1
|
Saba T, Saad KSK, Rashid AB. Precise surface engineering: Leveraging chemical vapor deposition for enhanced biocompatibility and durability in biomedical implants. Heliyon 2024; 10:e37976. [PMID: 39328539 PMCID: PMC11425162 DOI: 10.1016/j.heliyon.2024.e37976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Biomedical implants have revolutionized modern medicine, providing diverse treatment options for various medical conditions. Ensuring the long-term success of certain materials used in various applications requires careful consideration of their ability to interact with biological systems and withstand harsh biological conditions. Optimizing surface properties is crucial for successfully integrating biomedical implants into the human body, ensuring biocompatibility, durability, and functionality. Chemical Vapor Deposition (CVD) has become a crucial technology in surface engineering, offering a precise technique for applying thin films with customized properties. This article provides a comprehensive study of surface engineering for biomedical implants, specifically emphasizing the CVD coating technique. By carefully manipulating chemical reactions in the vapor phase, CVD allows for the creation of coatings that enhance wear resistance, minimize friction, and improve biocompatibility. This review also explores the underlying principles of CVD, the various process parameters involved, and the subsequent enhancements in implant performance. Using case studies and experimental findings, it showcases the ability of CVD to greatly enhance the durability and effectiveness of biomedical implants.
Collapse
Affiliation(s)
- Tasfia Saba
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| | - Khondoker Safin Kaosar Saad
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| | - Adib Bin Rashid
- Department of Mechanical Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| |
Collapse
|
2
|
Ren L, Liu S, Zhong J, Zhang L. Revolutionizing targeting precision: microfluidics-enabled smart microcapsules for tailored delivery and controlled release. LAB ON A CHIP 2024; 24:1367-1393. [PMID: 38314845 DOI: 10.1039/d3lc00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As promising delivery systems, smart microcapsules have garnered significant attention owing to their targeted delivery loaded with diverse active materials. By precisely manipulating fluids on the micrometer scale, microfluidic has emerged as a powerful tool for tailoring delivery systems based on potential applications. The desirable characteristics of smart microcapsules are associated with encapsulation capacity, targeted delivery capability, and controlled release of encapsulants. In this review, we briefly describe the principles of droplet-based microfluidics for smart microcapsules. Subsequently, we summarize smart microcapsules as delivery systems for efficient encapsulation and focus on target delivery patterns, including passive targets, active targets, and microfluidics-assisted targets. Additionally, based on release mechanisms, we review controlled release modes adjusted by smart membranes and on/off gates. Finally, we discuss existing challenges and potential implications associated with smart microcapsules.
Collapse
Affiliation(s)
- Lingling Ren
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Shuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Junjie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| |
Collapse
|
3
|
Thakur N, Sadhukhan P, Kundu M, Abhishek Singh T, Hatimuria M, Pabbathi A, Das J, Sil PC. Folic acid-functionalized cerium oxide nanoparticles as smart nanocarrier for pH-responsive and targeted delivery of Morin in breast cancer therapy. INORG CHEM COMMUN 2022; 145:109976. [DOI: 10.1016/j.inoche.2022.109976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Liu C, Yan P, Xu X, Zhou W, Prakash DR, Wang S, Zhou J, Wang R, Huang H, Chen J, Zhang H, Shen J. In Vivo Kidney Allograft Endothelial Specific Scavengers for On-Site Inflammation Reduction under Antibody-Mediated Rejection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106746. [PMID: 35235710 DOI: 10.1002/smll.202106746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Kidney transplantation is the most effective therapy for patients with end-stage renal disease. However, antibody-mediated rejection (ABMR) threatens long-term survival of renal grafts. Although ABMR can be controlled by donor-specific antibody clearance and B- or (and) plasma-cells inhibition, the treatment often causes severe side effects in patients. Therefore, there is need to explore site-specific scavengers. In this study, a nanovehicle carrying an anti-inflammatory drug is developed with complement component 4d targeting, a specific biomarker expressed on allograft endothelium under ABMR. Moreover, the nanovehicle is endowed with photothermal properties to control drug release. Analysis through systematic in vitro and in vivo toxicity, non-invasive targeted imaging, and in situ remote controlled drug release show the nanovehicle specifically targets allograft kidney endothelium, releases an anti-inflammatory drug, methylprednisolone, locally upon laser irradiation, and promotes recovery of injured endothelium, without affecting systemic inflammation or innate immune responses. This strategy has the potential for future clinical application in ABMR treatment.
