock-down and overexpressed THP1 cells. The results showed that DYSF promoter hypermethylation up-regulated its expression in clinical samples, THP1 cells and Apoe-/- mice, confirming DYSF as a DNA methylation-driven gene. The combination of DYSF expression and methylation status in PBLs had a considerable prediction value for ASCVD. Besides, DYSF could enhance the phagocytosis, migration and adhesion ability of THP1 cells. Among DYSF related hub genes, SELL was proven to be the downstream target of DYSF by wet experiments. In conclusion, DYSF promoter hypermethylation upregulated its expression and promoted monocytes activation, which further participated in the pathogenesis of ASCVD.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Dingdong He
- Department of Clinical Laboratory Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yang Xiang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chen Wang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bin Liang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Boyu Li
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Daoxi Qi
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qianyun Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Hong Yu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
12
|
Fujiwara K, Yamamoto R, Kubota T, Tazumi A, Sabuta T, Takahashi MP, Sakurai H. Mature Myotubes Generated From Human-Induced Pluripotent Stem Cells Without Forced Gene Expression. Front Cell Dev Biol 2022; 10:886879. [PMID: 35706901 PMCID: PMC9189389 DOI: 10.3389/fcell.2022.886879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) are a promising tool for disease modeling and drug screening. To apply them to skeletal muscle disorders, it is necessary to establish mature myotubes because the onset of many skeletal muscle disorders is after birth. However, to make mature myotubes, the forced expression of specific genes should be avoided, as otherwise dysregulation of the intracellular networks may occur. Here, we achieved this goal by purifying hiPSC-derived muscle stem cells (iMuSC) by Pax7-fluorescence monitoring and antibody sorting. The resulting myotubes displayed spontaneous self-contraction, aligned sarcomeres, and a triad structure. Notably, the phenotype of sodium channels was changed to the mature type in the course of the differentiation, and a characteristic current pattern was observed. Moreover, the protocol resulted in highly efficient differentiation and high homogeneity and is applicable to drug screening.
Collapse
Affiliation(s)
- Kei Fujiwara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Risa Yamamoto
- Clinical Neurophysiology, Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoya Kubota
- Clinical Neurophysiology, Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsutoshi Tazumi
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Tomoka Sabuta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masanori P Takahashi
- Clinical Neurophysiology, Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Takahashi M, Furuya N. Evaluation of the Effects of Exposure to Power-Frequency Magnetic Fields on the Differentiation of Hematopoietic Stem/Progenitor Cells Using Human-Induced Pluripotent Stem Cells. Bioelectromagnetics 2022; 43:174-181. [PMID: 35132646 PMCID: PMC9304145 DOI: 10.1002/bem.22394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
Abstract
The causal association between exposure to power-frequency magnetic fields (MFs) and childhood leukemia has been under discussion. Although evidence from experimental studies is required for a conclusion to be reached, only a few studies have focused on the effects of MF exposure on the human hematopoietic system directly related to leukemogenesis. Here, we established an in vitro protocol to simulate the differentiation of human mesodermal cells to hematopoietic stem progenitor cells (HSPCs) using human-induced pluripotent stem cells. Furthermore, we introduced MF in the protocol to study the effects of exposure. After a continuous exposure to 0-300 mT of 50-Hz MFs during the differentiation process, the efficiency of differentiation of mesodermal cells into HSPCs was analyzed in a single-blinded manner. The percentage of emerged HSPCs from mesodermal cells in groups exposed to 50-Hz MFs indicated a lack of significant changes compared with those in the sham-exposed group. These results suggest that exposure to 50-Hz MFs up to 300 mT does not affect the differentiation of human mesodermal cells to HSPCs, which may be involved in the initial process of leukemogenesis. © 2022 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Masayuki Takahashi
