1
|
Fabozzi F, Cojal González JD, Severin N, Rabe JP, Hecht S. Voltage-Gated Switching of Moiré Patterns in Epitaxial Molecular Crystals. ACS NANO 2024; 18:33664-33670. [PMID: 39574317 PMCID: PMC11636263 DOI: 10.1021/acsnano.4c12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
Studying molecular materials at the nanoscale allows us to gain a deeper understanding of supramolecular structure formation and serves as the basis for rationally controlling the resulting interfacial properties. Here, we describe the formation of extended Moiré patterns resulting from the assembly of dipolar π-conjugated molecules on highly oriented pyrolytic graphite at the liquid-solid interface as characterized by scanning tunneling microscopy (STM). By switching the bias of the sample and thus the orientation of the external electric field in the vicinity of the STM junction, structural reorganization of the molecular building blocks and the resulting organic 2D crystal is induced and can conveniently be monitored in situ by the appearance and disappearance of the Moiré patterns. Importantly, the formation and loss of the Moiré patterns are fully reversible, providing exquisite control over epitaxial molecular crystals. Our approach provides fundamental insights into the supramolecular organization and resulting superstructure formation of incommensurable 2D lattices upon applying an electric field and enables the rational tuning of Moiré patterns as a key step toward the potential integration of organic 2D crystals in molecular nanodevices.
Collapse
Affiliation(s)
- Filippo
Giovanni Fabozzi
- DWI−Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
- Department
of Chemistry and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - José D. Cojal González
- Department
of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Nikolai Severin
- Department
of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Jürgen P. Rabe
- Department
of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Stefan Hecht
- DWI−Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
- Department
of Chemistry and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| |
Collapse
|
2
|
Zhang Z, Deng C, Fan X, Li M, Zhang M, Wang X, Chen F, Shi S, Zhou Y, Deng L, Gao H, Xiong W. 3D Directional Assembly of Liquid Crystal Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401533. [PMID: 38794830 DOI: 10.1002/adma.202401533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The precise construction of hierarchically long-range ordered structures using molecules as fundamental building blocks can fully harness their anisotropy and potential. However, the 3D, high-precision, and single-step directional assembly of molecules is a long-pending challenge. Here, a 3D directional molecular assembly strategy via femtosecond laser direct writing (FsLDW) is proposed and the feasibility of this approach using liquid crystal (LC) molecules as an illustrative example is demonstrated. The physical mechanism for femtosecond (fs) laser-induced assembly of LC molecules is investigated, and precise 3D arbitrary assembly of LC molecules is achieved by defining the discretized laser scanning pathway. Additionally, an LC-based Fresnel zone plate array with polarization selection and colorization imaging functions is fabricated to further illustrate the potential of this method. This study not only introduces a 3D high-resolution alignment method for LC-based functional devices but also establishes a universal protocol for the precise 3D directional assembly of anisotropic molecules.
Collapse
Affiliation(s)
- Zexu Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunsan Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuhao Fan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Minjing Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingduo Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinger Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fayu Chen
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shaoxi Shi
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yining Zhou
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Leimin Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Hui Gao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| |
Collapse
|
3
|
Xie R, Hu Y, Lee SL. A Paradigm Shift from 2D to 3D: Surface Supramolecular Assemblies and Their Electronic Properties Explored by Scanning Tunneling Microscopy and Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300413. [PMID: 36922729 DOI: 10.1002/smll.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Indexed: 06/15/2023]
Abstract
Exploring supramolecular architectures at surfaces plays an increasingly important role in contemporary science, especially for molecular electronics. A paradigm of research interest in this context is shifting from 2D to 3D that is expanding from monolayer, bilayers, to multilayers. Taking advantage of its high-resolution insight into monolayers and a few layers, scanning tunneling microscopy/spectroscopy (STM/STS) turns out a powerful tool for analyzing such thin films on a solid surface. This review summarizes the representative efforts of STM/STS studies of layered supramolecular assemblies and their unique electronic properties, especially at the liquid-solid interface. The superiority of the 3D molecular networks at surfaces is elucidated and an outlook on the challenges that still lie ahead is provided. This review not only highlights the profound progress in 3D supramolecular assemblies but also provides researchers with unusual concepts to design surface supramolecular structures with increasing complexity and desired functionality.
Collapse
Affiliation(s)
- Rongbin Xie
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Yamagata K, Maeda M, Tessari Z, Mali KS, Tobe Y, De Feyter S, Tahara K. Solvent Mediated Nanoscale Quasi-Periodic Chirality Reversal in Self-Assembled Molecular Networks Featuring Mirror Twin Boundaries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207209. [PMID: 36683210 DOI: 10.1002/smll.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Grain boundaries in polycrystals have a prominent impact on the properties of a material, therefore stimulating the research on grain boundary engineering. Structure determination of grain boundaries of molecule-based polycrystals with submolecular resolution remains elusive. Reducing the complexity to monolayers has the potential to simplify grain boundary engineering and may offer real-space imaging with submolecular resolution using scanning tunneling microscopy (STM). Herein, the authors report the observation of quasi-periodic nanoscale chirality switching in self-assembled molecular networks, in combination with twinning, as revealed by STM at the liquid/solid interface. The width of the chiral domain structure peaks at 12-19 nm. Adjacent domains having opposite chirality are connected continuously through interdigitated alkoxy chains forming a 1D defect-free domain border, reflecting a mirror twin boundary. Solvent co-adsorption and the inherent conformational adaptability of the alkoxy chains turn out to be crucial factors in shaping grain boundaries. Moreover, the epitaxial interaction with the substrate plays a role in the nanoscale chirality reversal as well.
Collapse
Affiliation(s)
- Kyohei Yamagata
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Zeno Tessari
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Yoshito Tobe
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30030, Taiwan
- Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, 567-0047, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| |
Collapse
|
5
|
Mondal M, Ganapathy R. Hierarchical Colloidal Self-Assembly on Lattice-Mismatched Moiré Patterns. J Phys Chem Lett 2023; 14:619-626. [PMID: 36633917 DOI: 10.1021/acs.jpclett.2c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extending atomic epitaxy concepts to colloidal systems for realizing functional surface structures has recently piqued scientific interest. Akin to the growth of ordered metal clusters on graphene moiré, spatially ordered colloidal crystals have been realized on soft lithographically fabricated moiré patterns. In addition to moiré periodicity, lattice misfit strain can bring about a further level of hierarchy in colloidal self-assembly, although its role in self-organization remains unexplored. Here, we demonstrate the self-organized growth of micrometer-sized colloidal pyramid arrays with lateral order extending over millimeter length scales on lattice-mismatched moiré patterns. By probing the film growth dynamics with single-particle resolution, we uncovered the interplay between lattice misfit strain and topographically varying surface potential within the moiré unit cell, which significantly alters the nucleation process. We also show that the structural organization of colloids within moiré regions primarily depends on the moiré angle, and by tuning it, multiple levels of hierarchy can be achieved.
Collapse
Affiliation(s)
- Manodeep Mondal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| |
Collapse
|
6
|
Pitch GM, Matsushima LN, Kraemer Y, Dailing EA, Ayzner AL. Energy Transfer in Aqueous Light Harvesting Antennae Based on Brush-like Inter-Conjugated Polyelectrolyte Complexes. Macromolecules 2022; 55:10302-10311. [DOI: 10.1021/acs.macromol.2c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Gregory M. Pitch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Levi N. Matsushima
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Yannick Kraemer
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Eric A. Dailing
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| |
Collapse
|
7
|
Pavlov SV, Kozhevnikova YO, Kislenko VA, Kislenko SA. Modulation of the kinetics of outer-sphere electron transfer at graphene by a metal substrate. Phys Chem Chem Phys 2022; 24:25203-25213. [PMID: 36254968 DOI: 10.1039/d2cp03771h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Solid-supported graphene is a typical configuration of electrochemical devices based on single-layer graphene. Therefore, it is necessary to understand the electrochemical features of such heterostructures. In this work, we theoretically investigated the effect of the metal type on the nonadiabatic electron transfer (ET) at the metal-supported graphene using DFT calculations. We considered five metals Au, Ag, Pt, Cu, and Al on which graphene is physically adsorbed. It is shown that all metals catalyze the ET. The electrocatalytic effect increases in the following series Al < Au ≲ Ag ≈ Cu < Pt. The enhanced ET in the presence of the metal substrate is explained by the hybridization of metal and graphene states, due to which the coupling between the reactant in an electrolyte and metal is increased. Metal-dependent electrocatalytic effect is explained both by different densities of states at the Fermi level of the systems and by differences in the behaviour of the tails of hybridized wave functions in the electrolyte region. The shift of the Fermi level with respect to the Dirac point in graphene when charging at the metal/graphene/electrolyte interface does not affect the kinetics due to the small contribution of graphene states to the electron transfer.
