1
|
O'Connell CD, Dalton PD, Hutmacher DW. Why bioprinting in regenerative medicine should adopt a rational technology readiness assessment. Trends Biotechnol 2024; 42:1218-1229. [PMID: 38614839 DOI: 10.1016/j.tibtech.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
Bioprinting is an annex of additive manufacturing, as defined by the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) standards, characterized by the automated deposition of living cells and biomaterials. The tissue engineering and regenerative medicine (TE&RM) community has eagerly adopted bioprinting, while review articles regularly herald its imminent translation to the clinic as functional tissues and organs. Here we argue that such proclamations are premature and counterproductive; they place emphasis on technological progress while typically ignoring the critical stage-gates that must be passed through to bring a technology to market. We suggest the technology readiness level (TRL) scale as a valuable metric for gauging the relative maturity of a bioprinting technology in relation to how it has passed a series of key milestones. We suggest guidelines for a bioprinting-oriented scale and use this to discuss the state-of-the-art of bioprinting in regenerative medicine (BRM) today. Finally, we make corresponding recommendations for improvements to BRM research that would support its progression to clinical translation.
Collapse
Affiliation(s)
- Cathal D O'Connell
- Discipline of Electrical & Biomedical Engineering, RMIT University, Melbourne, VIC, Australia; Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia; Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology, Kelvin Grove, QLD, Australia; Centre for Behavioural Economics, Society & Technology (BEST), Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia; ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Silva DD, Crous A, Abrahamse H. Photobiomodulation Dose-Response on Adipose-Derived Stem Cell Osteogenesis in 3D Cultures. Int J Mol Sci 2024; 25:9176. [PMID: 39273125 PMCID: PMC11395548 DOI: 10.3390/ijms25179176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoporosis and other degenerative bone diseases pose significant challenges to global healthcare systems due to their prevalence and impact on quality of life. Current treatments often alleviate symptoms without fully restoring damaged bone tissue, highlighting the need for innovative approaches like stem cell therapy. Adipose-derived mesenchymal stem cells (ADMSCs) are particularly promising due to their accessibility, abundant supply, and strong differentiation potential. However, ADMSCs tend to favor adipogenic pathways, necessitating the use of differentiation inducers (DIs), three-dimensional (3D) hydrogel environments, and photobiomodulation (PBM) to achieve targeted osteogenic differentiation. This study investigated the combined effects of osteogenic DIs, a fast-dextran hydrogel matrix, and PBM at specific wavelengths and fluences on the proliferation and differentiation of immortalized ADMSCs into osteoblasts. Near-infrared (NIR) and green (G) light, as well as their combination, were used with fluences of 3 J/cm2, 5 J/cm2, and 7 J/cm2. The results showed statistically significant increases in alkaline phosphatase levels, a marker of osteogenic differentiation, with G light at 7 J/cm2 demonstrating the most substantial impact on ADMSC differentiation. Calcium deposits, visualized by Alizarin red S staining, appeared as early as 24 h post-treatment in PBM groups, suggesting accelerated osteogenic differentiation. ATP luminescence assays indicated increased proliferation in all experimental groups, particularly with NIR and NIR-G light at 3 J/cm2 and 5 J/cm2. MTT viability and LDH membrane permeability assays confirmed enhanced cell viability and stable cell health, respectively. In conclusion, PBM significantly influences the differentiation and proliferation of hydrogel-embedded immortalized ADMSCs into osteoblast-like cells, with G light at 7 J/cm2 being particularly effective. These findings support the combined use of 3D hydrogel matrices and PBM as a promising approach in regenerative medicine, potentially leading to innovative treatments for degenerative bone diseases.