- Sustainable System Research LaboratoryCentral Research Institute of Electric Power Industry (CRIEPI)ChibaJapan
| | | |
Collapse
|
14
|
Jiang Y, Torun T, Maffioletti SM, Serio A, Tedesco FS. Bioengineering human skeletal muscle models: Recent advances, current challenges and future perspectives. Exp Cell Res 2022; 416:113133. [DOI: 10.1016/j.yexcr.2022.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/30/2021] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
|
15
|
Tan GW, Kondo T, Imamura K, Suga M, Enami T, Nagahashi A, Tsukita K, Inoue I, Kawaguchi J, Shu T, Inoue H. Simple derivation of skeletal muscle from human pluripotent stem cells using temperature-sensitive Sendai virus vector. J Cell Mol Med 2021; 25:9586-9596. [PMID: 34510713 PMCID: PMC8505837 DOI: 10.1111/jcmm.16899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 01/24/2023] Open
Abstract
Human pluripotent stem cells have the potential to differentiate into various cell types including skeletal muscles (SkM), and they are applied to regenerative medicine or in vitro modelling for intractable diseases. A simple differentiation method is required for SkM cells to accelerate neuromuscular disease studies. Here, we established a simple method to convert human pluripotent stem cells into SkM cells by using temperature‐sensitive Sendai virus (SeV) vector encoding myoblast determination protein 1 (SeV‐Myod1), a myogenic master transcription factor. SeV‐Myod1 treatment converted human embryonic stem cells (ESCs) into SkM cells, which expressed SkM markers including myosin heavy chain (MHC). We then removed the SeV vector by temporal treatment at a high temperature of 38℃, which also accelerated mesodermal differentiation, and found that SkM cells exhibited fibre‐like morphology. Finally, after removal of the residual human ESCs by pluripotent stem cell‐targeting delivery of cytotoxic compound, we generated SkM cells with 80% MHC positivity and responsiveness to electrical stimulation. This simple method for myogenic differentiation was applicable to human‐induced pluripotent stem cells and will be beneficial for investigations of disease mechanisms and drug discovery in the future.
Collapse
Affiliation(s)
- Ghee Wan Tan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Mika Suga
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Takako Enami
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Ayako Nagahashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Ikuyo Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | | | | | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|
16
|
Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22179630. [PMID: 34502539 PMCID: PMC8431796 DOI: 10.3390/ijms22179630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of inherited diseases characterized by the progressive degeneration and weakness of skeletal muscles, leading to disability and, often, premature death. To date, no effective therapies are available to halt or reverse the pathogenic process, and meaningful treatments are urgently needed. From this perspective, it is particularly important to establish reliable in vitro models of human muscle that allow the recapitulation of disease features as well as the screening of genetic and pharmacological therapies. We herein review and discuss advances in the development of in vitro muscle models obtained from human induced pluripotent stem cells, which appear to be capable of reproducing the lack of myofiber proteins as well as other specific pathological hallmarks, such as inflammation, fibrosis, and reduced muscle regenerative potential. In addition, these platforms have been used to assess genetic correction strategies such as gene silencing, gene transfer and genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), as well as to evaluate novel small molecules aimed at ameliorating muscle degeneration. Furthermore, we discuss the challenges related to in vitro drug testing and provide a critical view of potential therapeutic developments to foster the future clinical translation of preclinical muscular dystrophy studies.
