1
|
Arellano-Ballestero H, Zubiak A, Dally C, Orchard K, Alrubayyi A, Charalambous X, Michael M, Torrance R, Eales T, Das K, Tran MGB, Sabry M, Peppa D, Lowdell MW. Proteomic and phenotypic characteristics of memory-like natural killer cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e008717. [PMID: 39032940 PMCID: PMC11261707 DOI: 10.1136/jitc-2023-008717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Human and mouse natural killer (NK) cells have been shown to develop memory-like function after short-term exposure to the cocktail of IL-12/15/18 or to overnight co-culture with some tumor cell lines. The resulting cells retain enhanced lytic ability for up to 7 days as well as after cryopreservation, and memory-like NK cells (mlNK) have been shown to induce complete remissions in patients with hematological malignancies. No single phenotype has been described for mlNK and the physiological changes induced by the short-term cytokine or tumor-priming which are responsible for these enhanced functions have not been fully characterized. Here, we have generated mlNK by cytokine and tumor-priming to find commonalities to better define the nature of NK cell "memory" in vitro and, for the first time, in vivo. METHODS We initiated mlNK in vitro from healthy donors with cytokines (initiated cytokine-induced memory-like (iCIML)-NK) and by tumor priming (TpNK) overnight and compared them by high-dimensional flow cytometry, proteomic and metabolomic profiling. As a potential mechanism of enhanced cytolytic function, we analyzed the avidity of binding of the mlNK to NK-resistant tumors (z-Movi). We generated TpNK from healthy donors and from cancer patients to determine whether mlNK generated by interaction with a single tumor type could enhance lytic activity. Finally, we used a replication-incompetent tumor cell line (INKmune) to treat patients with myeloid leukaemias to potentiate NK cell function in vivo. RESULTS Tumor-primed mlNK from healthy donors and patients with cancer showed increased cytotoxicity against multiple tumor cell lines in vitro, analogous to iCIML-NK cells. Multidimensional cytometry identified distinct memory-like profiles of subsets of cells with memory-like characteristics; upregulation of CD57, CD69, CD25 and ICAM1. Proteomic profiling identified 41 proteins restricted to mlNK cells and we identified candidate molecules for the basis of NK memory which can explain how mlNK overcome inhibition by resistant tumors. Finally, of five patients with myelodysplastic syndrome or refractory acute myeloid leukemia treated with INKmune, three responded to treatment with measurable increases in NK lytic function and systemic cytokines. CONCLUSIONS NK cell "memory" is a physiological state associated with resistance to MHC-mediated inhibition, increased metabolic function, mitochondrial fitness and avidity to NK-resistant target cells.
Collapse
Affiliation(s)
| | - Agnieszka Zubiak
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| | - Chris Dally
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kim Orchard
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | | | | | | - Trinity Eales
- Cancer Institute, University College London, London, UK
| | | | - Maxine G. B. Tran
- Department of Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, UK
| | - May Sabry
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Mark W. Lowdell
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| |
Collapse
|
2
|
Liu Q, Zhang X, Song Y, Si J, Li Z, Dong Q. Construction and analysis of a reliable five-gene prognostic signature for colon adenocarcinoma associated with the wild-type allelic state of the COL6A6 gene. Transl Cancer Res 2024; 13:2475-2496. [PMID: 38881933 PMCID: PMC11170513 DOI: 10.21037/tcr-23-463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/29/2023] [Indexed: 06/18/2024]
Abstract
Background Tumors emerge by acquiring a number of mutations over time. The first mutation provides a selective growth advantage compared to adjacent epithelial cells, allowing the cell to create a clone that can outgrow the cells that surround it. Subsequent mutations determine the risk of the tumor progressing to metastatic cancer. Some secondary mutations may inhibit the aggressiveness of the tumor while still increasing the survival of the clone. Meaningful mutations in genes may provide a strong molecular foundation for developing novel therapeutic strategies for cancer. Methods The somatic mutation and prognosis in colon adenocarcinoma (COAD) were analyzed. The copy number variation (CNV) and differentially expressed genes (DEGs) between the collagen type VI alpha 6 chain (COL6A6) mutation (COL6A6-MUT) and the COL6A6 wild-type (COL6A6-WT) subgroups were evaluated. The independent prognostic signatures based on COL6A6-allelic state were determined to construct a Cox model. The biological characteristics and the immune microenvironment between the two risk groups were compared. Results COL6A6 was found to be highly mutated in COAD at a frequency of 9%. Patients with COL6A6-MUT had a good overall survival (OS) compared to those with COL6A6-WT, who had a different CNV pattern. Significant differences in gene expression were established for 593 genes between the COL6A6-MUT and COL6A6-WT samples. Among them, MUC16, ASNSP1, PRR18, PEG10, and RPL26P8 were determined to be independent prognostic factors. The internally validated prognostic risk model, constructed using these five genes, demonstrated its value by revealing a significant difference in patient prognosis between the high-risk and low-risk groups. Specifically, patients in the high-risk group exhibited a considerably worse prognosis than did those in the low-risk group. The high-risk group had a significantly higher proportion of patients over 60 years of age and patients in stage III. Moreover, the tumor immune dysfunction and exclusion (TIDE) score and the expression of human leukocyte antigen (HLA) family genes were all higher in the high-risk group than that in the low-risk group. Conclusions The allelic state of COL6A6 and the five associated DEGs were identified as novel biomarkers for the diagnosis and prognosis of COAD and may be therapeutic targets in COAD.