Collapse
Affiliation(s)
- Sergey V Pavlov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Yekaterina O Kozhevnikova
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Vitaliy A Kislenko
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russian Federation.,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Sergey A Kislenko
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| |
Collapse
|
8
|
Yang Y, Wei Y, Guo Z, Hou W, Liu Y, Tian H, Ren TL. From Materials to Devices: Graphene toward Practical Applications. SMALL METHODS 2022; 6:e2200671. [PMID: 36008156 DOI: 10.1002/smtd.202200671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene, as an emerging 2D material, has been playing an important role in flexible electronics since its discovery in 2004. The representative fabrication methods of graphene include mechanical exfoliation, liquid-phase exfoliation, chemical vapor deposition, redox reaction, etc. Based on its excellent mechanical, electrical, thermo-acoustical, optical, and other properties, graphene has made a great progress in the development of mechanical sensors, microphone, sound source, electrophysiological detection, solar cells, synaptic transistors, light-emitting devices, and so on. In different application fields, large-scale, low-cost, high-quality, and excellent performance are important factors that limit the industrialization development of graphene. Therefore, laser scribing technology, roll-to-roll technology is used to reduce the cost. High-quality graphene can be obtained through chemical vapor deposition processes. The performance can be improved through the design of structure of the devices, and the homogeneity and stability of devices can be achieved by mechanized machining means. In total, graphene devices show promising prospect for the practical fields of sports monitoring, health detection, voice recognition, energy, etc. There is a hot issue for industry to create and maintain the market competitiveness of graphene products through increasing its versatility and killer application fields.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yuhong Wei
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhanfeng Guo
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Weiwei Hou
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - He Tian
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Hashimoto S, Kaneko H, De Feyter S, Tobe Y, Tahara K. Symmetry and spacing controls in periodic covalent functionalization of graphite surfaces templated by self-assembled molecular networks. NANOSCALE 2022; 14:12595-12609. [PMID: 35861168 DOI: 10.1039/d2nr02858a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We herein present the periodic covalent functionalization of graphite surfaces, creating a range of patterns of different symmetries and pitches at the nanoscale. Self-assembled molecular networks (SAMNs) of rhombic-shaped bis(dehydrobenzo[12]annulene) (bisDBA) derivatives having alkyl chain substituents of different lengths were used as templates for covalent grafting of electrochemically generated aryl radicals. Scanning tunneling microscopy (STM) observations at the 1,2,4-trichlorobenzene/graphite interface revealed that these molecules form a variety of networks that contain pores of different shapes and sizes. The covalently functionalized surfaces show hexagonal, oblique, and quasi-rectangular periodicities. This is attributed to the favorable aryl radical addition at the pore(s). We also confirmed the successful transmission of chirality information from the SAMNs to the alignment of the grafted aryls. In one case, the addition of a guest molecule was used to switch the SAMN symmetry and periodicity, leading to a change in the functionalized surface periodicity from oblique to hexagonal in the presence of the guest molecule. This contribution highlights the potential of SAMNs as templates for the controlled formation of nanopatterned carbon materials.
Collapse
Affiliation(s)
- Shingo Hashimoto
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Hiromasa Kaneko
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Yoshito Tobe
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30030, Taiwan
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
10
|
Lu J, Jiang H, Yan Y, Zhu Z, Zheng F, Sun Q. High-Throughput Preparation of Supramolecular Nanostructures on Metal Surfaces. ACS NANO 2022; 16:13160-13167. [PMID: 35862580 DOI: 10.1021/acsnano.2c06294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One of the contemporary challenges in materials science lies in the rapid materials screening and discovery. Experimental sample libraries can be generated by high-throughput parallel synthesis to map the composition space for rapid material discoveries. Molecular self-assembly on surfaces has proved a useful way to construct nanostructures with interesting topologies or properties. Despite the strong dependence of molecular stoichiometry on the structures, high-throughput preparations of supramolecular surface nanostructures have been far less explored. Here, by integrating a physical mask into the standard ultra-high-vacuum (UHV) molecular preparation system we show a high-throughput approach for preparing supramolecular nanostructures of continuous composition spreads on metal surfaces. The spatially addressable sample libraries of supramolecular self-assemblies are characterized by high-resolution scanning probe microscopy. We could explore different binary nanostructures of varying molecular ratios on one single substrate. Moreover, we use the minimum spanning tree approach to qualitatively and quantitatively study the structural properties of the formed nanostructures. This high-throughput approach may accelerate the screening and exploration of surface-supported, low-dimensional nanostructures not limited to supramolecular interactions.
Collapse
Affiliation(s)
- Jiayi Lu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Hao Jiang
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Yuyi Yan
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Zhiwen Zhu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Fengru Zheng
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Qiang Sun
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
11
|
Demonstration of Molecular Tunneling Junctions Based on Vertically Stacked Graphene Heterostructures. CRYSTALS 2022. [DOI: 10.3390/cryst12060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate the fabrication and complete characterization of vertical molecular tunneling junctions based on graphene heterostructures, which incorporate a control series of arylalkane molecules acting as charge transport barriers. Raman spectroscopy and atomic force microscopy were employed to identify the formation of the molecular monolayer via an electrophilic diazonium reaction on a pre-patterned bottom graphene electrode. The top graphene electrode was transferred to the deposited molecular layer to form a stable electrical connection without filamentary damage. Then, we showed proof of intrinsic charge carrier transport through the arylalkane molecule in the vertical tunneling junctions by carrying out multiprobe approaches combining complementary transport characterization methods, which included length- and temperature-dependent charge transport measurements and transition voltage spectroscopy. Interpretation of all the electrical characterizations was conducted on the basis of intact statistical analysis using a total of 294 fabricated devices. Our results and analysis can provide an objective criterion to validate molecular electronic devices fabricated with graphene electrodes and establish statistically representative junction properties. Since many of the experimental test beds used to examine molecular junctions have generated large variation in the measured data, such a statistical approach is advantageous to identify the meaningful parameters with the data population and describe how the results can be used to characterize the graphene-based molecular junctions.
Collapse
|
12
|
Bias-Voltage Dependence of Tunneling Decay Coefficient and Barrier Height in Arylalkane Molecular Junctions with Graphene Contacts as a Protecting Interlayer. CRYSTALS 2022. [DOI: 10.3390/cryst12060767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We studied a molecular junction with arylalkane self-assembled monolayers sandwiched between two graphene contacts. The arrangement of graphene-based molecular junctions provides a stable device structure with a high yield and allows for extensive transport measurements at 78 K. We observed a temperature-independent current density–voltage (J–V) characteristic and the exponential dependency of the current density on the molecular length, proving that the charge transport occurs by non-resonant tunneling through the molecular barrier. Based on the Simmons model, the bias-voltage dependence of the decay coefficient and barrier height was extracted from variable-length transport characterizations. The J–V data measured were simulated by the Simmons model, which was modified with the barrier lowering induced by the bias voltage. Indeed, there isno need for adjustable fitting parameters. The resulting simulation was in remarkable consistency with experimental measurements over a full bias range up to |V| ≤ 1.5 V for the case of graphene/arylalkane/graphene heterojunctions. Our findings clearly showed the demonstration of stable and reliable molecular junctions with graphene contacts and their intrinsic charge transport characteristics, as well as justifying the application of the voltage-induced barrier lowering approximation to the graphene-based molecular junction.
