1
|
Mollazadeh M, Fakhari A, Mortezazadeh T, Mofrad FB, Nazarie AJ. Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent. RADIOCHIM ACTA 2024; 112:663-677. [DOI: 10.1515/ract-2023-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Abstract
In this study, a new nano-structure, N,P-doped graphene quantum dots (N,P-GQDs), were synthesized as multipurpose imaging agent for performing scintigraphy and magnetic resonance imaging (MRI). Some standard characterization methods were used to identify the nano-structure. In vitro cytotoxicity evaluation using MTT assay revealed that N,P-GQDs nanoparticles had no significant cytotoxicity after 24 and 48 h against normal (MCF-10A) and cancerous (MCF 7) human breast cell line in concentration up to 200 μg/mL. The N,P-GQDs were radiolabeled with Technetium-99m as 99mTc-(N,P-GQDs) and the radiochemical purity was assayed by ITLC concluding RCP ≥ 95 %. The passing of 99mTc-(N,P-GQDs) through 0.1 µm filter demonstrated that 70.8 % of particles were <0.1 µm. In order to perform scintigraphy, the 99mTc-(N,P-GQDs) were injected to female healthy Wistar rats. The results showed that the radio-complex was captured and eliminated just by kidneys. Moreover, in vitro T1-weighted phantom MRI imaging showed that the N,P-GQDs have proper relaxivity in comparison to Dotarem® as a clinically available contrast agent. The results showed that the N,P-GQDs have potential to be considered as a novel and encouraging agent for both molecular MRI and nuclear medicine imagings.
Collapse
Affiliation(s)
- Morteza Mollazadeh
- Department of Medical Radiation Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Ashraf Fakhari
- Medical Radiation Sciences Research Team , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farshid Babapour Mofrad
- Department of Medical Radiation Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Ali Jamali Nazarie
- Department of Engineering, Shahrood Branch , Islamic Azad University , Shahrood , Iran
| |
Collapse
|
2
|
Zou F, Gu Z, Perez-Aguilar JM, Luo Y. Molecular dynamics simulations suggest the potential toxicity of fluorinated graphene to HP35 protein via unfolding the α-helix structure. Sci Rep 2024; 14:9168. [PMID: 38649777 PMCID: PMC11035638 DOI: 10.1038/s41598-024-59780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Fluorinated graphene, a two-dimensional nanomaterial composed of three atomic layers, a central carbon layer sandwiched between two layers of fluorine atoms, has attracted considerable attention across various fields, particularly for its potential use in biomedical applications. Nonetheless, scant effort has been devoted to assessing the potential toxicological implications of this nanomaterial. In this study, we scrutinize the potential impact of fluorinated graphene on a protein model, HP35 by utilizing extensive molecular dynamics (MD) simulation methods. Our MD results elucidate that upon adsorption to the nanomaterial, HP35 undergoes a denaturation process initiated by the unraveling of the second helix of the protein and the loss of the proteins hydrophobic core. In detail, substantial alterations in various structural features of HP35 ensue, including alterations in hydrogen bonding, Q value, and RMSD. Subsequent analyses underscore that hydrophobic and van der Waals interactions (predominant), alongside electrostatic energy (subordinate), exert influence over the adsorption of HP35 on the fluorinated graphene surface. Mechanistic scrutiny attests that the unrestrained lateral mobility of HP35 on the fluorinated graphene nanomaterial primarily causes the exposure of HP35's hydrophobic core, resulting in the eventual structural denaturation of HP35. A trend in the features of 2D nanostructures is proposed that may facilitate the denaturation process. Our findings not only substantiate the potential toxicity of fluorinated graphene but also unveil the underlying molecular mechanism, which thereby holds significance for the prospective utilization of such nanomaterials in the field of biomedicine.