Collapse
Affiliation(s)
- Qun Liu
- Second Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Xiaohua Zhang
- Gastroenterology Center, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Yan Song
- Outpatient Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Junli Si
- Second Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Zhaoshui Li
- Qingdao University, Qingdao Medical College, Qingdao, China
| | - Quanjiang Dong
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| |
Collapse
|
3
|
Raghani NR, Chorawala MR, Mahadik M, Patel RB, Prajapati BG, Parekh PS. Revolutionizing cancer treatment: comprehensive insights into immunotherapeutic strategies. Med Oncol 2024; 41:51. [PMID: 38195781 DOI: 10.1007/s12032-023-02280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/02/2023] [Indexed: 01/11/2024]
Abstract
Cancer, characterized by the uncontrolled proliferation of aberrant cells, underscores the imperative for innovative therapeutic approaches. Immunotherapy has emerged as a pivotal constituent in cancer treatment, offering improved prognostic outcomes for a substantial patient cohort. Noteworthy for its precision, immunotherapy encompasses strategies such as adoptive cell therapy and checkpoint inhibitors, orchestrating the immune system to recognize and selectively target malignant cells. Exploiting the specificity of the immune response renders immunotherapy efficacious, as it selectively targets the body's immune milieu. Diverse mechanisms underlie cancer immunotherapies, leading to distinct toxicity profiles compared to conventional treatments. A remarkable clinical stride in the anticancer resources is immunotherapy. Remarkably, certain recalcitrant cancers like skin malignancies exhibit resistance to radiation or chemotherapy, yet respond favorably to immunotherapeutic interventions. Notably, combination therapies involving chemotherapy and immunotherapy have exhibited synergistic effects, enhancing overall therapeutic efficacy. Understanding the pivotal role of immunotherapy elucidates its complementary value, bolstering the therapeutic landscape. In this review, we elucidate the taxonomy of cancer immunotherapy, encompassing adoptive cell therapy and checkpoint inhibitors, while scrutinizing their distinct adverse event profiles. Furthermore, we expound on the unprecedented potential of immunogenic vaccines to bolster the anticancer immune response. This comprehensive analysis underscores the significance of immunotherapy in modern oncology, unveiling novel prospects for tailored therapeutic regimens.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mayuresh Mahadik
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India
| | - Rakesh B Patel
- Department of Internal Medicine, Division of Hematology and Oncology, UI Carver College of Medicine: The University of Iowa Roy J and Lucille A Carver College of Medicine, 375 Newton Rd, Iowa City, IA, 52242, USA
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India.