Collapse
|
13
|
Biomolecular control over local gating in bilayer graphene induced by ferritin. iScience 2022; 25:104128. [PMID: 35434555 PMCID: PMC9010634 DOI: 10.1016/j.isci.2022.104128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
Electrical field-induced charge modulation in graphene-based devices at the nanoscale with ultrahigh density carrier accumulation is important for various practical applications. In bilayer graphene (BLG), inversion symmetry can simply be broken by an external electric field. However, control over charge carrier density at the nanometer scale is a challenging task. We demonstrate local gating of BLG in the nanometer range by adsorption of AfFtnAA (which is a bioengineered ferritin, an iron-storing globular protein with ∅ = 12 nm). Low-temperature electrical transport measurements with field-effect transistors with these AfFtnAA/BLG surfaces show hysteresis with two Dirac peaks. One peak at a gate voltage VBG = 35 V is associated with pristine BLG, while the second peak at VBG = 5 V results from local doping by ferritin. This charge trapping at the biomolecular length scale offers a straightforward and non-destructive method to alter the local electronic structure of BLG. Local gating with 12 nm resolution by charge trapping in ferritin. Adsorption of ferritin on graphene via non-invasive self-assembly. Charging controlled via iron oxide loading of ferritin. Visualization of individual ferritins on graphene by atomic force microscopy.
Collapse
|
14
|
Singh A, Shi A, Claridge SA. Nanometer-scale patterning of hard and soft interfaces: from photolithography to molecular-scale design. Chem Commun (Camb) 2022; 58:13059-13070. [DOI: 10.1039/d2cc05221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many areas of modern materials chemistry, from nanoscale electronics to regenerative medicine, require design of precisely-controlled chemical environments at near-molecular scales on both hard and soft surfaces.
Collapse
Affiliation(s)
- Anamika Singh
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Anni Shi
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Shelley A. Claridge
- Purdue University, Chemistry and Biomedical Engineering, 560 Oval Drive, West Lafayette, Indiana, USA
| |
Collapse
|
15
|
Zhao Y, Gobbi M, Hueso LE, Samorì P. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chem Rev 2021; 122:50-131. [PMID: 34816723 DOI: 10.1021/acs.chemrev.1c00497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.
Collapse
Affiliation(s)
- Yuda Zhao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France.,School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People's Republic of China
| | - Marco Gobbi
- Centro de Fisica de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain.,CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
16
|
Abbasian H, Rochefort A. Electrostatic patterning on graphene with dipolar self-assembly. Phys Chem Chem Phys 2021; 23:22014-22021. [PMID: 34570130 DOI: 10.1039/d1cp02272e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have investigated the influence of electric dipole moment in different periodic two-dimensional network on the electronic structure properties of graphene. Although the control of doping level in graphene within a van der Waals heterostructure constitutes a difficult task, the dipolar nature of the different molecular stacks can be used to control its electrostatic properties. First, we demonstrate that the orientation and magnitude of the adsorbed molecular dipole moments allow to control the electrical behaviour of graphene, and acts as an electrostatic gate that shifts neutrality point of graphene to behave as n- or p-doped materials. Then, we show that the presence of local dipole moment in SAN induces an electrostatic potential in graphene that creates well-defined patterned regions with different electronic characteristics that would influence the confinement of molecular species.
Collapse
Affiliation(s)
- Hamed Abbasian
- Engineering Physics Department, Polytechnique Montréal, Canada.
| | - Alain Rochefort
- Engineering Physics Department, Polytechnique Montréal, Canada.
| |
Collapse
|
17
|
Vuković V, Leduc T, Jelić-Matošević Z, Didierjean C, Favier F, Guillot B, Jelsch C. A rush to explore protein-ligand electrostatic interaction energy with Charger. Acta Crystallogr D Struct Biol 2021; 77:1292-1304. [PMID: 34605432 DOI: 10.1107/s2059798321008433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
The mutual penetration of electron densities between two interacting molecules complicates the computation of an accurate electrostatic interaction energy based on a pseudo-atom representation of electron densities. The numerical exact potential and multipole moment (nEP/MM) method is time-consuming since it performs a 3D integration to obtain the electrostatic energy at short interaction distances. Nguyen et al. [(2018), Acta Cryst. A74, 524-536] recently reported a fully analytical computation of the electrostatic interaction energy (aEP/MM). This method performs much faster than nEP/MM (up to two orders of magnitude) and remains highly accurate. A new program library, Charger, contains an implementation of the aEP/MM method. Charger has been incorporated into the MoProViewer software. Benchmark tests on a series of small molecules containing only C, H, N and O atoms show the efficiency of Charger in terms of execution time and accuracy. Charger is also powerful in a study of electrostatic symbiosis between a protein and a ligand. It determines reliable protein-ligand interaction energies even when both contain S atoms. It easily estimates the individual contribution of every residue to the total protein-ligand electrostatic binding energy. Glutathione transferase (GST) in complex with a benzophenone ligand was studied due to the availability of both structural and thermodynamic data. The resulting analysis highlights not only the residues that stabilize the ligand but also those that hinder ligand binding from an electrostatic point of view. This offers new perspectives in the search for mutations to improve the interaction between the two partners. A proposed mutation would improve ligand binding to GST by removing an electrostatic obstacle, rather than by the traditional increase in the number of favourable contacts.
Collapse
Affiliation(s)
- Vedran Vuković
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
| | - Theo Leduc
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
| | - Zoe Jelić-Matošević
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | - Benoît Guillot
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
| | | |
Collapse
|
18
|
Maier S, Stöhr M. Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:950-956. [PMID: 34540518 PMCID: PMC8404214 DOI: 10.3762/bjnano.12.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Sabine Maier
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
19
|
Hakami M, Deokar G, Smajic J, Batra NM, Costa PMFJ. Can a Procedure for the Growth of Single-layer Graphene on Copper be used in Different Chemical Vapor Deposition Reactors? Chem Asian J 2021; 16:1466-1474. [PMID: 33848403 DOI: 10.1002/asia.202100199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/12/2021] [Indexed: 02/03/2023]
Abstract
In the last decade, catalytic chemical vapor deposition (CVD) has been intensively explored for the growth of single-layer graphene (SLG). Despite the scattering of guidelines and procedures, variables such as the surface texture/chemistry of catalyst metal foils, carbon feedstock, and growth process parameters have been well-scrutinized. Still, questions remain on how best to standardize the growth procedure. The possible correlation of procedures between different CVD setups is an example. Here, two thermal CVD reactors were explored to grow graphene on Cu foil. The design of these setups was entirely distinct, one being a "showerhead" cold-wall type, whereas the other represented the popular "tubular" hot-wall type. Upon standardizing the Cu foil surface, it was possible to develop a procedure for cm2 -scale SLG growth that differed only by the carrier gas flow rate used in the two reactors.
Collapse
Affiliation(s)
- Mariam Hakami
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Geetanjali Deokar
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Jasmin Smajic
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Nitin M Batra
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Pedro M F J Costa
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
20
|
Deng D, Wu Q. Raman spectroscopy of copper phthalocyanine/graphene and 2,3,5,6‐tetrafluoro‐tetracyano‐quino‐dimethane/graphene interfaces. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.6934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ding‐Rong Deng
- College of Mechanical and Energy Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province Jimei University Xiamen China
| | - Qi‐Hui Wu
- College of Mechanical and Energy Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province Jimei University Xiamen China
| |
Collapse
|
21
|
Stratis G, Zesch JD, Pan HS, Webb LJ, Raizen MG. Monitoring damage of self-assembled monolayers using metastable excited helium atoms. J Chem Phys 2021; 154:034704. [PMID: 33499631 DOI: 10.1063/5.0036827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The breaking of molecular bonds during exposure to ionizing radiation and electron beams creates irreversible damage in the molecular structure. In some cases, such as lithography, controlled damage of a molecular resist is a desirable process and is the basis for the entire semiconductor industry. In other cases, such as environmental exposure or probing of the molecular structure, the induced damage is a major problem that has limited advances in science and technology. We report here the use of an in situ probe that is minimally invasive to detect real-time damage induced in organic materials. Specifically, we use metastable excited helium atoms in the 3S1 state to characterize the damage caused by a low-energy electron beam ∼30 eV on an organic self-assembled monolayer of 11-bromo-1-undecanethiol on a gold substrate. We were able to monitor the damage caused by the electron beam without introducing any additional observed damage by the probing metastable atoms.