Collapse
|
17
|
Zhu F, Zhang F, Hu L, Liu H, Li Y. Integrated Genome and Transcriptome Sequencing to Solve a Neuromuscular Puzzle: Miyoshi Muscular Dystrophy and Early Onset Primary Dystonia in Siblings of the Same Family. Front Genet 2021; 12:672906. [PMID: 34276779 PMCID: PMC8283672 DOI: 10.3389/fgene.2021.672906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neuromuscular disorders (NMD), many of which are hereditary, affect muscular function. Due to advances in high-throughput sequencing technologies, the diagnosis of hereditary NMDs has dramatically improved in recent years. METHODS AND RESULTS In this study, we report an family with two siblings exhibiting two different NMD, Miyoshi muscular dystrophy (MMD) and early onset primary dystonia (EOPD). Whole exome sequencing (WES) identified a novel monoallelic frameshift deletion mutation (dysferlin: c.4404delC/p.I1469Sfs∗17) in the Dysferlin gene in the index patient who suffered from MMD. This deletion was inherited from his unaffected father and was carried by his younger sister with EOPD. However, immunostaining staining revealed an absence of dysferlin expression in the proband's muscle tissue and thus suggested the presence of the second underlying mutant allele in dysferlin. Using integrated RNA sequencing (RNA-seq) and whole genome sequencing (WGS) of muscle tissue, a novel deep intronic mutation in dysferlin (dysferlin: c.5341-415A > G) was discovered in the index patient. This mutation caused aberrant mRNA splicing and inclusion of an additional pseudoexon (PE) which we termed PE48.1. This PE was inherited from his unaffected mother. PE48.1 inclusion altered the Dysferlin sequence, causing premature termination of translation. CONCLUSION Using integrated genome and transcriptome sequencing, we discovered hereditary MMD and EOPD affecting two siblings of same family. Our results added further weight to the combined use of RNA-seq and WGS as an important method for detection of deep intronic gene mutations, and suggest that integrated sequencing assays are an effective strategy for the diagnosis of hereditary NMDs.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhi Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haowen Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yahua Li
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Sasamata M, Shimojo D, Fuse H, Nishi Y, Sakurai H, Nakahata T, Yamagishi Y, Sasaki-Iwaoka H. Establishment of a Robust Platform for Induced Pluripotent Stem Cell Research Using Maholo LabDroid. SLAS Technol 2021; 26:441-453. [PMID: 33775154 DOI: 10.1177/24726303211000690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are attractive for use in early drug discovery because they can differentiate into any cell type. Maintenance cultures and differentiation processes for iPSCs, however, require a high level of technical expertise. To overcome this problem, technological developments such as enhanced automation are necessary to replace manual operation. In addition, a robot system with the flexibility and expandability to carry out maintenance culture and each of the required differentiation processes would also be important. In this study, we established a platform to enable the multiple processes required for iPSC experiments using the Maholo LabDroid, which is a humanoid robotic system with excellent reproducibility and flexibility. The accuracy and robustness of Maholo LabDroid enabled us to cultivate undifferentiated iPSCs for 63 days while maintaining their ability to differentiate into the three embryonic germ layers. Maholo LabDroid maintained and harvested iPSCs in six-well plates, then seeded them into 96-well plates, induced differentiation, and implemented immunocytochemistry. As a result, Maholo LabDroid was confirmed to be able to perform the processes required for myogenic differentiation of iPSCs isolated from a patient with muscular disease and achieved a high differentiation rate with a coefficient of variation (CV) <10% in the first trial. Furthermore, the expandability and flexibility of Maholo LabDroid allowed us to experiment with multiple cell lines simultaneously.
Collapse
Affiliation(s)
- Miho Sasamata
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Daisuke Shimojo
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Hiromitsu Fuse
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yohei Nishi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yukiko Yamagishi
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
19
|
Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol 2021; 12:638983. [PMID: 33841177 PMCID: PMC8027491 DOI: 10.3389/fphys.2021.638983] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is the most abundant type of tissue in human body, being involved in diverse activities and maintaining a finely tuned metabolic balance. Autophagy, characterized by the autophagosome–lysosome system with the involvement of evolutionarily conserved autophagy-related genes, is an important catabolic process and plays an essential role in energy generation and consumption, as well as substance turnover processes in skeletal muscles. Autophagy in skeletal muscles is finely tuned under the tight regulation of diverse signaling pathways, and the autophagy pathway has cross-talk with other pathways to form feedback loops under physiological conditions and metabolic stress. Altered autophagy activity characterized by either increased formation of autophagosomes or inhibition of lysosome-autophagosome fusion can lead to pathological cascades, and mutations in autophagy genes and deregulation of autophagy pathways have been identified as one of the major causes for a variety of skeleton muscle disorders. The advancement of multi-omics techniques enables further understanding of the molecular and biochemical mechanisms underlying the role of autophagy in skeletal muscle disorders, which may yield novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Qianghua Xia