Collapse
Affiliation(s)
- Fangrong Zou
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), 72570, University City, Puebla, Mexico
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| |
Collapse
|
3
|
Tegafaw T, Liu S, Ahmad MY, Ali Al Saidi AK, Zhao D, Liu Y, Yue H, Nam SW, Chang Y, Lee GH. Production, surface modification, physicochemical properties, biocompatibility, and bioimaging applications of nanodiamonds. RSC Adv 2023; 13:32381-32397. [PMID: 37928839 PMCID: PMC10623544 DOI: 10.1039/d3ra06837d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Nanodiamonds (ND) are chemically inert and stable owing to their sp3 covalent bonding structure, but their surface sp2 graphitic carbons can be easily homogenized with diverse functional groups via oxidation, reduction, hydrogenation, amination, and halogenation. Further surface conjugation of NDs with hydrophilic ligands can boost their colloidal stability and functionality. In addition, NDs are non-toxic as they are made of carbons. They exhibit stable fluorescence without photobleaching. They also possess paramagnetic and ferromagnetic properties, making them suitable for use as a new type of fluorescence imaging (FI) and magnetic resonance imaging (MRI) probe. In this review, we focused on recently developed ND production methods, surface homogenization and functionalization methods, biocompatibilities, and biomedical imaging applications as FI and MRI probes. Finally, we discussed future perspectives.
Collapse
Affiliation(s)
- Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea +82-53-420-5471
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea +82-53-420-5471
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| |
Collapse
|
4
|
Nie Z, Zhang K, Chen X, Wang J, Gao H, Zheng B, Wu Q, Guo Y, Liu X, Wang X. A Multifunctional Integrated Metal-Free MRI Agent for Early Diagnosis of Oxidative Stress in a Mouse Model of Diabetic Cardiomyopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206171. [PMID: 36596646 PMCID: PMC9982554 DOI: 10.1002/advs.202206171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) are closely associated with the progression of diabetic cardiomyopathy (DCM) and can be regarded as one of its early biomarkers. Magnetic resonance imaging (MRI) is emerging as a powerful tool for the detection of cardiac abnormalities, but the sensitive and direct ROS-response MRI probe remains to be developed. This restricts the early diagnosis of DCM and prevents timely clinical interventions, resulting in serious and irreversible pathophysiological abnormalities. Herein, a novel ROS-response contrast-enhanced MRI nanoprobe (RCMN) is developed by multi-functionalizing fluorinated carbon nanosheets (FCNs) with multi-hydroxyl and 2,2,6,6-tetramethylpiperidin-1-oxyl groups. RCMNs capture ROS and then gather in the heart provisionally, which triggers MRI signal changes to realize the in vivo detection of ROS. In contrast to the clinical MRI agents, the cardiac abnormalities of disease mice is detected 8 weeks in advance with the assistance of RCMNs, which greatly advances the diagnostic window of DCM. To the best of the knowledge, this is the first ROS-response metal-free T2 -weighted MRI probe for the early diagnosis of DCM mice model. Furthermore, RCMNs can timely scavenge excessively produced ROS to alleviate oxidative stress.
Collapse
Affiliation(s)
- Zhuang Nie
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Kun Zhang
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Xinyu Chen
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Jingxin Wang
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610064P. R. China
| | - Bingwen Zheng
- Time Medical Ltd., Hong Kong Science & Technology ParkHong Kong999077P. R. China
| | - Qihong Wu
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Yingkun Guo
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Xiangyang Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xu Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
5
|
Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, Wu T, Pang CH. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205292. [PMID: 36658693 PMCID: PMC10037997 DOI: 10.1002/advs.202205292] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.
Collapse
Affiliation(s)
- Yuqin Xiao
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yoong Xin Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
| | - Yuxin Yan
- College of Energy EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing100083P. R. China
- School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Haitao Zhao
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Sivakumar Manickam
- Petroleum and Chemical EngineeringFaculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBE1410Brunei Darussalam
| | - Tao Wu
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Key Laboratory for Carbonaceous Wastes Processing and ProcessIntensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Municipal Key Laboratory of Clean Energy Conversion TechnologiesUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| |
Collapse
|
6
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
7
|
Gollavelli G, Ghule AV, Ling YC. Multimodal Imaging and Phototherapy of Cancer and Bacterial Infection by Graphene and Related Nanocomposites. Molecules 2022; 27:5588. [PMID: 36080351 PMCID: PMC9457605 DOI: 10.3390/molecules27175588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022] Open
Abstract
The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate these problems with accurate diagnosis and therapies. Among many developed therapeutic models, near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent tumors and bacterial infections with less inflammation compared with traditional therapeutic models such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date research on graphene phototheranostics for a better understanding of this field of research. We discuss the preparation and functionalization of graphene nanomaterials with various biocompatible components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal and photodynamic therapies against different cancers and bacterial infections are carefully conferred herein along with challenges and future perspectives.