Collapse
Affiliation(s)
- Georgios Stratis
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Jordan D Zesch
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Henry S Pan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Lauren J Webb
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Mark G Raizen
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
22
|
Gorkan T, Kadioglu Y, Aktürk E, Ciraci S. Interactions of selected organic molecules with a blue phosphorene monolayer: self-assembly, solvent effect, enhanced binding and fixation through coadsorbed gold clusters. Phys Chem Chem Phys 2020; 22:26552-26561. [PMID: 33200766 DOI: 10.1039/d0cp04886k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this paper we investigate the interaction between a pristine blue phosphorene monolayer and selected organic molecules like amino acids and nucleic acid bases. These molecules are bound to the substrate by a weak van der Waals interaction leading to their physisorption. When isolated, they tend to orient themselves parallel to the surface and are located in flat minima with very low libration frequencies; thus the electronic structures of the substrate and physisorbed molecules are not affected except for relative shifts. Even though the regular self-assembly of these molecules on the pristine blue phosphorene cannot be realized under this weak interaction, only their irregular coating of the substrate can occur due to increased intermolecular coupling. In a solvent like water, the weak binding energy is further decreased. Gold adatoms and gold clusters can form strong chemical bonds with pristine blue phosphorene and modify its electronic and magnetic state depending on the coverage. While full coverage of a blue phosphorene monolayer by gold adatoms leads to instabilities followed by clustering, relatively lower coverage can attribute very interesting magnetic and electronic states, like a spin gapless semiconductor. When bound to the gold clusters already adsorbed on the blue phosphorene monolayer, amino acid and nucleic acid base molecules form relatively strong chemical bonds and hence can be fixed to the surface; they are reoriented to gain self-assembly character and the whole system acquires new functionalities.
Collapse
Affiliation(s)
- T Gorkan
- Department of Physics, Adnan Menderes University, 09100 Aydın, Turkey.
| | | | | | | |
Collapse
|
23
|
Long-range ordered and atomic-scale control of graphene hybridization by photocycloaddition. Nat Chem 2020; 12:1035-1041. [DOI: 10.1038/s41557-020-0540-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/04/2020] [Indexed: 11/08/2022]
|
24
|
Hayes TR, Lang EN, Shi A, Claridge SA. Large-Scale Noncovalent Functionalization of 2D Materials through Thermally Controlled Rotary Langmuir-Schaefer Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10577-10586. [PMID: 32852207 DOI: 10.1021/acs.langmuir.0c01914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As two-dimensional (2D) materials are more broadly utilized as components of hybrid materials, controlling their surface chemistry over large areas through noncovalent functionalization becomes increasingly important. Here, we demonstrate a thermally controlled rotary transfer stage that allows areas of a 2D material to be continuously cycled into contact with a Langmuir film. This approach enables functionalization of large areas of the 2D material and simultaneously improves long-range ordering, achieving ordered domain areas up to nearly 10 000 μm2. To highlight the layer-by-layer processing capability of the rotary transfer stage, large-area noncovalently adsorbed monolayer films from an initial rotary cycle were used as templates to assemble ultranarrow gold nanowires from solution. The process we demonstrate would be readily extensible to roll-to-roll processing, addressing a longstanding challenge in scaling Langmuir-Schaefer transfer for practical applications.
Collapse
Affiliation(s)
- Tyler R Hayes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Erin N Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Awuah JB, Walsh TR. Side-chain effects on the co-existence of emergent nanopatterns in amino acid adlayers on graphene. NANOSCALE 2020; 12:13662-13673. [PMID: 32568329 DOI: 10.1039/d0nr01333a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The spontaneous tendency of amino acid adlayers to self-assemble into ordered patterns on non-reactive surfaces is thought to be chiefly influenced by amino acid termination state. Experiments have shown that different side chains can produce different patterns, with a distinction drawn between side chains that can support hydrogen bonds or electrostatic interactions, and those that are hydrophobic. However, as is demonstrated in this work, this distinction is not clear cut, implying that there is currently no way to predict in advance what type of pattern will be formed. Here, we use molecular dynamics simulations of amino acid adlayers in neutral, zwitterion, and neutral-zwitterion states for two types of amino acids, either histidine or alanine, adsorbed at the in-vacuo graphene interface. In contrast to earlier studies on adlayers of tryptophan and methionine on graphene that reveal the presence of only a single type of pattern motif, the canonical dimer row, here we find that emergent patterns of histidine and alanine adlayers supported the co-existence of several different types of motifs, influenced by the different side-chain characteristics. For alanine, the compact side-chain does not support hydrogen bonding and engages weakly with the surface, leading to the emergence of a new dimer row configuration in addition to the canonical dimer row motif. On the contrary, for histidine, the side-chain supports hydrogen bonding, leading to the emergence of a dimer row motif different from the canonical dimer row, co-existing with several different monomer row motifs. On this basis, we propose that emergent canonical dimer row patterns are more likely for amino acids with side-chains that are non-compact and that also lack extensive hydrogen bonding capacity, and that engage strongly with the underlying substrate. These findings provide a fundamental basis to rationally guide the design of desired self-assembled nanostructures on planar surfaces.
Collapse
Affiliation(s)
- Joel B Awuah
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.
| | | |
Collapse
|
26
|
John AS, Roth MW, Firlej L, Kuchta B, Charra F, Wexler C. Self-Assembled Two-Dimensional Nanoporous Crystals as Molecular Sieves: Molecular Dynamics Studies of 1,3,5-Tristyrilbenzene-C n Superstructures. J Chem Inf Model 2020; 60:2155-2168. [PMID: 32155335 DOI: 10.1021/acs.jcim.0c00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to their unique geometry complex, self-assembled nanoporous 2D molecular crystals offer a broad landscape of potential applications, ranging from adsorption and catalysis to optoelectronics, substrate processes, and future nanomachine applications. Here we report and discuss the results of extensive all-atom Molecular Dynamics (MD) investigations of self-assembled organic monolayers (SAOM) of interdigitated 1,3,5-tristyrilbenzene (TSB) molecules terminated by alkoxy peripheral chains Cn containing n carbon atoms (TSB3,5-Cn) deposited onto highly ordered pyrolytic graphite (HOPG). In vacuo structural and electronic properties of the TSB3,5-Cn molecules were initially determined using ab initio second order Møller-Plesset (MP2) calculations. The MD simulations were then used to analyze the behavior of the self-assembled superlattices, including relaxed lattice geometry (in good agreement with experimental results) and stability at ambient temperatures. We show that the intermolecular disordering of the TSB3,5-Cn monolayers arises from competition between decreased rigidity of the alkoxy chains (loss of intramolecular order) and increased stabilization with increasing chain length (afforded by interdigitation). We show that the inclusion of guest organic molecules (e.g., benzene, pyrene, coronene, hexabenzocoronene) into the nanopores (voids formed by interdigitated alkoxy chains) of the TSB3,5-Cn superlattices stabilizes the superstructure, and we highlight the importance of alkoxy chain mobility and available pore space in the dynamics of the systems and their potential application in selective adsorption.