| | - Priyajeet S Parekh
- A V Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| |
Collapse
|
4
|
Nirgude S, Desai S, Khanchandani V, Nagarajan V, Thumsi J, Choudhary B. Integration of exome-seq and mRNA-seq using DawnRank, identified genes involved in innate immunity as drivers of breast cancer in the Indian cohort. PeerJ 2023; 11:e16033. [PMID: 37810779 PMCID: PMC10552747 DOI: 10.7717/peerj.16033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Genetic heterogeneity influences the prognosis and therapy of breast cancer. The cause of disease progression varies and can be addressed individually. To identify the mutations and their impact on disease progression at an individual level, we sequenced exome and transcriptome from matched normal-tumor samples. We utilised DawnRank to prioritise driver genes and identify specific mutations in Indian patients. Mutations in the C3 and HLA genes were identified as drivers of disease progression, indicating the involvement of the innate immune system. We performed immune profiling on 16 matched normal/tumor samples using CIBERSORTx. We identified CD8+ve T cells, M2 macrophages, and neutrophils to be enriched in luminal A and T cells CD4+naïve, natural killer (NK) cells activated, T follicular helper (Tfh) cells, dendritic cells activated, and neutrophils in triple-negative breast cancer (TNBC) subtypes. Weighted gene co-expression network analysis (WGCNA) revealed activation of T cell-mediated response in ER positive samples and Interleukin and Interferons in ER negative samples. WGCNA analysis also identified unique pathways for each individual, suggesting that rare mutations/expression signatures can be used to design personalised treatment.
Collapse
Affiliation(s)
- Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Vartika Khanchandani
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Conci S, Catalano G, Roman D, Zecchetto C, Lucin E, De Bellis M, Tripepi M, Guglielmi A, Milella M, Ruzzenente A. Current Role and Future Perspectives of Immunotherapy and Circulating Factors in Treatment of Biliary Tract Cancers. Int J Med Sci 2023; 20:858-869. [PMID: 37324191 PMCID: PMC10266048 DOI: 10.7150/ijms.82008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/07/2023] [Indexed: 06/17/2023] Open
Abstract
Biliary tract cancers (BTCs) are a heterogenous group of malignancies arising from the epithelial cells of the biliary tree and the gallbladder. They are often locally advanced or already metastatic at the time of the diagnosis and therefore prognosis remains dismal. Unfortunately, the management of BTCs has been limited by resistance and consequent low response rate to cytotoxic systemic therapy. New therapeutic approaches are needed to improve the survival outcomes for these patients. Immunotherapy, one of the newest therapeutic options, is changing the approach to the oncological treatment. Immune checkpoint inhibitors are by far the most promising group of immunotherapeutic agents: they work by blocking the tumor-induced inhibition of the immune cellular response. Immunotherapy in BTCs is currently approved as second-line treatment for patients whose tumors have a peculiar molecular profile, such as high levels of microsatellites instability, PD-L1 overexpression, or high levels of tumor mutational burden. However, emerging data from ongoing clinical trials seem to suggest that durable responses can be achieved in other subsets of patients. The BTCs are characterized by a highly desmoplastic microenvironment that fuels the growth of cancer tissue, but tissue biopsies are often difficult to obtain or not feasible in BTCs. Recent studies have hence proposed to use liquid biopsy approaches to search the blood circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) to use as biomarkers in BTCs. So far studies are insufficient to promote their use in clinical management, however trials are still in progress with promising preliminary results. Analysis of blood samples for ctDNA to research possible tumor-specific genetic or epigenetic alterations that could be linked to treatment response or prognosis was already feasible. Although there are still few data available, ctDNA analysis in BTC is fast, non-invasive, and could also represent a way to diagnose BTC earlier and monitor tumor response to chemotherapy. The prognostic capabilities of soluble factors in BTC are not yet precisely determined and more studies are needed. In this review, we will discuss the different approaches to immunotherapy and tumor circulating factors, the progress that has been made so far, and the possible future developments.