Collapse
Affiliation(s)
- Ganesh Gollavelli
- Department of Humanities and Basic Sciences, Aditya Engineering College, Surampalem, Jawaharlal Nehru Technological University Kakinada, Kakinada 533437, Andhra Pradesh, India
| | - Anil V. Ghule
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Du Z, Wang C, Zhang R, Wang X, Li X. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. Int J Nanomedicine 2020; 15:7523-7551. [PMID: 33116486 PMCID: PMC7547809 DOI: 10.2147/ijn.s271917] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
During continuous innovation in the preparation, characterization and application of various bone repair materials for several decades, nanomaterials have exhibited many unique advantages. As a kind of representative two-dimensional nanomaterials, graphene and its derivatives (GDs) such as graphene oxide and reduced graphene oxide have shown promising potential for the application in bone repair based on their excellent mechanical properties, electrical conductivity, large specific surface area (SSA) and atomic structure stability. Herein, we reviewed the updated application of them in bone repair in order to present, as comprehensively, as possible, their specific advantages, challenges and current solutions. Firstly, how their advantages have been utilized in bone repair materials with improved bone formation ability was discussed. Especially, the effects of further functionalization or modification were emphasized. Then, the signaling pathways involved in GDs-induced osteogenic differentiation of stem cells and immunomodulatory mechanism of GDs-induced bone regeneration were discussed. On the other hand, their applications as contrast agents in the field of bone repair were summarized. In addition, we also reviewed the progress and related principles of the effects of GDs parameters on cytotoxicity and residues. At last, the future research was prospected.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding 072350, Hebei Province, People's Republic of China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Ruihong Zhang
- Department of Research and Teaching, The Fourth Central Hospital of Baoding City, Baoding 072350, Hebei Province, People's Republic of China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, People's Republic of China
| |
Collapse
|
9
|
Fu L, Liao K, Tang B, Jiang L, Huang W. Applications of Graphene and Its Derivatives in the Upstream Oil and Gas Industry: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1013. [PMID: 32466513 PMCID: PMC7353333 DOI: 10.3390/nano10061013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Graphene and its derivatives, with their unique two-dimensional structures and excellent physical and chemical properties, have been an international research hotspot both in the research community and industry. However, in application-oriented research in the oil and gas industry they have only drawn attention in the past several years. Their excellent optical, electrical, thermal and mechanical performance make them great candidates for use in oil and gas exploration, drilling, production, and transportation. Combined with the actual requirements for well working fluids, chemical enhanced oil recovery, heavy oil recovery, profile control and water shutoff, tracers, oily wastewater treatment, pipeline corrosion prevention treatment, and tools and apparatus, etc., this paper introduces the behavior in water and toxicity to organisms of graphene and its derivatives in detail, and comprehensively reviews the research progress of graphene materials in the upstream oil and gas industry. Based on this, suggestions were put forward for the future research. This work is useful to the in-depth mechanism research and application scope broadening research in the upstream oil and gas industry.