Collapse
Affiliation(s)
- Alexander St John
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Michael W Roth
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Physics Department, Waldorf University, Forest City, Iowa 50436, United States
| | - Lucyna Firlej
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Laboratoire Charles Coulomb, CNRS-Université de Montpellier, 34090 Montpellier, France
| | - Bogdan Kuchta
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.,Laboratoire MADRIEL, Aix-Marseille Université-CNRS, 13007 Marseille, France
| | - Fabrice Charra
- Service de Physique de l'État Condensé (SPEC), Université Paris Saclay, CEA CNRS UMR-3680 CEA Saclay F-91191 Gif-sur-Yvette, France
| | - Carlos Wexler
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
27
|
Rotas G, Thomas MB, Canton‐Vitoria R, D'Souza F, Tagmatarchis N. Preparation, Photophysical and Electrochemical Evaluation of an Azaborondipyrromethene/Zinc Porphyrin/Graphene Supramolecular Nanoensemble. Chemistry 2020; 26:6652-6661. [DOI: 10.1002/chem.202000174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/19/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Georgios Rotas
- Theoretical and Physical Chemistry InstituteNational Hellenic Research Foundation 48 Vassileos Constantinou Avenue 11635 Athens Greece
| | - Michael B. Thomas
- Department of ChemistryUniversity of North Texas 305070 Denton TX 76203-5017 USA
| | - Ruben Canton‐Vitoria
- Theoretical and Physical Chemistry InstituteNational Hellenic Research Foundation 48 Vassileos Constantinou Avenue 11635 Athens Greece
| | - Francis D'Souza
- Department of ChemistryUniversity of North Texas 305070 Denton TX 76203-5017 USA
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry InstituteNational Hellenic Research Foundation 48 Vassileos Constantinou Avenue 11635 Athens Greece
| |
Collapse
|
28
|
Interface Chemistry of Graphene/Cu Grafted By 3,4,5-Tri-Methoxyphenyl. Sci Rep 2020; 10:4114. [PMID: 32139839 PMCID: PMC7058071 DOI: 10.1038/s41598-020-60831-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/13/2020] [Indexed: 11/24/2022] Open
Abstract
Chemical reaction with diazonium molecules has revealed to be a powerful method for the surface chemical modification of graphite, carbon nanotubes and recently also of graphene. Graphene electronic structure modification using diazonium molecules is strongly influenced by graphene growth and by the supporting materials. Here, carrying on a detailed study of core levels and valence band photoemission measurements, we are able to reconstruct the interface chemistry of trimethoxybenzenediazonium-based molecules electrochemically grafted on graphene on copper. The band energy alignment at the molecule-graphene interface has been traced revealing the energy position of the HOMO band with respect to the Fermi level.
Collapse
|
29
|
Kim KL, Koo M, Park C. Controlled polymer crystal/two-dimensional material heterostructures for high-performance photoelectronic applications. NANOSCALE 2020; 12:5293-5307. [PMID: 32100770 DOI: 10.1039/c9nr10911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The control of atomically thin two-dimensional (2D) crystal-based heterostructures wherein the interfaces of 2D nanomaterials are vertically stacked with other thin functional materials via van der Waals interactions is highly important for not only optimizing the excellent properties of 2D nanomaterials, but also for utilizing the functionality of the contact materials. In particular, when 2D nanomaterials are combined with soft polymeric components, the resulting photoelectronic devices are potentially scalable and mechanically flexible, allowing the development of a variety of prototype soft-electronic devices, such as solar cells, displays, photodetectors, and non-volatile memory devices. Diverse polymer/2D heterostructures are frequently employed, but the performance of the devices with heterostructures is limited, mainly because of the difficulty in controlling the molecular structures of the polymers on the 2D surface. Thus, understanding the crystal interactions of polymers on atomically flat and dangling-bond-free surfaces of 2D materials is essential for ensuring high performance. In this study, the recent progress made in the development of thin polymer films fabricated on the surfaces of various 2D nanomaterials for high-performance photoelectronic devices is comprehensively reviewed, with an emphasis on the control of the molecular and crystalline structures of the polymers on the 2D surface.
Collapse
Affiliation(s)
- Kang Lib Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Min Koo
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
30
|
Awuah JB, Walsh TR. Predictions of Pattern Formation in Amino Acid Adlayers at the In Vacuo Graphene Interface: Influence of Termination State. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903403. [PMID: 31663292 DOI: 10.1002/smll.201903403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Controlled self-assembly of biomolecules on graphene offers a pathway for realizing its full potential in biological applications. Microscopy has revealed the self-assembly of amino acid adlayers into dimer rows on nonreactive substrates. However, neither the spontaneous formation of these patterns, nor the influence of amino acid termination state on the formation of patterns has been directly resolved to date. Molecular dynamics simulations, with the ability to reveal atomic level details and exert full control over the termination state, are used here to model initially disordered adlayers of neutral, zwitterionic, and neutral-zwitterionic mixtures for two types of amino acids, tryptophan and methionine, adsorbed on graphene in vacuo. The simulations of the zwitterion-containing adlayers exhibit the spontaneous emergence of dimer row ordering, mediated by charge-driven intermolecular interactions. In contrast, adlayers containing only neutral species do not assemble into ordered patterns. It is also found that the presence of trace amounts of water reduces the interamino acid interactions in the adlayers, but does not induce or disrupt pattern formation. Overall, the findings reveal the balance between the lateral interamino acid interactions and amino acid-graphene interactions, providing foundational insights for ultimately realizing the predictable pattern formation of biomolecules adsorbed on unreactive surfaces.
Collapse
Affiliation(s)
- Joel B Awuah
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| |
Collapse
|
31
|
Svatek SA, Kerfoot J, Summerfield A, Nizovtsev AS, Korolkov VV, Taniguchi T, Watanabe K, Antolín E, Besley E, Beton PH. Triplet Excitation and Electroluminescence from a Supramolecular Monolayer Embedded in a Boron Nitride Tunnel Barrier. NANO LETTERS 2020; 20:278-283. [PMID: 31821763 DOI: 10.1021/acs.nanolett.9b03787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We show that ordered monolayers of organic molecules stabilized by hydrogen bonding on the surface of exfoliated few-layer hexagonal boron nitride (hBN) flakes may be incorporated into van der Waals heterostructures with integral few-layer graphene contacts forming a molecular/two-dimensional hybrid tunneling diode. Electrons can tunnel through the hBN/molecular barrier under an applied voltage VSD, and we observe molecular electroluminescence from an excited singlet state with an emitted photon energy hν > eVSD, indicating upconversion by energies up to ∼1 eV. We show that tunneling electrons excite embedded molecules into singlet states in a two-step process via an intermediate triplet state through inelastic scattering and also observe direct emission from the triplet state. These heterostructures provide a solid-state device in which spin-triplet states, which cannot be generated by optical transitions, can be controllably excited and provide a new route to investigate the physics, chemistry, and quantum spin-based applications of triplet generation, emission, and molecular photon upconversion.
Collapse
Affiliation(s)
| | | | | | - Anton S Nizovtsev
- Nikolaev Institute of Inorganic Chemistry , Siberian Branch of the Russian Academy of Sciences , Academician Lavrentiev Avenue 3 , Novosibirsk 630090 , Russian Federation
| | | | - Takashi Taniguchi
- National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Ibaraki , Japan
| | - Kenji Watanabe
- National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Ibaraki , Japan
| | - Elisa Antolín
- Instituto de Energía Solar , Universidad Politécnica de Madrid , Avenida Complutense 30 , Madrid 28040 , Spain
| | | | | |
Collapse
|
32
|
Hao W, Wang Y, Zhao H, Zhu J, Li S. Strong dependence of the vertical charge carrier mobility on the π-π stacking distance in molecule/graphene heterojunctions. Phys Chem Chem Phys 2020; 22:13802-13807. [PMID: 32538392 DOI: 10.1039/d0cp01520b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to mechanical flexibility and low cost, heterojunctions consisting of graphene and small organic molecules are regarded as promising candidate materials for vertical organic field-effect transistors (VOFETs), where the charge carrier mobility perpendicular to the graphene plane is crucial to their performance. Herein, through density functional simulations, we find that the vertical charge carrier mobility of the heterojunctions can be greatly adjusted by tuning their π-π stacking distances. For the 6,13-dichloropentacene (DCP)/graphene heterojunctions, with the distance between the first DCP layer and graphene decreasing to below 2.4 Å, the vertical electron mobility between DCP layers is improved dramatically while the vertical hole mobility is greatly reduced. The strong dependence of vertical charge carrier mobility on the distance between the first molecular layer and substrate for smaller values than the typical π-π stacking distance (3.3-3.8 Å) was also observed in the perylenetetracarboxylic dianhydride (PTCDA)/graphene and DCP/hexagonal-BN heterojunctions, where the tendency is very different to that of the DCP/graphene heterojunction. Our simulation results enabled us to develop a new strategy to tune the vertical charge transport properties in molecule/graphene heterojunctions, which provides insights into developing efficient VOFETs.