Collapse
Affiliation(s)
- Chang Liu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Pengpeng Yan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoyu Xu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, China
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | | | - Shuqi Wang
- Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Junnian Zhou
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Rending Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hongfeng Huang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
5
|
Thakur N, Kundu M, Chatterjee S, Singh TA, Das J, Sil PC. Morin-loaded nanoceria as an efficient nanoformulation for increased antioxidant and antibacterial efficacy. JOURNAL OF NANOPARTICLE RESEARCH 2022; 24:176. [DOI: 10.1007/s11051-022-05552-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/09/2022] [Indexed: 11/29/2023]
|
6
|
Abhishek Singh T, Kundu M, Chatterjee S, Kumar Pandey S, Thakur N, Tejwan N, Sharma A, Das J, Sil PC. Synthesis of Rutin loaded nanomagnesia as a smart nanoformulation with significant antibacterial and antioxidant properties. INORG CHEM COMMUN 2022; 140:109492. [DOI: 10.1016/j.inoche.2022.109492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Larrea A, Arruebo M, Serra CA, Sebastián V. Trojan pH-Sensitive Polymer Particles Produced in a Continuous-Flow Capillary Microfluidic Device Using Water-in-Oil-in-Water Double-Emulsion Droplets. MICROMACHINES 2022; 13:mi13060878. [PMID: 35744492 PMCID: PMC9230220 DOI: 10.3390/mi13060878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
A facile and robust microfluidic method to produce nanoparticle-in-microparticle systems (Trojan systems) is reported as a delivery vector for the oral administration of active pharmaceutical ingredients. The microfluidic system is based on two coaxial capillaries that produce monodisperse water-in-oil-in-water (W/O/W) double emulsions in a highly controlled fashion with precise control over the resulting particle structure, including the core and shell dimensions. The influence of the three phase flow rates, pH and drying process on the formation and overall size is evaluated. These droplets are then used as templates for the production of pH-sensitive Trojan microparticles after solvent evaporation. The shell of Trojan microparticles is made of Eudragit®, a methacrylic acid-ethyl acrylate copolymer that would enable the Trojan microparticle payload to first pass through the stomach without being degraded and then dissolve in the intestinal fluid, releasing the inner payload. The synthesis of the pH-sensitive Trojan microparticles was also compared with a conventional batch production method. The payloads considered in this work were different in nature: (1) fluorescein, to validate the feasibility of the polymeric shell to protect the payload under gastric pH; (2) poly(D,L-lactic acid/glycolic acid)-PLGA nanoparticles loaded with the antibiotic rifampicin. These PLGA nanoparticles were produced also using a microfluidic continuous process and (3) PLGA nanoparticles loaded with Au nanoparticles to trace the PLGA formulation under different environments (gastric and intestinal), and to assess whether active pharmaceutical ingredient (API) encapsulation in PLGA is due efficiently. We further showed that Trojan microparticles released the embedded PLGA nanoparticles in contact with suitable media, as confirmed by electron microscopy. Finally, the results show the possibility of developing Trojan microparticles in a continuous manner with the ability to deliver therapeutic nanoparticles in the gastrointestinal tract.
Collapse
Affiliation(s)
- Ane Larrea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.L.); (M.A.)
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.L.); (M.A.)
- Department of Chemical Engineering, Campus Río Ebro-Edificio I+D, University of Zaragoza, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Christophe A. Serra
- Université de Strasbourg, CNRS, ICS UPR 22, F-67000 Strasbourg, France
- Correspondence: (C.A.S.); (V.S.)
| | - Victor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.L.); (M.A.)