Collapse
Affiliation(s)
| | - Kaili Liao
- School of Petroleum Engineering, ChangZhou University, Changzhou 213164, China; (L.F.); (B.T.); (L.J.)
| | | | | | - Weiqiu Huang
- School of Petroleum Engineering, ChangZhou University, Changzhou 213164, China; (L.F.); (B.T.); (L.J.)
| |
Collapse
|
10
|
Li W, Fan GC, Fan X, Zhang R, Wang L, Wang W, Luo X. Low fouling and ultrasensitive electrochemical immunosensors with dual assay methods based on Fe 3O 4 magnetic nanoparticles. J Mater Chem B 2019; 7:5842-5847. [PMID: 31506652 DOI: 10.1039/c9tb01492f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low fouling electrochemical immunosensors with both "signal-off" and "signal-on" analytical methods were developed for the highly sensitive and efficient detection of cancer antigen 15-3 (CA 15-3) in human serum samples. The antifouling sensing interfaces were constructed by assembling multifunctional polyethylene glycol on gold electrodes, followed by covalent conjugation with CA 15-3 antibody. Pure antigens and Fe3O4@Ag will competitively bind to the immobilized antibody on the electrode. Fe3O4 magnetic nanoparticles attached to the working electrode and collected by a magnetic electrode were treated via electrochemical conversion to generate electroactive Prussian blue as a signal readout. Therefore, these two signals measured independently were complementary, and this design allowed one to choose the assay method according to real situations so as to ensure accuracy of the immunosensor. Moreover, owing to its good antifouling property, the immunosensor was capable of detecting CA 15-3 even in complex human serum samples, demonstrating potential application in quantitative analysis of real patient serum samples.
Collapse
Affiliation(s)
- Wenshi Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xiaojian Fan
- Department of Breast Surgery, The Eighth People's Hospital of Qingdao, Qingdao 266100, P. R. China
| | - Ruiqiao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. and Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Wei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
11
|
Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. NANOSCALE 2019; 11:799-819. [PMID: 30603750 PMCID: PMC8112886 DOI: 10.1039/c8nr07769j] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An urgent need for early detection and diagnosis of diseases continuously pushes the advancements of imaging modalities and contrast agents. Current challenges remain for fast and detailed imaging of tissue microstructures and lesion characterization that could be achieved via development of nontoxic contrast agents with longer circulation time. Nanoparticle technology offers this possibility. Here, we review nanoparticle-based contrast agents employed in most common biomedical imaging modalities, including fluorescence imaging, MRI, CT, US, PET and SPECT, addressing their structure related features, advantages and limitations. Furthermore, their applications in each imaging modality are also reviewed using commonly studied examples. Future research will investigate multifunctional nanoplatforms to address safety, efficacy and theranostic capabilities. Nanoparticles as imaging contrast agents have promise to greatly benefit clinical practice.
Collapse
Affiliation(s)
- Xiangjun Han
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001 P. R. China.
| | | | | | | |
Collapse
|
12
|
Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. NANO-MICRO LETTERS 2018; 10:53. [PMID: 30079344 PMCID: PMC6075845 DOI: 10.1007/s40820-018-0206-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/22/2018] [Indexed: 05/18/2023]
Abstract
Graphene-based nanomaterials (GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing: (1) the history, synthesis, structural properties and recent developments of GBNs for biomedical applications; (2) GBNs uses as therapeutics, drug/gene delivery and antibacterial materials; (3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and (4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs.
Collapse
Affiliation(s)
| | - Danielle McShan
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
13
|
Sturala J, Luxa J, Pumera M, Sofer Z. Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chemistry 2018; 24:5992-6006. [PMID: 29071744 DOI: 10.1002/chem.201704192] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 02/06/2023]
Abstract
The chemistry of graphene and its derivatives is one of the hottest topics of current material science research. The derivatisation of graphene is based on various approaches, and to date functionalization with halogens, hydrogen, various functional groups containing oxygen, sulfur, nitrogen, phosphorus, boron, and several other elements have been reported. Most of these functionalizations are based on sp3 hybridization of carbon atoms in the graphene skeleton, which means the formation of out-of-plane covalent bonds. Several elements were also reported for substitutional modification of graphene, where the carbon atoms are substituted with atoms like nitrogen, boron, and several others. From tens of functional groups, for only two of them were reported full functionalization of graphene skeleton and formation of its stoichiometric counterparts, fluorographene and hydrogenated graphene. The functionalization of graphene is crucial for most of its applications including energy storage and conversion devices, electronic and optic applications, composites, and many others.