Collapse
Affiliation(s)
- Wei Hao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Yishan Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China.
| | - Hu Zhao
- Department of Physics, Beijing Normal University, Beijing 100875, P. R. China
| | - Jia Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China.
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
33
|
Advances in self-assembly and regulation of aromatic carboxylic acid derivatives at HOPG interface. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
St John A, Roth MW, Firlej L, Kuchta B, Charra F, Wexler C. Computer modeling of 2D supramolecular nanoporous monolayers self-assembled on graphite. NANOSCALE 2019; 11:21284-21290. [PMID: 31667485 DOI: 10.1039/c9nr05710b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nano-porous two-dimensional molecular crystals, self-assembled on atomically flat host surfaces offer a broad range of possible applications, from molecular electronics to future nano-machines. Computer-assisted designing of such complex structures requires numerically intensive modeling methods. Here we present the results of extensive, fully atomistic simulations of self-assembled monolayers of interdigitated molecules of 1,3,5-tristyrilbenzene substituted by C6 alkoxy peripheral chains (TSB3,5-C6), deposited onto highly-ordered pyrolytic graphite. Structural and electronic properties of the TSB3,5-C6 molecules were determined from ab initio calculations, then used in Molecular Dynamics simulations to analyze the mechanism of formation, epitaxy, and stability of the TSB3,5-C6 nanoporous superlattice. We show that the monolayer disordering results from the competition between flexibility of the C6 chains and their stabilization by interdigitation. The inclusion of guest molecules (benzene and pyrene) into superlattice nanopores stabilizes the monolayer. The alkoxy chain mobility and available pore space defines the systems dynamics, essential for potential application.
Collapse
Affiliation(s)
- Alexander St John
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| | - Michael W Roth
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA. and Physics Department, Waldorf University, Forest City, IA 50436, USA
| | - Lucyna Firlej
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA. and Laboratoire Charles Coulomb, CNRS-Université de Montpellier, Montpellier, France
| | - Bogdan Kuchta
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA. and Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland and Laboratoire MADRIEL, Aix-Marseille Université-CNRS, Marseille, France
| | - Fabrice Charra
- Service de Physique de l'État Condensé (SPEC), CEA CNRS UMR-3680, Université Paris Saclay, CEA Saclay F-91191 Gif-sur-Yvette, France
| | - Carlos Wexler
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
35
|
Lorenzoni A, Muccini M, Mercuri F. A Computational Predictive Approach for Controlling the Morphology of Functional Molecular Aggregates on Substrates. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Andrea Lorenzoni
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Michele Muccini
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Francesco Mercuri
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti 101 40129 Bologna Italy
| |
Collapse
|
36
|
Porter AG, Ouyang T, Hayes TR, Biechele-Speziale J, Russell SR, Claridge SA. 1-nm-Wide Hydrated Dipole Arrays Regulate AuNW Assembly on Striped Monolayers in Nonpolar Solvent. Chem 2019. [DOI: 10.1016/j.chempr.2019.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Yang SJ, Choi S, Odongo Ngome FO, Kim KJ, Choi SY, Kim CJ. All-Dry Transfer of Graphene Film by van der Waals Interactions. NANO LETTERS 2019; 19:3590-3596. [PMID: 31082260 DOI: 10.1021/acs.nanolett.9b00555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report a method that uses van der Waals interactions to transfer continuous, high-quality graphene films from Ge(110) to a different substrate held by hexagonal boron nitride carriers in a clean, dry environment. The transferred films are uniform and continuous with low defect density and few charge puddles. The transfer is effective because of the weak interfacial adhesion energy between graphene and Ge. Based on the minimum strain energy required for the isolation of film, the upper limit of the interfacial adhesion energy is estimated to be 23 meV per carbon atom, which makes graphene/Ge(110) the first as-grown graphene film that has a substrate adhesion energy lower than that of typical van der Waals interactions between layered materials. Our results suggest that graphene on Ge can serve as an ideal material platform to be integrated with other material systems by a clean assembly process.
Collapse
|
38
|
Phan TH, Van Gorp H, Li Z, Trung Huynh TM, Fujita Y, Verstraete L, Eyley S, Thielemans W, Uji-I H, Hirsch BE, Mertens SFL, Greenwood J, Ivasenko O, De Feyter S. Graphite and Graphene Fairy Circles: A Bottom-Up Approach for the Formation of Nanocorrals. ACS NANO 2019; 13:5559-5571. [PMID: 31013051 DOI: 10.1021/acsnano.9b00439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A convenient covalent functionalization approach and nanopatterning method of graphite and graphene is developed. In contrast to expectations, electrochemically activated dediazotization of a mixture of two aryl diazonium compounds in aqueous media leads to a spatially inhomogeneous functionalization of graphitic surfaces, creating covalently modified surfaces with quasi-uniform spaced islands of pristine graphite or graphene, coined nanocorrals. Cyclic voltammetry and chronoamperometry approaches are compared. The average diameter (45-130 nm) and surface density (20-125 corrals/μm2) of these nanocorrals are tunable. These chemically modified nanostructured graphitic (CMNG) surfaces are characterized by atomic force microscopy, scanning tunneling microscopy, Raman spectroscopy and microscopy, and X-ray photoelectron spectroscopy. Mechanisms leading to the formation of these CMNG surfaces are discussed. The potential of these surfaces to investigate supramolecular self-assembly and on-surface reactions under nanoconfinement conditions is demonstrated.
Collapse
Affiliation(s)
- Thanh Hai Phan
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
- Department of Physics , Quy Nhon University , 170 An Duong Vuong , Quy Nhon , Vietnam
| | - Hans Van Gorp
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Zhi Li
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Thi Mien Trung Huynh
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
- Department of Chemistry , Quy Nhon University , 170 An Duong Vuong , Quy Nhon , Vietnam
| | - Yasuhiko Fujita
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Lander Verstraete
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Samuel Eyley
- Department of Chemical Engineering, Renewable Materials and Nanotechnology Group, Campus Kortrijk , KU Leuven , Etienne Sabbelaan 53 , 8500 Kortrijk , Belgium
| | - Wim Thielemans
- Department of Chemical Engineering, Renewable Materials and Nanotechnology Group, Campus Kortrijk , KU Leuven , Etienne Sabbelaan 53 , 8500 Kortrijk , Belgium
| | - Hiroshi Uji-I
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Brandon E Hirsch
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Stijn F L Mertens
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
- Department of Chemistry , Lancaster University , Lancaster LA1 4YB , United Kingdom
| | - John Greenwood
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Oleksandr Ivasenko
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| |
Collapse
|
39
|
Li J, Solianyk L, Schmidt N, Baker B, Gottardi S, Moreno Lopez JC, Enache M, Monjas L, van der Vlag R, Havenith RWA, Hirsch AKH, Stöhr M. Low-Dimensional Metal-Organic Coordination Structures on Graphene. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:12730-12735. [PMID: 31156737 PMCID: PMC6541427 DOI: 10.1021/acs.jpcc.9b00326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Indexed: 06/09/2023]
Abstract
We report the formation of one- and two-dimensional metal-organic coordination structures from para-hexaphenyl-dicarbonitrile (NC-Ph6-CN) molecules and Cu atoms on graphene epitaxially grown on Ir(111). By varying the stoichiometry between the NC-Ph6-CN molecules and Cu atoms, the dimensionality of the metal-organic coordination structures could be tuned: for a 3:2 ratio, a two-dimensional hexagonal porous network based on threefold Cu coordination was observed, while for a 1:1 ratio, one-dimensional chains based on twofold Cu coordination were formed. The formation of metal-ligand bonds was supported by imaging the Cu atoms within the metal-organic coordination structures with scanning tunneling microscopy. Scanning tunneling spectroscopy measurements demonstrated that the electronic properties of NC-Ph6-CN molecules and Cu atoms were different between the two-dimensional porous network and one-dimensional molecular chains.