Collapse
Affiliation(s)
- Simone Conci
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Giovanni Catalano
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Diletta Roman
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Eleonora Lucin
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Mario De Bellis
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Marzia Tripepi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Alfredo Guglielmi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Michele Milella
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| |
Collapse
|
6
|
Li YR, Dunn ZS, Yu Y, Li M, Wang P, Yang L. Advancing cell-based cancer immunotherapy through stem cell engineering. Cell Stem Cell 2023; 30:592-610. [PMID: 36948187 PMCID: PMC10164150 DOI: 10.1016/j.stem.2023.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/04/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
Advances in cell-based therapy, particularly CAR-T cell therapy, have transformed the treatment of hematological malignancies. Although an important step forward for the field, autologous CAR-T therapies are hindered by high costs, manufacturing challenges, and limited efficacy against solid tumors. With ongoing progress in gene editing and culture techniques, engineered stem cells and their application in cell therapy are poised to address some of these challenges. Here, we review stem cell-based immunotherapy approaches, stem cell sources, gene engineering and manufacturing strategies, therapeutic platforms, and clinical trials, as well as challenges and future directions for the field.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary Spencer Dunn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miao Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Abhishek K, Louis Sam Titus ASC, Dinh MTP, Mukhamedshin A, Mohan C, Gifford SC, Shevkoplyas SS. Red blood cell rosetting enables size-based separation of specific lymphocyte subsets from blood in a microfluidic device. LAB ON A CHIP 2023; 23:1804-1815. [PMID: 36723024 PMCID: PMC10050098 DOI: 10.1039/d2lc00817c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The isolation of a specific lymphocyte subset from blood is the required first step in the manufacturing of many novel cellular immunotherapies. Microfluidic size-based separation methods are poised to significantly simplify this process because they require neither centrifugation nor magnetic or fluorescent labeling to operate. Lymphocytes can be separated from red blood cells (RBCs) and platelets as well as monocytes and granulocytes because their size differs from each of these cell types. However, further separation of a specific lymphocyte subset from other unwanted lymphocytes using size-based methods is impossible because all lymphocytes have approximately the same size and can only be distinguished by surface markers. This paper describes a new approach that made it possible for a size-based separation method to isolate a desired subset of lymphocytes by making unwanted lymphocytes as well as other blood cells artificially larger. The separation was enabled by selectively binding multiple RBCs to each unwanted cell to create 'rosettes' with an effective size significantly larger than the diameter of a typical lymphocyte. The desired lymphocytes remained unaffected by rosetting and were separated from the rosettes by passing the mixture through a microfluidic size-based separation device based on controlled incremental filtration (CIF). This new rosette-enabled size-based (RESIZE) separation approach demonstrated recovery of 80-90% for all lymphocyte subsets tested (CD3+, CD4+, CD56+) which was ∼2.5-fold higher than that for the standard immunodensity method (RBC rosetting followed by density gradient centrifugation). The purity of separation was >90% for CD3+ cells but declined with increasing cell rarity. Unlike the immunodensity approach, RESIZE required neither centrifugation nor cell washing after the separation and was ∼2.5-fold faster when processing the same sample volume. The results of this study suggest that integration of the RESIZE approach for high-yield isolation of lymphocyte subsets from blood could significantly streamline the manufacturing workflow and thus have a potentially transformative impact on the cost and availability of novel cellular immunotherapies.
Collapse
Affiliation(s)
- Kumar Abhishek
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX 77204-5060, USA.
| | | | - Mai T P Dinh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX 77204-5060, USA.
| | - Anton Mukhamedshin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX 77204-5060, USA.
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX 77204-5060, USA.
| | - Sean C Gifford
- Halcyon Biomedical Incorporated, Friendswood, TX 77546, USA
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX 77204-5060, USA.
| |
Collapse
|
8
|
Minaei N, Ramezankhani R, Tamimi A, Piryaei A, Zarrabi A, Aref AR, Mostafavi E, Vosough M. Immunotherapeutic approaches in Hepatocellular carcinoma: Building blocks of hope in near future. Eur J Cell Biol 2023; 102:151284. [PMID: 36584598 DOI: 10.1016/j.ejcb.2022.151284] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary hepatic cancer and is among the major causes of mortality due to cancer. Due to the lack of efficient conventional therapeutic options for this cancer, particularly in advanced cases, novel treatments including immunotherapy have been considered. However, despite the encouraging clinical outcomes after implementing these innovative approaches, such as oncolytic viruses (OVs), adoptive cell therapies (ACT), immune checkpoint blockades (ICBs), and cancer vaccines, several factors have restricted their therapeutic effect. The main concern is the existence of an immunosuppressive tumor microenvironment (TME). Combination of different ICBs or ICBs plus tyrosine kinase inhibitors have shown promising results in overcoming these limiting factors to some extent. Combination of programmed cell death ligand-1 (PD-L1) antibody Atezolizumab and vascular endothelial growth factor (VEGF) antibody Bevacizumab has become the standard of care in the first-line therapy for untestable HCC, approved by regulatory agencies. This paper highlighted a wide overview of the direct and indirect immunotherapeutic strategies proposed for the treatment of HCC patients and the common challenges that have hindered their further clinical applications.