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Boussaad I, Cruciani G, Bolognin S, Antony P, Dording CM, Kwon YJ, Heutink P, Fava E, Schwamborn JC, Krüger R. Integrated, automated maintenance, expansion and differentiation of 2D and 3D patient-derived cellular models for high throughput drug screening. Sci Rep 2021; 11:1439. [PMID: 33446877 PMCID: PMC7809482 DOI: 10.1038/s41598-021-81129-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Patient-derived cellular models become an increasingly powerful tool to model human diseases for precision medicine approaches. The identification of robust cellular disease phenotypes in these models paved the way towards high throughput screenings (HTS) including the implementation of laboratory advanced automation. However, maintenance and expansion of cells for HTS remains largely manual work. Here, we describe an integrated, complex automated platform for HTS in a translational research setting also designed for maintenance and expansion of different cell types. The comprehensive design allows automation of all cultivation steps and is flexible for development of methods for variable cell types. We demonstrate protocols for controlled cell seeding, splitting and expansion of human fibroblasts, induced pluripotent stem cells (iPSC), and neural progenitor cells (NPC) that allow for subsequent differentiation into different cell types and image-based multiparametric screening. Furthermore, we provide automated protocols for neuronal differentiation of NPC in 2D culture and 3D midbrain organoids for HTS. The flexibility of this multitask platform makes it an ideal solution for translational research settings involving experiments on different patient-derived cellular models for precision medicine.
Collapse
Affiliation(s)
- Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, Translational Neuroscience, University of Luxembourg, Luxembourg, Luxembourg
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Gérald Cruciani
- Luxembourg Centre for Systems Biomedicine, Translational Neuroscience, University of Luxembourg, Luxembourg, Luxembourg
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Silvia Bolognin
- Developmental Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine, Translational Neuroscience, University of Luxembourg, Luxembourg, Luxembourg
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Claire M Dording
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Yong-Jun Kwon
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg
- Oncology Department, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen &, Hertie Institute for Clinical Brain Research, Otfried Müller Strasse 23, 72076, Tübingen, Germany
| | - Eugenio Fava
- German Center for Neurodegenerative Diseases (DZNE) - Core Research Facilities and Services - Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Jens C Schwamborn
- Developmental Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, Translational Neuroscience, University of Luxembourg, Luxembourg, Luxembourg.
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg.
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.
| |
Collapse
|
21
|
Yoshioka K, Ito A, Arifuzzaman M, Yoshigai T, Fan F, Sato KI, Shimizu K, Kawabe Y, Kamihira M. Miniaturized skeletal muscle tissue fabrication for measuring contractile activity. J Biosci Bioeng 2020; 131:434-441. [PMID: 33358352 DOI: 10.1016/j.jbiosc.2020.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/13/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022]
Abstract
The contractile function of skeletal muscle is essential for maintaining the vital activity of life. Muscular diseases such as muscular dystrophy severely compromise the quality of life of patients and ultimately lead to death. There is therefore an urgent need to develop therapeutic agents for these diseases. In a previous study, we showed that three-dimensional skeletal muscle tissues fabricated using the magnetic force-based tissue engineering technique exhibited contractile activity, and that drug effects could be evaluated based on the contractile activity of the skeletal muscle tissues. However, the reported method requires a large number of cells and the tissue preparation procedure is complex. It is therefore necessary to improve the tissue preparation method. In this study, a miniature device made of polydimethylsiloxane was used to simplify the production of contracting skeletal muscle tissues applicable to high-throughput screening. The effects of model drugs on the contractile force generation of skeletal muscle tissues prepared from mouse C2C12 myoblast and human induced pluripotent stem cells were evaluated using the miniature muscle device. The results indicated that the muscle device system could provide a useful tool for drug screening.