Collapse
Affiliation(s)
- Jun Li
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Leonid Solianyk
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nico Schmidt
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Brian Baker
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Stefano Gottardi
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Juan Carlos Moreno Lopez
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Faculty
of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| | - Mihaela Enache
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Leticia Monjas
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ramon van der Vlag
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Remco W. A. Havenith
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Ghent Quantum
Chemistry Group, University of Ghent, 9000 Ghent, Belgium
| | - Anna K. H. Hirsch
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Helmholtz
Institute
for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre
for Infection Research (HZI), Department of Drug Design and Optimization, Campus Building E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Meike Stöhr
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
40
|
Schmidt N, Li J, Gottardi S, Moreno‐Lopez JC, Enache M, Monjas L, van der Vlag R, Havenith RWA, Hirsch AKH, Stöhr M. Comparing the Self-Assembly of Sexiphenyl-Dicarbonitrile on Graphite and Graphene on Cu(111). Chemistry 2019; 25:5065-5070. [PMID: 30657213 PMCID: PMC6519158 DOI: 10.1002/chem.201806312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/04/2022]
Abstract
A comparative study on the self-assembly of sexiphenyl-dicarbonitrile on highly oriented pyrolytic graphite and single-layer graphene on Cu(111) is presented. Despite an overall low molecule-substrate interaction, the close-packed structures exhibit a peculiar shift repeating every four to five molecules. This shift has hitherto not been reported for similar systems and is hence a unique feature induced by the graphitic substrates.
Collapse
Affiliation(s)
- Nico Schmidt
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Jun Li
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Stefano Gottardi
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Juan Carlos Moreno‐Lopez
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
- Current affiliation: Faculty of PhysicsUniversity of ViennaStrudlhofgasse 41090ViennaAustria
| | - Mihaela Enache
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Leticia Monjas
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Ramon van der Vlag
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Remco W. A. Havenith
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
- Ghent Quantum Chemistry GroupDepartment of Inorganic and Physical ChemistryGhent UniversityKrijgslaan 281 (S3)9000GhentBelgium
| | - Anna K. H. Hirsch
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
- Department of Drug Design and Optimization (DDOP)Helmholtz Institute for Pharmaceutical Research Saarland66123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus Building E8.166123SaarbrückenGermany
| | - Meike Stöhr
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
41
|
Jiang S, Qian J, Duan Y, Wang H, Guo J, Guo Y, Liu X, Wang Q, Shi Y, Li Y. Millimeter-Sized Two-Dimensional Molecular Crystalline Semiconductors with Precisely Defined Molecular Layers via Interfacial-Interaction-Modulated Self-Assembly. J Phys Chem Lett 2018; 9:6755-6760. [PMID: 30415550 DOI: 10.1021/acs.jpclett.8b03108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The newly emerging field in organic electronics is to control the molecule-substrate interface properties at a two-dimensional (2D) limit via interfacial interactions, which paves the way for driving the molecular assembly for highly ordered 2D molecular crystalline films with precise molecular layers and large-area uniformity. Here, by exploiting molecule-substrate van der Waals (vdW) interactions, we demonstrate thermally induced self-assembly of 2D organic crystalline films exhibiting well-defined molecular layer number over a millimeter-sized area. The organic field-effect transistors (OFETs) with bilayer films show excellent electrical performance with a maximum mobility of 12.8 cm2 V-1 s-1. Moreover, we find that the monolayer films can act as interfacial molecular templates to construct heterojunctions with well-balanced ambipolar transport behaviors. The capability of thermally induced self-assembly of 2D molecular crystalline films with controllable molecular layers and scale-up coverage opens up a way for realizing complicated electronic applications, such as lateral heterojunctions and superlattices.
Collapse
Affiliation(s)
- Sai Jiang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Jun Qian
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Yiwei Duan
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Hengyuan Wang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Jianhang Guo
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Yu Guo
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Xinyi Liu
- Nanjing Foreign Language School , Nanjing , Jiangsu 210008 , P. R. China
| | - Qijing Wang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Yi Shi
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Yun Li
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| |
Collapse
|
42
|
Schwarz M, Duncan DA, Garnica M, Ducke J, Deimel PS, Thakur PK, Lee TL, Allegretti F, Auwärter W. Quantitative determination of a model organic/insulator/metal interface structure. NANOSCALE 2018; 10:21971-21977. [PMID: 30444513 PMCID: PMC6289171 DOI: 10.1039/c8nr06387g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/28/2018] [Indexed: 05/22/2023]
Abstract
By combining X-ray photoelectron spectroscopy, X-ray standing waves and scanning tunneling microscopy, we investigate the geometric and electronic structure of a prototypical organic/insulator/metal interface, namely cobalt porphine on monolayer hexagonal boron nitride (h-BN) on Cu(111). Specifically, we determine the adsorption height of the organic molecule and show that the original planar molecular conformation is preserved in contrast to the adsorption on Cu(111). In addition, we highlight the electronic decoupling provided by the h-BN spacer layer and find that the h-BN-metal separation is not significantly modified by the molecular adsorption. Finally, we find indication of a temperature dependence of the adsorption height, which might be a signature of strongly-anisotropic thermal vibrations of the weakly bonded molecules.
Collapse
Affiliation(s)
- Martin Schwarz
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| | - David A. Duncan
- Diamond Light Source
, Harwell Science and Innovation Campus
,
Didcot OX11 0DE
, UK
| | - Manuela Garnica
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| | - Jacob Ducke
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| | - Peter S. Deimel
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| | - Pardeep K. Thakur
- Diamond Light Source
, Harwell Science and Innovation Campus
,
Didcot OX11 0DE
, UK
| | - Tien-Lin Lee
- Diamond Light Source
, Harwell Science and Innovation Campus
,
Didcot OX11 0DE
, UK
| | - Francesco Allegretti
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| | - Willi Auwärter
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| |
Collapse
|
43
|
Water Dispersible Few-Layer Graphene Stabilized by a Novel Pyrene Derivative at Micromolar Concentration. NANOMATERIALS 2018; 8:nano8090675. [PMID: 30200191 PMCID: PMC6163987 DOI: 10.3390/nano8090675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 11/19/2022]
Abstract
The search for graphene or few-layer graphene production methods that are simple, allow mass production, and yield good quality material continues to provoke intense investigation. The present work contributes to this investigation through the study of the aqueous exfoliation of four types of graphene sources, which are namely graphite and graphite nanoflakes with different morphologies and geographical origins. The exfoliation was achieved in an aqueous solution of a soluble pyrene derivative that was synthesized to achieve maximum interaction with the graphene surface at low concentration (5 × 10−5 M). The yield of bilayer and few-layer graphene obtained was quantified by Raman spectroscopic analysis, and the adsorption of the pyrene derivative on the graphene surface was studied by thermogravimetric analysis and X-ray diffraction. The whole procedure was rationalized with the help of molecular modeling.
Collapse
|
44
|
Kalashnyk N, Jaouen M, Fiorini-Debuisschert C, Douillard L, Attias AJ, Charra F. Electronic effects of the Bernal stacking of graphite on self-assembled aromatic adsorbates. Chem Commun (Camb) 2018; 54:9607-9610. [PMID: 30094435 DOI: 10.1039/c8cc05806g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We compare by Scanning Tunneling Microscopy (STM) self-organized honeycomb monolayers of aromatic molecules formed either on graphite or on graphene. A differential contrast between the adsorption sites observed exclusively on graphite evidences the electronic effects of the symmetry breaking by the staggered atomic layers forming this substrate.
Collapse
Affiliation(s)
- Nataliya Kalashnyk
- SPEC, CEA, CNRS, UMR 3680, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | |
Collapse
|
45
|
Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics. Nat Commun 2018; 9:2661. [PMID: 29985413 PMCID: PMC6037738 DOI: 10.1038/s41467-018-04932-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/27/2018] [Indexed: 11/29/2022] Open
Abstract
Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS2 generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices. By combining different experimental and theoretical approaches, we achieve exquisite control over events taking place from the molecular level to the device scale. Unique device functionalities are demonstrated, including the use of spatially confined light irradiation to define reversible lateral heterojunctions between areas possessing different doping levels. Molecular assembly and light-induced doping are analogous for graphene and MoS2, demonstrating the generality of our approach to optically manipulate the electrical output of multi-responsive hybrid devices. Photochromic molecules offer the unique opportunity to demonstrate multifunctional devices with light-tunable electrical characteristics. Gobbi et al. build light-switchable electronic heterojunctions based on atomically precise, photo-reversible molecular superlattices on graphene and MoS2.