Collapse
Affiliation(s)
- Jiri Sturala
- Department of Inorganic Chemistry, Center for the Advanced Functional Nanorobots, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Martin Pumera
- Department of Inorganic Chemistry, Center for the Advanced Functional Nanorobots, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, Singapore, 637371, Singapore
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
- Department of Inorganic Chemistry, Center for the Advanced Functional Nanorobots, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
14
|
Chronopoulos DD, Bakandritsos A, Pykal M, Zbořil R, Otyepka M. Chemistry, properties, and applications of fluorographene. APPLIED MATERIALS TODAY 2017; 9:60-70. [PMID: 29238741 PMCID: PMC5721099 DOI: 10.1016/j.apmt.2017.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 05/23/2023]
Abstract
Fluorographene, formally a two-dimensional stoichiometric graphene derivative, attracted remarkable attention of the scientific community due to its extraordinary physical and chemical properties. We overview the strategies for the preparation of fluorinated graphene derivatives, based on top-down and bottom-up approaches. The physical and chemical properties of fluorographene, which is considered as one of the thinnest insulators with a wide electronic band gap, are presented. Special attention is paid to the rapidly developing chemistry of fluorographene, which was advanced in the last few years. The unusually high reactivity of fluorographene, which can be chemically considered perfluorinated hydrocarbon, enables facile and scalable access to a wide portfolio of graphene derivatives, such as graphene acid, cyanographene and allyl-graphene. Finally, we summarize the so far reported applications of fluorographene and fluorinated graphenes, spanning from sensing and bioimaging to separation, electronics and energy technologies.
Collapse
|
15
|
Wang H, Revia R, Wang K, Kant RJ, Mu Q, Gai Z, Hong K, Zhang M. Paramagnetic Properties of Metal-Free Boron-Doped Graphene Quantum Dots and Their Application for Safe Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201605416. [PMID: 28026064 PMCID: PMC5391173 DOI: 10.1002/adma.201605416] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/27/2016] [Indexed: 05/05/2023]
Abstract
A boron-doped graphene quantum dot (B-GQD) as a metal-free multimodal contrast agent (CA) for safe magnetic resonance imaging and fluorescence imaging is reported. In vivo T1 -weighted magnetic resonance images show that B-GQDs induce significant contrast enhancement on the heart, liver, spleen, and kidney, and sustain for more than 1 h, about 10 times longer than Gd-based CAs currently used in clinic.
Collapse
Affiliation(s)
- Hui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Richard Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Rajeev J Kant
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Qingxin Mu
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Zheng Gai
- Center for Nanophase Materials Sciences and Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences and Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
16
|
Pumera M, Sofer Z. Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others. Chem Soc Rev 2017; 46:4450-4463. [DOI: 10.1039/c7cs00215g] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stoichiometric derivatives of graphene, having well-defined chemical structure and well-defined chemical bonds, are of a great interest to the 2D materials research.
Collapse
Affiliation(s)
- Martin Pumera
- Division of Chemistry & Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Zdeněk Sofer
- Department of Inorganic Chemistry
- University of Chemistry and Technology Prague
- 166 28 Prague 6
- Czech Republic
| |
Collapse
|
17
|
Nigar S, Zhou Z, Wang H, Imtiaz M. Modulating the electronic and magnetic properties of graphene. RSC Adv 2017. [DOI: 10.1039/c7ra08917a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Graphene, an sp2hybridized single sheet of carbon atoms organized in a honeycomb lattice, is a zero band gap semiconductor or semimetal.