Collapse
Affiliation(s)
- Kantaro Yoshioka
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Arifuzzaman
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taichi Yoshigai
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fangming Fan
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kei-Ichiro Sato
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
22
|
Kase N, Terashima M, Ohta A, Niwa A, Honda‐Ozaki F, Kawasaki Y, Nakahata T, Kanazawa N, Saito MK. Pluripotent stem cell-based screening identifies CUDC-907 as an effective compound for restoring the in vitro phenotype of Nakajo-Nishimura syndrome. Stem Cells Transl Med 2020; 10:455-464. [PMID: 33280267 PMCID: PMC7900583 DOI: 10.1002/sctm.20-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/25/2022] Open
Abstract
Nakajo-Nishimura syndrome (NNS) is an autoinflammatory disorder caused by a homozygous mutations in the PSMB8 gene. The administration of systemic corticosteroids is partially effective, but continuous treatment causes severe side effects. We previously established a pluripotent stem cell (PSC)-derived NNS disease model that reproduces several inflammatory phenotypes, including the overproduction of monocyte chemoattractant protein-1 (MCP-1) and interferon gamma-induced protein-10 (IP-10). Here we performed high-throughput compound screening (HTS) using this PSC-derived NNS model to find potential therapeutic candidates and identified CUDC-907 as an effective inhibitor of the release of MCP-1 and IP-10. Short-term treatment of CUDC-907 did not induce cell death within therapeutic concentrations and was also effective on primary patient cells. Further analysis indicated that the inhibitory effect was post-transcriptional. These findings suggest that HTS with PSC-derived disease models is useful for finding drug candidates for autoinflammatory diseases.
Collapse
Affiliation(s)
- Naoya Kase
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Madoka Terashima
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Akira Ohta
- Department of Fundamental Cell TechnologyCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Akira Niwa
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Fumiko Honda‐Ozaki
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan,Department of Pediatrics and Developmental BiologyGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yuri Kawasaki
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Tatsutoshi Nakahata
- Department of Fundamental Cell TechnologyCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Nobuo Kanazawa
- Department of DermatologyWakayama Medical UniversityWakayamaJapan
| | - Megumu K. Saito
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| |
Collapse
|
23
|
Li L, Jing Z, Cheng L, Liu W, Wang H, Xu Y, Zheng X, Yu X, Liu S. Compound heterozygous DYSF variants causing limb-girdle muscular dystrophy type 2B in a Chinese family. J Gene Med 2020; 22:e3272. [PMID: 32889728 DOI: 10.1002/jgm.3272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The dysferlin gene or the DYSF gene encodes the Ca2+ -dependent phospholipid-binding protein dysferlin, which belongs to the ferlin family and is associated with muscle membrane regeneration and repair. Variants in the DYSF gene are responsible for limb-girdle muscular dystrophy type 2B (LGMD2B), also called limb-girdle muscular dystrophy recessive 2 (LGMDR2), a rare subtype of muscular dystrophy involving progressive muscle weakness and atrophy. The present study aimed to identify the variants responsible for the clinical symptoms of a Chinese patient with limb girdle muscular dystrophies (LGMDs) and to explore the genotype-phenotype associations of LGMD2B. METHODS A series of clinical examinations, including blood tests, magnetic resonance imaging scans for the lower legs, electromyography and muscle biopsy, was performed on the proband diagnosed with muscular dystrophies. Whole exome sequencing was conducted to detect the causative variants, followed by Sanger sequencing to validate these variants. RESULTS We identified two compound heterozygous variants in the DYSF gene, c.1058 T>C, p.(Leu353Pro) in exon 12 and c.1461C>A/p.Cys487* in exon 16 in this proband, which were inherited from the father and mother, respectively. In silico analysis for these variants revealed deleterious results by PolyPhen-2 (Polymorphism Phenotyping v2; http://genetics.bwh.harvard.edu/pph2), SIFT (Sorting Intolerant From Tolerant; https://sift.bii.a-star.edu.sg), PROVEAN (Protein Variation Effect Analyzer; http://provean.jcvi.org/seq_submit.php) and MutationTaster (http://www.mutationtaster.org). In addition, the two compound heterozygous variants in the proband were absent in 100 control individuals who had an identical ethnic origin and were from the same region, suggesting that these variants may be the pathogenic variants responsible for the LGMD2B phenotypes for this proband. CONCLUSIONS The present study broadens our understanding of the mutational spectrum of the DYSF gene, which provides a deep insight into the pathogenesis of LGMDs and accelerates the development of a prenatal diagnosis.