Collapse
Affiliation(s)
- Daniella Da Silva
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| |
Collapse
|
3
|
Ramamurthy A, Tommasi A, Saha K. Advances in manufacturing chimeric antigen receptor immune cell therapies. Semin Immunopathol 2024; 46:12. [PMID: 39150566 DOI: 10.1007/s00281-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Biomedical research has witnessed significant strides in manufacturing chimeric antigen receptor T cell (CAR-T) therapies, marking a transformative era in cellular immunotherapy. Nevertheless, existing manufacturing methods for autologous cell therapies still pose several challenges related to cost, immune cell source, safety risks, and scalability. These challenges have motivated recent efforts to optimize process development and manufacturing for cell therapies using automated closed-system bioreactors and models created using artificial intelligence. Simultaneously, non-viral gene transfer methods like mRNA, CRISPR genome editing, and transposons are being applied to engineer T cells and other immune cells like macrophages and natural killer cells. Alternative sources of primary immune cells and stem cells are being developed to generate universal, allogeneic therapies, signaling a shift away from the current autologous paradigm. These multifaceted innovations in manufacturing underscore a collective effort to propel this therapeutic approach toward broader clinical adoption and improved patient outcomes in the evolving landscape of cancer treatment. Here, we review current CAR immune cell manufacturing strategies and highlight recent advancements in cell therapy scale-up, automation, process development, and engineering.
Collapse
Affiliation(s)
- Apoorva Ramamurthy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Felix RB, Shabazz A, Holeman WP, Han S, Wyble M, Uzoukwu M, Gomes LA, Nho L, Litman MZ, Hu P, Fisher JP. From Promise to Practice: Recent Growth in 30 Years of Tissue Engineering Commercialization. Tissue Eng Part A 2024. [PMID: 38818800 DOI: 10.1089/ten.tea.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
This perspective, marking the 30th anniversary of the Tissue Engineering journal, discusses the exciting trends in the global commercialization of tissue engineering technology. Within a historical context, we present an evolution of challenges and a discussion of the last 5 years of global commercial successes and emerging market trends, highlighting the continued expansion of the field in the northeastern United States. This leads to an overview of the last 5 years' progress in clinical trials for tissue-engineered therapeutics, including an analysis of trends in success and failure. Finally, we provide a broad overview of preclinical research and a perspective on where the state-of-the-art lies on the horizon.
Collapse
Affiliation(s)
- Ryan B Felix
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amal Shabazz
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - William Pieper Holeman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Sarang Han
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Matthew Wyble
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Marylyn Uzoukwu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Lauren Audrey Gomes
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Laena Nho
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Mark Zachary Litman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Peter Hu
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Sharma A, Clemens RA, Garcia O, Taylor DL, Wagner NL, Shepard KA, Gupta A, Malany S, Grodzinsky AJ, Kearns-Jonker M, Mair DB, Kim DH, Roberts MS, Loring JF, Hu J, Warren LE, Eenmaa S, Bozada J, Paljug E, Roth M, Taylor DP, Rodrigue G, Cantini P, Smith AW, Giulianotti MA, Wagner WR. Biomanufacturing in low Earth orbit for regenerative medicine. Stem Cell Reports 2021; 17:1-13. [PMID: 34971562 PMCID: PMC8758939 DOI: 10.1016/j.stemcr.2021.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Research in low Earth orbit (LEO) has become more accessible. The 2020 Biomanufacturing in Space Symposium reviewed space-based regenerative medicine research and discussed leveraging LEO to advance biomanufacturing for regenerative medicine applications. The symposium identified areas where financial investments could stimulate advancements overcoming technical barriers. Opportunities in disease modeling, stem-cell-derived products, and biofabrication were highlighted. The symposium will initiate a roadmap to a sustainable market for regenerative medicine biomanufacturing in space. This perspective summarizes the 2020 Biomanufacturing in Space Symposium, highlights key biomanufacturing opportunities in LEO, and lays the framework for a roadmap to regenerative medicine biomanufacturing in space.