Collapse
Affiliation(s)
- Neda Minaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Roya Ramezankhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Development and Regeneration, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital-Huddinge, Sweden.
| |
Collapse
|
9
|
Arellano-Ballestero H, Sabry M, Lowdell MW. A Killer Disarmed: Natural Killer Cell Impairment in Myelodysplastic Syndrome. Cells 2023; 12:633. [PMID: 36831300 PMCID: PMC9954109 DOI: 10.3390/cells12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Myelodysplastic syndrome (MDS) treatment remains a big challenge due to the heterogeneous nature of the disease and its ability to progress to acute myeloid leukemia (AML). The only curative option is allogeneic hematopoietic stem cell transplantation (HSCT), but most patients are unfit for this procedure and are left with only palliative treatment options, causing a big unmet need in the context of this disease. Natural killer (NK) cells are attractive candidates for MDS immunotherapy due to their ability to target myeloid leukemic cells without prior sensitization, and in recent years we have seen an arising number of clinical trials in AML and, recently, MDS. NK cells are reported to be highly dysfunctional in MDS patients, which can be overcome by adoptive NK cell immunotherapy or activation of endogenous NK cells. Here, we review the role of NK cells in MDS, the contribution of the tumor microenvironment (TME) to NK cell impairment, and the most recent data from NK cell-based clinical trials in MDS.
Collapse
Affiliation(s)
| | - May Sabry
- Department of Haematology, University College London, London NW3 5PF, UK
- InmuneBio Inc., Boca Raton, FL 33432, USA
- Novamune Ltd., London WC2R 1DJ, UK
| | - Mark W. Lowdell
- Department of Haematology, University College London, London NW3 5PF, UK
- InmuneBio Inc., Boca Raton, FL 33432, USA
| |
Collapse
|
10
|
Yan B, Wang S, Liu C, Wen N, Li H, Zhang Y, Wang H, Xi Z, Lv Y, Fan H, Liu X. Engineering magnetic nano-manipulators for boosting cancer immunotherapy. J Nanobiotechnology 2022; 20:547. [PMID: 36587223 PMCID: PMC9805281 DOI: 10.1186/s12951-022-01760-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy has shown promising therapeutic results in the clinic, albeit only in a limited number of cancer types, and its efficacy remains less than satisfactory. Nanoparticle-based approaches have been shown to increase the response to immunotherapies to address this limitation. In particular, magnetic nanoparticles (MNPs) as a powerful manipulator are an appealing option for comprehensively regulating the immune system in vivo due to their unique magnetically responsive properties and high biocompatibility. This review focuses on assessing the potential applications of MNPs in enhancing tumor accumulation of immunotherapeutic agents and immunogenicity, improving immune cell infiltration, and creating an immunotherapy-sensitive environment. We summarize recent progress in the application of MNP-based manipulators to augment the efficacy of immunotherapy, by MNPs and their multiple magnetically responsive effects under different types of external magnetic field. Furthermore, we highlight the mechanisms underlying the promotion of antitumor immunity, including magnetically actuated delivery and controlled release of immunotherapeutic agents, tracking and visualization of immune response in real time, and magnetic regulation of innate/adaptive immune cells. Finally, we consider perspectives and challenges in MNP-based immunotherapy.
Collapse
Affiliation(s)
- Bin Yan
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Siyao Wang
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Chen Liu
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Nana Wen
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Hugang Li
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yihan Zhang
- grid.412262.10000 0004 1761 5538College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 Shaanxi China
| | - Hao Wang
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Ziyi Xi
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yi Lv
- grid.452438.c0000 0004 1760 8119Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China ,grid.452438.c0000 0004 1760 8119National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiming Fan
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 Shaanxi China
| | - Xiaoli Liu
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China ,grid.452438.c0000 0004 1760 8119Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China ,grid.452438.c0000 0004 1760 8119National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
11
|
Yano M, Byrd JC, Muthusamy N. Natural Killer Cells in Chronic Lymphocytic Leukemia: Functional Impairment and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14235787. [PMID: 36497266 PMCID: PMC9739887 DOI: 10.3390/cancers14235787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy approaches have advanced rapidly in recent years. While the greatest therapeutic advances so far have been achieved with T cell therapies such as immune checkpoint blockade and CAR-T, recent advances in NK cell therapy have highlighted the therapeutic potential of these cells. Chronic lymphocytic leukemia (CLL), the most prevalent form of leukemia in Western countries, is a very immunosuppressive disease but still shows significant potential as a target of immunotherapy, including NK-based therapies. In addition to their antileukemia potential, NK cells are important immune effectors in the response to infections, which represent a major clinical concern for CLL patients. Here, we review the interactions between NK cells and CLL, describing functional changes and mechanisms of CLL-induced NK suppression, interactions with current therapeutic options, and the potential for therapeutic benefit using NK cell therapies.