Collapse
Affiliation(s)
- Liangshan Li
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Clinical Laboratory, Medical College of Qingdao University, Qingdao, China
| | - Zhongcui Jing
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Cheng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenmiao Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yinglei Xu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueping Zheng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoling Yu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Sanjurjo-Rodríguez C, Castro-Viñuelas R, Piñeiro-Ramil M, Rodríguez-Fernández S, Fuentes-Boquete I, Blanco FJ, Díaz-Prado S. Versatility of Induced Pluripotent Stem Cells (iPSCs) for Improving the Knowledge on Musculoskeletal Diseases. Int J Mol Sci 2020; 21:ijms21176124. [PMID: 32854405 PMCID: PMC7504376 DOI: 10.3390/ijms21176124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent an unlimited source of pluripotent cells capable of differentiating into any cell type of the body. Several studies have demonstrated the valuable use of iPSCs as a tool for studying the molecular and cellular mechanisms underlying disorders affecting bone, cartilage and muscle, as well as their potential for tissue repair. Musculoskeletal diseases are one of the major causes of disability worldwide and impose an important socio-economic burden. To date there is neither cure nor proven approach for effectively treating most of these conditions and therefore new strategies involving the use of cells have been increasingly investigated in the recent years. Nevertheless, some limitations related to the safety and differentiation protocols among others remain, which humpers the translational application of these strategies. Nonetheless, the potential is indisputable and iPSCs are likely to be a source of different types of cells useful in the musculoskeletal field, for either disease modeling or regenerative medicine. In this review, we aim to illustrate the great potential of iPSCs by summarizing and discussing the in vitro tissue regeneration preclinical studies that have been carried out in the musculoskeletal field by using iPSCs.
Collapse
Affiliation(s)
- Clara Sanjurjo-Rodríguez
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Correspondence: (C.S.-R.); (S.D.-P.)
| | - Rocío Castro-Viñuelas
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - María Piñeiro-Ramil
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Silvia Rodríguez-Fernández
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Isaac Fuentes-Boquete
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Francisco J. Blanco
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Tissular Bioengineering and Cell Therapy Unit (GBTTC-CHUAC), Rheumatology Group, 15006 A Coruña, Galicia, Spain
| | - Silvia Díaz-Prado
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Correspondence: (C.S.-R.); (S.D.-P.)
| |
Collapse
|
25
|
Ono H, Suzuki N, Kanno SI, Kawahara G, Izumi R, Takahashi T, Kitajima Y, Osana S, Nakamura N, Akiyama T, Ikeda K, Shijo T, Mitsuzawa S, Nagatomi R, Araki N, Yasui A, Warita H, Hayashi YK, Miyake K, Aoki M. AMPK Complex Activation Promotes Sarcolemmal Repair in Dysferlinopathy. Mol Ther 2020; 28:1133-1153. [PMID: 32087766 PMCID: PMC7132631 DOI: 10.1016/j.ymthe.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/12/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in dysferlin are responsible for a group of progressive, recessively inherited muscular dystrophies known as dysferlinopathies. Using recombinant proteins and affinity purification methods combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that AMP-activated protein kinase (AMPK)γ1 was bound to a region of dysferlin located between the third and fourth C2 domains. Using ex vivo laser injury experiments, we demonstrated that the AMPK complex was vital for the sarcolemmal damage repair of skeletal muscle fibers. Injury-induced AMPK complex accumulation was dependent on the presence of Ca2+, and the rate of accumulation was regulated by dysferlin. Furthermore, it was found that the phosphorylation of AMPKα was essential for plasma membrane repair, and treatment with an AMPK activator rescued the membrane-repair impairment observed in immortalized human myotubes with reduced expression of dysferlin and dysferlin-null mouse fibers. Finally, it was determined that treatment with the AMPK activator metformin improved the muscle phenotype in zebrafish and mouse models of dysferlin deficiency. These findings indicate that the AMPK complex is essential for plasma membrane repair and is a potential therapeutic target for dysferlinopathy.