Collapse
Affiliation(s)
- Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, CA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kelly A Shepard
- California Institute for Regenerative Medicine, Oakland, CA, USA
| | | | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alan J Grodzinsky
- Departments of Biological Engineering, Mechanical Engineering and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael S Roberts
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA
| | | | - Jianying Hu
- Center for Computational Health IBM Research, Yorktown Heights, New York, NY, USA
| | - Lara E Warren
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA
| | - Sven Eenmaa
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA
| | - Joe Bozada
- Joseph M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Paljug
- Joseph M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Gary Rodrigue
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA
| | - Patrick Cantini
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Amelia W Smith
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA
| | - Marc A Giulianotti
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA.
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Departments of Surgery, Bioengineering, Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Yamada S, Behfar A, Terzic A. Regenerative medicine clinical readiness. Regen Med 2021; 16:309-322. [PMID: 33622049 PMCID: PMC8050983 DOI: 10.2217/rme-2020-0178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine, poised to transform 21st century healthcare, has aspired to enrich care options by bringing cures to patients in need. Science-driven responsible and regulated translation of innovative technology has enabled the launch of previously unimaginable care pathways adopted prudently for select serious diseases and disabilities. The collective resolve to advance the design, manufacture and validity of affordable regenerative solutions aims to democratize such health benefits for all. The objective of this Review is to outline the framework and prerequisites that underpin clinical readiness of regenerative care. Integrated research and development, specialized workforce education and accessible evidence-based practice implementation are at the core of realizing an equitable regenerative medicine vision.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Division of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, 55905 MN, USA
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, 55905 MN, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, 55905 MN, USA
| |
Collapse
|
7
|
Wyles SP, Monie DD, Paradise CR, Meyer FB, Hayden RE, Terzic A. Emerging workforce readiness in regenerative healthcare. Regen Med 2021; 16:197-206. [PMID: 33622054 PMCID: PMC8656339 DOI: 10.2217/rme-2020-0137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The biology of regenerative medicine has steadily matured, providing the foundation for randomized clinical trials and translation into validated applications. Today, the growing regenerative armamentarium is poised to impact disease management, yet a gap in training next-generation healthcare providers, equipped to adopt and deliver regenerative options, has been exposed. This special report highlights a multiyear experience in developing and deploying a comprehensive regenerative curriculum for medical trainees. For academicians and institutions invested in establishing a formalized regenerative medicine syllabus, the Regenerative Medicine and Surgery course provides a patient-focused prototype for next-generation learners, offering a dedicated educational experience that encompasses discovery, development and delivery of regenerative solutions. Built with the vision of an evolving regenerative care model, this transdisciplinary endeavor could serve as an adoptable education portal to advance the readiness of the emergent regenerative healthcare workforce globally.
Collapse
Affiliation(s)
- Saranya P Wyles
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Dermatology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Rochester, MN 55905, USA
| | - Dileep D Monie
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | | | - Fredric B Meyer
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard E Hayden
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Otolaryngology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Rochester, MN 55905, USA.,Department of Cardiovascular Medicine, Rochester, MN 55905, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Thomas J, Patel S, Troop L, Guru R, Faist N, Bellott BJ, Esterlen BA. 3D Printed Model of Extrahepatic Biliary Ducts for Biliary Stent Testing. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4788. [PMID: 33120964 PMCID: PMC7663029 DOI: 10.3390/ma13214788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/14/2023]
Abstract
Several inflammatory conditions of the bile ducts cause strictures that prevent the drainage of bile into the gastrointestinal tract. Non-pharmacological treatments to re-establish bile flow include plastic or self-expanding metal stents (SEMs) that are inserted in the bile ducts during endoscopic retrograde cholangiopancreatography (ERCP) procedures. The focus of this study was to 3D print an anatomically accurate model of the extrahepatic bile ducts (EHBDs) with tissue-like mechanical properties to improve in vitro testing of stent prototypes. Following generation of an EHBD model via computer aided design (CAD), we tested the ability of Formlabs SLA 3D printers to precisely print the model with polymers selected based on the desired mechanical properties. We found the printers were reliable in printing the dimensionally accurate EHBD model with candidate polymers. Next, we evaluated the mechanical properties of Formlabs Elastic (FE), Flexible (FF), and Durable (FD) resins pre- and post-exposure to water, saline, or bile acid solution at 37 °C for up to one week. FE possessed the most bile duct-like mechanical properties based on its elastic moduli, percent elongations at break, and changes in mass under all liquid exposure conditions. EHBD models printed in FE sustained no functional damage during biliary stent deployment or when tube connectors were inserted, and provided a high level of visualization of deployed stents. These results demonstrate that our 3D printed EHBD model facilitates more realistic pre-clinical in vitro testing of biliary stent prototypes.