Collapse
|
46
|
de Sousa TASL, Fernandes TFD, Matos MJS, Araujo END, Mazzoni MSC, Neves BRA, Plentz F. Thionine Self-Assembled Structures on Graphene: Formation, Organization, and Doping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6903-6911. [PMID: 29792809 DOI: 10.1021/acs.langmuir.8b00506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The association of organic molecules with two-dimensional (2D) materials, creating hybrid systems with mutual influences, constitutes an important testbed for both basic science self-assembly studies and perspective applications. Following this concept, in this work, we show a rich phenomenology that is involved in the interaction of thionine with graphene, leading to a hybrid material formed by well-organized self-assembled structures atop graphene. This composite system is investigated by atomic force microscopy, electric transport measurements, Raman spectroscopy, and first principles calculations, which show (1) an interesting time evolution of thionine self-assembled structures atop graphene; (2) a highly oriented final molecular assembly (in accordance with the underlying graphene surface symmetry); and (3) a strong n-type doping effect introduced in graphene by thionine. The nature of the thionine-substrate interaction is further analyzed in experiments using mica as a polar substrate. The present results may help pave the way to achieve tailored 2D material hybrid devices via properly chosen molecular self-assembly processes.
Collapse
Affiliation(s)
- Thiago A S L de Sousa
- Departamento de Física, ICEx , Universidade Federal de Minas Gerais , Avenida Presidente Antônio Carlos 6627 , Belo Horizonte CEP 31270-901 , Brazil
| | - Thales F D Fernandes
- Departamento de Física, ICEx , Universidade Federal de Minas Gerais , Avenida Presidente Antônio Carlos 6627 , Belo Horizonte CEP 31270-901 , Brazil
| | - Matheus J S Matos
- Departamento de Física, ICEB , Universidade Federal de Ouro Preto , R. Diogo de Vasconcelos 122 , Ouro Preto CEP 35400-000 , Brazil
| | - Eduardo N D Araujo
- Departamento de Física, CCE , Universidade Federal de Viçosa , Avenida Peter Henry Rolfs, s/n , Viçosa CEP 36570-900 , Brazil
| | - Mario S C Mazzoni
- Departamento de Física, ICEx , Universidade Federal de Minas Gerais , Avenida Presidente Antônio Carlos 6627 , Belo Horizonte CEP 31270-901 , Brazil
| | - Bernardo R A Neves
- Departamento de Física, ICEx , Universidade Federal de Minas Gerais , Avenida Presidente Antônio Carlos 6627 , Belo Horizonte CEP 31270-901 , Brazil
| | - Flávio Plentz
- Departamento de Física, ICEx , Universidade Federal de Minas Gerais , Avenida Presidente Antônio Carlos 6627 , Belo Horizonte CEP 31270-901 , Brazil
| |
Collapse
|
47
|
Kang B, Lee SK, Jung J, Joe M, Lee SB, Kim J, Lee C, Cho K. Nanopatched Graphene with Molecular Self-Assembly Toward Graphene-Organic Hybrid Soft Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706480. [PMID: 29709083 DOI: 10.1002/adma.201706480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics.
Collapse
Affiliation(s)
- Boseok Kang
- Department of Chemical Engineering and Center for Advanced Soft Electronics, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Seong Kyu Lee
- Department of Chemical Engineering and Center for Advanced Soft Electronics, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Jaehyuck Jung
- SKKU Advanced Institute of Nanotechnology (SAINT)and School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Minwoong Joe
- SKKU Advanced Institute of Nanotechnology (SAINT)and School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Seon Baek Lee
- Department of Chemical Engineering and Center for Advanced Soft Electronics, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Jinsung Kim
- Department of Chemical Engineering and Center for Advanced Soft Electronics, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Changgu Lee
- SKKU Advanced Institute of Nanotechnology (SAINT)and School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering and Center for Advanced Soft Electronics, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| |
Collapse
|
48
|
Bang JJ, Porter AG, Davis TC, Hayes TR, Claridge SA. Spatially Controlled Noncovalent Functionalization of 2D Materials Based on Molecular Architecture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5454-5463. [PMID: 29708753 DOI: 10.1021/acs.langmuir.8b00553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymerizable amphiphiles can be assembled into lying-down phases on 2D materials such as graphite and graphene to create chemically orthogonal surface patterns at 5-10 nm scales, locally modulating functionality of the 2D basal plane. Functionalization can be carried out through Langmuir-Schaefer conversion, in which a subset of molecules is transferred out of a standing phase film on water onto the 2D substrate. Here, we leverage differences in molecular structure to spatially control transfer at both nanoscopic and microscopic scales. We compare transfer properties of five different single- and dual-chain amphiphiles, demonstrating that those with strong lateral interactions (e.g., hydrogen-bonding networks) exhibit the lowest transfer efficiencies. Since molecular structures also influence microscopic domain morphologies in Langmuir films, we show that it is possible to transfer such microscale patterns, taking advantage of variations in the local transfer rates based on the structural heterogeneity in Langmuir films. Nanoscale domain morphologies also vary in ways that are consistent with predicted relative transfer and diffusion rates. These results suggest strategies to tailor noncovalent functionalization of 2D substrates through controlled LS transfer.
Collapse
|
49
|
Huang R, Huang M, Li X, An F, Koratkar N, Yu ZZ. Porous Graphene Films with Unprecedented Elastomeric Scaffold-Like Folding Behavior for Foldable Energy Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707025. [PMID: 29611242 DOI: 10.1002/adma.201707025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/27/2018] [Indexed: 06/08/2023]
Abstract
The development of fully foldable energy storage devices is a major science and engineering challenge, but one that must be overcome if next-generation foldable or wearable electronic devices are to be realized. To overcome this challenge, it is necessary to develop new electrically conductive materials that exhibit superflexibility and can be folded or crumpled without plastic deformation or damage. Herein, a graphene film with engineered microvoids is prepared by reduction (under confinement) of its precursor graphene oxide film. The resultant porous graphene film can be single folded, double folded, and even crumpled, but springs back to its original shape without yielding or plastic deformation akin to an elastomeric scaffold after the applied stress is removed. Even after thermal annealing at ≈1300 °C, the folding performance of the porous graphene film is not compromised and the thermally annealed film exhibits complete foldability even in liquid nitrogen. A solid-state foldable supercapacitor is demonstrated with the porous graphene film as the device electrode. The capacitance performance is nearly identical after 2000 cycles of single-folding followed by another 2000 cycles of double folding.
Collapse
Affiliation(s)
- Ruling Huang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meiling Huang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fei An
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nikhil Koratkar
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
50
|
Gobbi M, Orgiu E, Samorì P. When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706103. [PMID: 29441680 DOI: 10.1002/adma.201706103] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/16/2017] [Indexed: 05/21/2023]
Abstract
van der Waals heterostructures, composed of vertically stacked inorganic 2D materials, represent an ideal platform to demonstrate novel device architectures and to fabricate on-demand materials. The incorporation of organic molecules within these systems holds an immense potential, since, while nature offers a finite number of 2D materials, an almost unlimited variety of molecules can be designed and synthesized with predictable functionalities. The possibilities offered by systems in which continuous molecular layers are interfaced with inorganic 2D materials to form hybrid organic/inorganic van der Waals heterostructures are emphasized. Similar to their inorganic counterpart, the hybrid structures have been exploited to put forward novel device architectures, such as antiambipolar transistors and barristors. Moreover, specific molecular groups can be employed to modify intrinsic properties and confer new capabilities to 2D materials. In particular, it is highlighted how molecular self-assembly at the surface of 2D materials can be mastered to achieve precise control over position and density of (molecular) functional groups, paving the way for a new class of hybrid functional materials whose final properties can be selected by careful molecular design.
Collapse
Affiliation(s)
- Marco Gobbi
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000, Strasbourg, France
| | - Emanuele Orgiu
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000, Strasbourg, France
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|