Collapse
Affiliation(s)
- Max Yano
- Medical Science Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: (J.C.B.); (N.M.)
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (J.C.B.); (N.M.)
| |
Collapse
|
12
|
Natural quinazolinones: From a treasure house to promising anticancer leads. Eur J Med Chem 2022; 245:114915. [DOI: 10.1016/j.ejmech.2022.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|
13
|
Blunt MD, Vallejo Pulido A, Fisher JG, Graham LV, Doyle ADP, Fulton R, Carter MJ, Polak M, Johnson PWM, Cragg MS, Forconi F, Khakoo SI. KIR2DS2 Expression Identifies NK Cells With Enhanced Anticancer Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:379-390. [PMID: 35768150 PMCID: PMC7613074 DOI: 10.4049/jimmunol.2101139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/08/2022] [Indexed: 12/13/2022]
Abstract
NK cells are promising cellular therapeutics against hematological and solid malignancies. Immunogenetic studies have identified that various activating killer cell Ig-like receptors (KIRs) are associated with cancer outcomes. Specifically, KIR2DS2 has been associated with reduced incidence of relapse following transplant in hematological malignancies and improved outcomes in solid tumors, but the mechanism remains obscure. Therefore, we investigated how KIR2DS2 expression impacts NK cell function. Using a novel flow cytometry panel, we show that human NK cells with high KIR2DS2 expression have enhanced spontaneous activation against malignant B cell lines, liver cancer cell lines, and primary chronic lymphocytic leukemia cells. Surface expression of CD16 was increased on KIR2DS2high NK cells, and, accordingly, KIR2DS2high NK cells had increased activation against lymphoma cells coated with the clinically relevant anti-CD20 Abs rituximab and obinutuzumab. Bulk RNA sequencing revealed that KIR2DS2high NK cells have upregulation of NK-mediated cytotoxicity, translation, and FCGR gene pathways. We developed a novel single-cell RNA-sequencing technique to identify KIR2DS2+ NK cells, and this confirmed that KIR2DS2 is associated with enhanced NK cell-mediated cytotoxicity. This study provides evidence that KIR2DS2 marks a population of NK cells primed for anticancer activity and indicates that KIR2DS2 is an attractive target for NK-based therapeutic strategies.
Collapse
Affiliation(s)
- Matthew D Blunt
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Andres Vallejo Pulido
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Jack G Fisher
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Lara V Graham
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Amber D P Doyle
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Rebecca Fulton
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Matthew J Carter
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Marta Polak
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Peter W M Johnson
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark S Cragg
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Salim I Khakoo
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| |
Collapse
|
14
|
NK and cells with NK-like activities in cancer immunotherapy-clinical perspectives. Med Oncol 2022; 39:131. [PMID: 35716327 DOI: 10.1007/s12032-022-01735-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2022] [Indexed: 01/10/2023]
Abstract
Natural killer (NK) cells are lymphoid cells of innate immunity that take important roles in immune surveillance. NK cells are considered as a bridge between innate and adaptive immunity, and their infiltration into tumor area is related positively with prolonged patient survival. They are defined as CD16+ CD56+ CD3- cells in clinic. NK cells promote cytolytic effects on target cells and induce their apoptosis. Loss of NK cell cytotoxic activity and reduction in the number of activating receptors are the current issues for application of such cells in cellular immunotherapy, which resulted in the diminished long-term effects. The focus of this review is to discuss about the activity of NK cells and cells with NK-like activity including natural killer T (NKT), cytokine-induced killer (CIK) and lymphokine-activated killer (LAK) cells in immunotherapy of human solid cancers.