Collapse
Affiliation(s)
- Salma Nigar
- School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Zhongfu Zhou
- School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
- State Key Laboratory of Advanced Special Steel
| | - Hao Wang
- School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
- State Key Laboratory of Advanced Special Steel
| | - Muhammad Imtiaz
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
18
|
Lin J, Chen X, Huang P. Graphene-based nanomaterials for bioimaging. Adv Drug Deliv Rev 2016; 105:242-254. [PMID: 27233213 PMCID: PMC5039069 DOI: 10.1016/j.addr.2016.05.013] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
Graphene-based nanomaterials, due to their unique physicochemical properties, versatile surface functionalization, ultra-high surface area, and good biocompatibility, have attracted considerable interest in biomedical applications such as biosensors, drug delivery, bioimaging, theranostics, and so on. In this review, we will summarize the current advances in bioimaging of graphene-based nanomaterials, including graphene, graphene oxide (GO), reduced graphene oxide (rGO), graphene quantum dots (GQDs), and their derivatives. There are two methods to synthesize graphene-based nanomaterials: in situ synthesis and binding method. We will highlight the molecular imaging modalities including optical imaging (fluorescence (FL), two-photon FL, and Raman imaging), PET/SPECT (positron emission tomography/single photon emission computed tomography), MRI (magnetic resonance imaging), PAI (photoacoustic imaging), CT (computed tomography), and multimodal imaging. In the end, we will elaborate on the prospects and challenges of their future bioimaging applications.
Collapse
Affiliation(s)
- Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
19
|
Feng W, Long P, Feng Y, Li Y. Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500413. [PMID: 27981018 PMCID: PMC5115570 DOI: 10.1002/advs.201500413] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/15/2016] [Indexed: 05/20/2023]
Abstract
Fluorinated graphene, an up-rising member of the graphene family, combines a two-dimensional layer-structure, a wide bandgap, and high stability and attracts significant attention because of its unique nanostructure and carbon-fluorine bonds. Here, we give an extensive review of recent progress on synthetic methods and C-F bonding; additionally, we present the optical, electrical and electronic properties of fluorinated graphene and its electrochemical/biological applications. Fluorinated graphene exhibits various types of C-F bonds (covalent, semi-ionic, and ionic bonds), tunable F/C ratios, and different configurations controlled by synthetic methods including direct fluorination and exfoliation methods. The relationship between the types/amounts of C-F bonds and specific properties, such as opened bandgap, high thermal and chemical stability, dispersibility, semiconducting/insulating nature, magnetic, self-lubricating and mechanical properties and thermal conductivity, is discussed comprehensively. By optimizing the C-F bonding character and F/C ratios, fluorinated graphene can be utilized for energy conversion and storage devices, bioapplications, electrochemical sensors and amphiphobicity. Based on current progress, we propose potential problems of fluorinated graphene as well as the future challenge on the synthetic methods and C-F bonding character. This review will provide guidance for controlling C-F bonds, developing fluorine-related effects and promoting the application of fluorinated graphene.
Collapse
Affiliation(s)
- Wei Feng
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P.R China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P.R China; Key Laboratory of Advanced Ceramics and Machining Technology Ministry of Education Tianjin 300072 P.R China; Tianjin Key Laboratory of Composite and Functional Materials Tianjin 300072 P.R China
| | - Peng Long
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P.R China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P.R China; Key Laboratory of Advanced Ceramics and Machining Technology Ministry of Education Tianjin 300072 P.R China; Tianjin Key Laboratory of Composite and Functional Materials Tianjin 300072 P.R China
| | - Yiyu Feng
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P.R China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P.R China; Key Laboratory of Advanced Ceramics and Machining Technology Ministry of Education Tianjin 300072 P.R China; Tianjin Key Laboratory of Composite and Functional Materials Tianjin 300072 P.R China
| | - Yu Li
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P.R China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P.R China; Key Laboratory of Advanced Ceramics and Machining Technology Ministry of Education Tianjin 300072 P.R China; Tianjin Key Laboratory of Composite and Functional Materials Tianjin 300072 P.R China
| |
Collapse
|
20
|
Chen H, Song M, Tang J, Hu G, Xu S, Guo Z, Li N, Cui J, Zhang X, Chen X, Wang L. Ultrahigh (19)F Loaded Cu1.75S Nanoprobes for Simultaneous (19)F Magnetic Resonance Imaging and Photothermal Therapy. ACS NANO 2016; 10:1355-62. [PMID: 26741791 PMCID: PMC5218586 DOI: 10.1021/acsnano.5b06759] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
(19)F magnetic resonance imaging (MRI) is a powerful noninvasive, sensitive, and accurate molecular imaging technique for early diagnosis of diseases. The major challenge of (19)F MRI is signal attenuation caused by the reduced solubility of probes with increased number of fluorine atoms and the restriction of molecular mobility. Herein, we present a versatile one-pot strategy for the fabrication of a multifunctional nanoprobe with high (19)F loading (∼2.0 × 10(8 19)F atoms per Cu1.75S nanoparticle). Due to the high (19)F loading and good molecular mobility that results from the small particle size (20.8 ± 2.0 nm) and ultrathin polymer coating, this nanoprobe demonstrates ultrahigh (19)F MRI signal. In vivo tests show that this multifunctional nanoprobe is suitable for (19)F MRI and photothermal therapy. This versatile fabrication strategy has also been readily extended to other single-particle nanoprobes for ablation and sensitive multimodal imaging.