Collapse
Affiliation(s)
- Hiroya Ono
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Shin-Ichiro Kanno
- The Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Toshiaki Takahashi
- National Hospital Organization Sendai-Nishitaga Hospital, Sendai 982-8555, Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration, Division of Developmental Regulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Tomomi Shijo
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Shio Mitsuzawa
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Akira Yasui
- The Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Katsuya Miyake
- Department of Histology and Cell Biology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan; Center for Basic Medical Research, Narita Campus, International University of Health and Welfare, Narita 286-8686, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan.
| |
Collapse
|
26
|
Ortuño-Costela MDC, Cerrada V, García-López M, Gallardo ME. The Challenge of Bringing iPSCs to the Patient. Int J Mol Sci 2019; 20:E6305. [PMID: 31847153 PMCID: PMC6940848 DOI: 10.3390/ijms20246305] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
The implementation of induced pluripotent stem cells (iPSCs) in biomedical research more than a decade ago, resulted in a huge leap forward in the highly promising area of personalized medicine. Nowadays, we are even closer to the patient than ever. To date, there are multiple examples of iPSCs applications in clinical trials and drug screening. However, there are still many obstacles to overcome. In this review, we will focus our attention on the advantages of implementing induced pluripotent stem cells technology into the clinics but also commenting on all the current drawbacks that could hinder this promising path towards the patient.
Collapse
Affiliation(s)
- María del Carmen Ortuño-Costela
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain. Instituto de Investigaciones Biomédicas “Alberto Sols”, (UAM-CSIC), 28029 Madrid, Spain;
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - Victoria Cerrada
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - Marta García-López
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - M. Esther Gallardo
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
- Centro de Investigación Biomédica en Red (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
27
|
Takada H, Kaieda A, Tawada M, Nagino T, Sasa K, Oikawa T, Oki A, Sameshima T, Miyamoto K, Miyamoto M, Kokubu Y, Tozawa R, Sakurai H, Saito B. Identification of 2,6-Disubstituted 3 H-Imidazo[4,5- b]pyridines as Therapeutic Agents for Dysferlinopathies through Phenotypic Screening on Patient-Derived Induced Pluripotent Stem Cells. J Med Chem 2019; 62:9175-9187. [PMID: 31550153 DOI: 10.1021/acs.jmedchem.9b01100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysferlinopathies, which are muscular diseases caused by mutations in the dysferlin gene, remain serious medical problems due to the lack of therapeutic agents. Herein, we report the design, synthesis, and structure-activity relationships of a 2,6-disubstituted 3H-imidazo[4,5-b]pyridine series, which was identified from the phenotypic screening of chemicals that increase the level of dysferlin in myocytes differentiated from patient-derived induced pluripotent stem cells (iPSCs). Optimization studies with cell-based phenotypic assay led to the identification of a highly potent compound, 19, with dysferlin elevation effects at double-digit nanomolar concentrations. In addition, the molecular target of our chemical series was identified as tubulin, through a tubulin polymerization assay and a competitive binding assay using a photoaffinity labeling probe.
Collapse
Affiliation(s)
- Hiroyuki Takada
- Research , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Akira Kaieda
- Research , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Michiko Tawada
- Research , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Tomoko Nagino
- T-CiRA Discovery , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Katsunori Sasa
- T-CiRA Discovery , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Tatsuo Oikawa
- T-CiRA Discovery , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Akiko Oki
- Research , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Tomoya Sameshima
- Research , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Kazumasa Miyamoto
- Research , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Makoto Miyamoto
- Research , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Yuko Kokubu
- Center for iPS Cell Research and Application , Kyoto University , 53 Kawahara-cho , Shogoin, Sakyo-ku, Kyoto 606-8507 , Japan
| | - Ryuichi Tozawa
- T-CiRA Discovery , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application , Kyoto University , 53 Kawahara-cho , Shogoin, Sakyo-ku, Kyoto 606-8507 , Japan
| | - Bunnai Saito
- Research , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| |
Collapse
|