Collapse
|
15
|
Xu Z, Huang X. Cellular immunotherapy for hematological malignancy: recent progress and future perspectives. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0801. [PMID: 34351724 PMCID: PMC8610149 DOI: 10.20892/j.issn.2095-3941.2020.0801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/08/2021] [Indexed: 11/14/2022] Open
Abstract
Advancements in the field of cellular immunotherapy have accelerated in recent years and have changed the treatment landscape for a variety of hematologic malignancies. Cellular immunotherapy strategies exploit the patient's immune system to kill cancer cells. The successful use of CD19 chimeric antigen receptor (CAR) T-cells in treating B-cell malignancies is the paradigm of this revolution, and numerous ongoing studies are investigating and extending this approach to other malignancies. However, resistance to CAR-T-cell therapy and non-durable efficacy have prevented CAR-T-cells from becoming the ultimate therapy. Because natural killer (NK) cells play an essential role in antitumor immunity, adoptively transferred allogeneic NK and CAR-modified NK cell therapy has been attempted in certain disease subgroups. Allogenic hematopoietic stem cell transplantation (allo-HSCT) is the oldest form of cellular immunotherapy and the only curative option for hematologic malignancies. Historically, the breadth of application of allo-HSCT has been limited by a lack of identical sibling donors (ISDs). However, great strides have recently been made in the success of haploidentical allografts worldwide, which enable everyone to have a donor. Haploidentical donors can achieve comparable outcomes to those of ISDs and even better outcomes in certain circumstances because of a stronger graft vs. tumor effect. Currently, novel strategies such as CAR-T or NK-based immunotherapy can be applied as a complement to allo-HSCT for curative effects, particularly in refractory cases. Here, we introduce the developments in cellular immunotherapy in hematology.
Collapse
Affiliation(s)
- Zhengli Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiaojun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
16
|
Morandi F, Sabatini F, Podestà M, Airoldi I. Immunotherapeutic Strategies for Neuroblastoma: Present, Past and Future. Vaccines (Basel) 2021; 9:43. [PMID: 33450862 PMCID: PMC7828327 DOI: 10.3390/vaccines9010043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022] Open
Abstract
Neuroblastoma is the most common extracranial pediatric solid tumor with a heterogeneous clinical course, ranging from spontaneous regression to metastatic disease and death, irrespective of intensive chemotherapeutic regimen. On the basis of several parameters, children affected by neuroblastoma are stratified into low, intermediate and high risk. At present, more than 50% of high-risk patients with metastatic spread display an overall poor long-term outcome also complicated by devastating long-term morbidities. Thus, novel and more effective therapies are desperately needed to improve lifespan of high-risk patients. In this regard, adoptive cell therapy holds great promise and several clinical trials are ongoing, demonstrating safety and tolerability, with no toxicities. Starting from the immunological and clinical features of neuroblastoma, we here discuss the immunotherapeutic approaches currently adopted for high-risk patients and different innovative therapeutic strategies currently under investigation. The latter are based on the infusion of natural killer (NK) cells, as support of consolidation therapy in addition to standard treatments, or chimeric antigen receptor (CAR) T cells directed against neuroblastoma associated antigens (e.g., disialoganglioside GD2). Finally, future perspectives of adoptive cell therapies represented by γδ T lymphocyes and CAR NK cells are envisaged.
Collapse
Affiliation(s)
| | | | | | - Irma Airoldi
- Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Istituto Giannina Gaslini (Istituto di Ricerca e Cura a Carattere Scientifico—IRCCS), Via G. Gaslini 5, 16147 Genova, Italy; (F.M.); (F.S.); (M.P.)
| |
Collapse
|
17
|
Sabry M, Lowdell MW. Killers at the crossroads: The use of innate immune cells in adoptive cellular therapy of cancer. Stem Cells Transl Med 2020; 9:974-984. [PMID: 32416056 PMCID: PMC7445022 DOI: 10.1002/sctm.19-0423] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Adoptive cell therapy (ACT) is an approach to cancer treatment that involves the use of antitumor immune cells to target residual disease in patients after completion of chemo/radiotherapy. ACT has several advantages compared with other approaches in cancer immunotherapy, including the ability to specifically expand effector cells in vitro before selection for adoptive transfer, as well as the opportunity for host manipulation in order to enhance the ability of transferred cells to recognize and kill established tumors. One of the main challenges to the success of ACT in cancer clinical trials is the identification and generation of antitumor effector cells with high avidity for tumor recognition. Natural killer (NK) cells, cytokine‐induced killers and natural killer T cells are key innate or innate‐like effector cells in cancer immunosurveillance that act at the interface between innate and adaptive immunity, to have a greater influence over immune responses to cancer. In this review, we discuss recent studies that highlight their potential in cancer therapy and summarize clinical trials using these effector immune cells in adoptive cellular therapy for the treatment of cancer.
Collapse
Affiliation(s)
- May Sabry
- Department of HaematologyUniversity College LondonLondonUK
| | | |
Collapse
|