Collapse
Affiliation(s)
- Hongli Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Manli Song
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Juan Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhide Guo
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Nannan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Jiabin Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
- Corresponding Authors: , ,
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
- Corresponding Authors: , ,
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Corresponding Authors: , ,
| |
Collapse
|
21
|
Chen H, Song M, Tang J, Hu G, Xu S, Guo Z, Li N, Cui J, Zhang X, Chen X, Wang L. Ultrahigh (19)F Loaded Cu1.75S Nanoprobes for Simultaneous (19)F Magnetic Resonance Imaging and Photothermal Therapy. ACS NANO 2016. [PMID: 26741791 DOI: 10.1021/acsnano.5b06759\] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
(19)F magnetic resonance imaging (MRI) is a powerful noninvasive, sensitive, and accurate molecular imaging technique for early diagnosis of diseases. The major challenge of (19)F MRI is signal attenuation caused by the reduced solubility of probes with increased number of fluorine atoms and the restriction of molecular mobility. Herein, we present a versatile one-pot strategy for the fabrication of a multifunctional nanoprobe with high (19)F loading (∼2.0 × 10(8 19)F atoms per Cu1.75S nanoparticle). Due to the high (19)F loading and good molecular mobility that results from the small particle size (20.8 ± 2.0 nm) and ultrathin polymer coating, this nanoprobe demonstrates ultrahigh (19)F MRI signal. In vivo tests show that this multifunctional nanoprobe is suitable for (19)F MRI and photothermal therapy. This versatile fabrication strategy has also been readily extended to other single-particle nanoprobes for ablation and sensitive multimodal imaging.
Collapse
Affiliation(s)
- Hongli Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| | - Manli Song
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen, Fujian 361005, People's Republic of China
| | - Juan Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| | - Zhide Guo
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen, Fujian 361005, People's Republic of China
| | - Nannan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| | - Jiabin Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen, Fujian 361005, People's Republic of China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| |
Collapse
|
22
|
Maio A, Giallombardo D, Scaffaro R, Palumbo Piccionello A, Pibiri I. Synthesis of a fluorinated graphene oxide–silica nanohybrid: improving oxygen affinity. RSC Adv 2016. [DOI: 10.1039/c6ra02585d] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An easy method to selectively introduce specific fluorotails into a graphene oxide–silica nanohybrid. Fluoro-functionalization increases the oxygen exchange at saturation.