Collapse
Affiliation(s)
- Joanna Thomas
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Sagar Patel
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Leia Troop
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Robyn Guru
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Nicholas Faist
- Biomedical Engineering Department, Mercer University, Macon, GA 31207, USA; (S.P.); (L.T.); (R.G.); (N.F.)
| | - Brian J. Bellott
- Chemistry Department, Western Illinois University, Macomb, IL 61455, USA; (B.J.B.); (B.A.E.)
| | - Bethany A. Esterlen
- Chemistry Department, Western Illinois University, Macomb, IL 61455, USA; (B.J.B.); (B.A.E.)
| |
Collapse
|
9
|
Wyles SP, Meyer FB, Hayden R, Scarisbrick I, Terzic A. Digital regenerative medicine and surgery pedagogy for virtual learning in the time of COVID-19. Regen Med 2020; 15:1937-1941. [PMID: 32844717 PMCID: PMC7488723 DOI: 10.2217/rme-2020-0106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Saranya P Wyles
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Dermatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Fredric B Meyer
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Hayden
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Otolaryngology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Isobel Scarisbrick
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Hunsberger J, Simon C, Zylberberg C, Ramamoorthy P, Tubon T, Bedi R, Gielen K, Hansen C, Fischer L, Johnson J, Baraniak P, Mahdavi B, Pereira T, Hadjisavas M, Eaker S, Miller C. Improving patient outcomes with regenerative medicine: How the Regenerative Medicine Manufacturing Society plans to move the needle forward in cell manufacturing, standards, 3D bioprinting, artificial intelligence-enabled automation, education, and training. Stem Cells Transl Med 2020; 9:728-733. [PMID: 32222115 PMCID: PMC7308637 DOI: 10.1002/sctm.19-0389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Regenerative Medicine Manufacturing Society (RMMS) is the first and only professional society dedicated toward advancing manufacturing solutions for the field of regenerative medicine. RMMS's vision is to provide greater patient access to regenerative medicine therapies through innovative manufacturing solutions. Our mission is to identify unmet needs and gaps in regenerative medicine manufacturing and catalyze the generation of new ideas and solutions by working with private and public stakeholders. We aim to accomplish our mission through outreach and education programs and securing grants for public-private collaborations in regenerative medicine manufacturing. This perspective will cover four impact areas that the society's leadership team has identified as critical: (a) cell manufacturing and scale-up/out, respectively, for allogeneic and autologous cell therapies, (b) standards for regenerative medicine, (c) 3D bioprinting, and (d) artificial intelligence-enabled automation. In addition to covering these areas and ways in which the society intends to advance the field in a collaborative nature, we will also discuss education and training. Education and training is an area that is critical for communicating the current challenges, developing solutions to accelerate the commercialization of the latest technological advances, and growing the workforce in the rapidly expanding sector of regenerative medicine.
Collapse
Affiliation(s)
- Joshua Hunsberger
- Regenerative Medicine Manufacturing SocietyWinston‐SalemNorth CarolinaUSA
| | - Carl Simon
- National Institute of Standards and TechnologyGaithersburgMarylandUSA
| | | | | | | | - Ram Bedi
- University of WashingtonSeattleWashingtonUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|