Collapse
Affiliation(s)
- A. Maio
- Department of Civil, Aerospace, Environmental, Materials Engineering
- University of Palermo
- Palermo
- Italy
| | - D. Giallombardo
- Department of Civil, Aerospace, Environmental, Materials Engineering
- University of Palermo
- Palermo
- Italy
| | - R. Scaffaro
- Department of Civil, Aerospace, Environmental, Materials Engineering
- University of Palermo
- Palermo
- Italy
| | - A. Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies
- University of Palermo
- Palermo
- Italy
| | - I. Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies
- University of Palermo
- Palermo
- Italy
| |
Collapse
|
23
|
Yang Y, Zhan W, Peng R, He C, Pang X, Shi D, Jiang T, Lin Z. Graphene-Enabled Superior and Tunable Photomechanical Actuation in Liquid Crystalline Elastomer Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:6376-81. [PMID: 26389820 DOI: 10.1002/adma.201503680] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/17/2015] [Indexed: 05/17/2023]
Abstract
Programmable photoactuation enabled by graphene: Graphene sheets aligned in liquid crystalline elastomers are capable of absorbing near-infrared light. They thereafter act as nanoheaters and provide thermally conductive pathways to trigger the nematic-to-isotropic transition of elastomers, leading to macroscopic mechanical deformation of nanocomposites. Large strain, high actuation force, high initial sensitivity, fast reversible response, and long cyclability are concurrently achieved in nanocomposites.
Collapse
Affiliation(s)
- Yingkui Yang
- MOE Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materialsand School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wenjie Zhan
- MOE Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materialsand School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Rengui Peng
- MOE Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materialsand School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Chengen He
- MOE Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materialsand School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dean Shi
- MOE Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materialsand School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Tao Jiang
- MOE Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materialsand School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
24
|
Garg B, Sung CH, Ling YC. Graphene-based nanomaterials as molecular imaging agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:737-58. [PMID: 25857851 DOI: 10.1002/wnan.1342] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 12/12/2022]
Abstract
Molecular imaging (MI) is a noninvasive, real-time visualization of biochemical events at the cellular and molecular level within tissues, living cells, and/or intact objects that can be advantageously applied in the areas of diagnostics, therapeutics, drug discovery, and development in understanding the nanoscale reactions including enzymatic conversions and protein-protein interactions. Consequently, over the years, great advancement has been made in the development of a variety of MI agents such as peptides, aptamers, antibodies, and various nanomaterials (NMs) including single-walled carbon nanotubes. Recently, graphene, a material popularized by Geim & Novoselov, has ignited considerable research efforts to rationally design and execute a wide range of graphene-based NMs making them an attractive platform for developing highly sensitive MI agents. Owing to their exceptional physicochemical and biological properties combined with desirable surface engineering, graphene-based NMs offer stable and tunable visible emission, small hydrodynamic size, low toxicity, and high biocompatibility and thus have been explored for in vitro and in vivo imaging applications as a promising alternative of traditional imaging agents. This review begins by describing the intrinsic properties of graphene and the key MI modalities. After which, we provide an overview on the recent advances in the design and development as well as physicochemical properties of the different classes of graphene-based NMs (graphene-dye conjugates, graphene-antibody conjugates, graphene-nanoparticle composites, and graphene quantum dots) being used as MI agents for potential applications including theranostics. Finally, the major challenges and future directions in the field will be discussed.
Collapse
Affiliation(s)
- Bhaskar Garg
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Chu-Hsun Sung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
25
|
Li J, Han Q, Wang X, Yu N, Yang L, Yang R, Wang C. Reduced aggregation and cytotoxicity of amyloid peptides by graphene oxide/gold nanocomposites prepared by pulsed laser ablation in water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4386-4394. [PMID: 25059878 DOI: 10.1002/smll.201401121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/18/2014] [Indexed: 06/03/2023]
Abstract
A novel and convenient method to synthesize the nanocomposites combining graphene oxides (GO) with gold nanoparticles (AuNPs) is reported and their applications to modulate amyloid peptide aggregation are demonstrated. The nanocomposites produced by pulsed laser ablation (PLA) in water show good biocompatibility and solubility. The reduced aggregation of amyloid peptides by the nanocomposites is confirmed by Thioflavin T fluorescence and atomic force microscopy. The cell viability experiments reveals that the presence of the nanocomposites can significantly reduce the cytotoxicity of the amyloid peptides. Furthermore, the depolymerization of peptide fibrils and inhibition of their cellular cytotoxicity by GO/AuNPs is also observed. These observations suggest that the nanocomposites combining GO and AuNPs have a great potential for designing new therapeutic agents and are promising for future treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Jingying Li
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, (China)
| | | | | | | | | | | | | |
Collapse
|