- Department of Chemical Engineering, Campus Río Ebro-Edificio I+D, University of Zaragoza, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Correspondence: (C.A.S.); (V.S.)
| |
Collapse
|
8
|
Jaberifard F, Arsalani N, Ghorbani M, Mostafavi H. Incorporating halloysite nanotube/carvedilol nanohybrids into gelatin microsphere as a novel oral pH-sensitive drug delivery system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Ejeta F. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine. Drug Des Devel Ther 2021; 15:3881-3891. [PMID: 34531650 PMCID: PMC8439440 DOI: 10.2147/dddt.s324580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the controlled drug delivery systems of nanomedicine bring many challenges to clinical practice. These difficulties can be attributed to the high batch-to-batch variations and insufficient production rate of traditional preparation methods, as well as a lack of technology for fast screening of nanoparticulate drug delivery structures with high correlation to in vivo tests. These problems may be addressed through microfluidic technology. Microfluidics, for example, can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but it can also continuously create three-dimensional environments to mimic physiological and/or pathological processes. This overview gives a top-level view of the microfluidic devices advanced to put together nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and therapeutic nanoparticles. Additionally, highlighting the current advances of microfluidic systems in fabricating the more and more practical fashions of the in vitro milieus for fast screening of nanoparticles was reviewed. Overall, microfluidic technology provides a promising technique to boost the scientific delivery of nanomedicine and nanoparticulate drug delivery systems. Nonetheless, digital microfluidics with droplets and liquid marbles is the answer to the problems of cumbersome external structures, in addition to the rather big pattern volume. As the latest work is best at the proof-of-idea of liquid-marble-primarily based on totally virtual microfluidics, computerized structures for developing liquid marble, and the controlled manipulation of liquid marble, including coalescence and splitting, are areas of interest for bringing this platform toward realistic use.
Collapse
Affiliation(s)
- Fikadu Ejeta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
10
|
Jung Y, Kim D. Recent advances in hybrid system of porous silicon nanoparticles and biocompatible polymers for biomedical applications. Biomed Eng Lett 2021; 11:171-181. [PMID: 34350046 PMCID: PMC8316517 DOI: 10.1007/s13534-021-00194-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022] Open
Abstract
Hybrid systems of nanoparticles and polymers have emerged as a new material in the biomedical field. To date, various kinds of hybrid systems have been introduced and applied to drug delivery, regenerative medicine, therapeutics, disease diagnosis, and medical implantation. Among them, the hybridization of nanostructured porous silicon nanoparticles (pSiNPs) and biocompatible polymers has been highlighted due to its unique biological and physicochemical properties. This review focuses on the recent advances in the hybrid systems of pSiNPs and biocompatible polymers from an engineering aspect and its biomedical applications. Representative hybrid formulations, (i) Polymer-coated pSiNPs, (ii) pSiNPs-embedded polymeric nanofibers, are outlined along with their preparation methods, biomedical applications, and future perspectives. We believe this review provides insight into a new hybrid system of pSiNPs and biocompatible polymers as a promising nano-platform for further biomedical applications. Recently developed and representative hybrid systems of porous silicon nanoparticles and biocompatible polymers and their biomedical applications are introduced.
Collapse
Affiliation(s)
- Yuna Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447 Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447 Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447 Republic of Korea
| |
Collapse
|
11
|
Abedini-Nassab R, Pouryosef Miandoab M, Şaşmaz M. Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review. MICROMACHINES 2021; 12:768. [PMID: 34210058 PMCID: PMC8306075 DOI: 10.3390/mi12070768] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles have attracted significant attention in various disciplines, including engineering and medicine. Microfluidic chips and lab-on-a-chip devices, with precise control over small volumes of fluids and tiny particles, are appropriate tools for the synthesis, manipulation, and evaluation of nanoparticles. Moreover, the controllability and automation offered by the microfluidic chips in combination with the unique capabilities of the magnetic nanoparticles and their ability to be remotely controlled and detected, have recently provided tremendous advances in biotechnology. In particular, microfluidic chips with magnetic nanoparticles serve as sensitive, high throughput, and portable devices for contactless detecting and manipulating DNAs, RNAs, living cells, and viruses. In this work, we review recent fundamental advances in the field with a focus on biomedical applications. First, we study novel microfluidic-based methods in synthesizing magnetic nanoparticles as well as microparticles encapsulating them. We review both continues-flow and droplet-based microreactors, including the ones based on the cross-flow, co-flow, and flow-focusing methods. Then, we investigate the microfluidic-based methods for manipulating tiny magnetic particles. These manipulation techniques include the ones based on external magnets, embedded micro-coils, and magnetic thin films. Finally, we review techniques invented for the detection and magnetic measurement of magnetic nanoparticles and magnetically labeled bioparticles. We include the advances in anisotropic magnetoresistive, giant magnetoresistive, tunneling magnetoresistive, and magnetorelaxometry sensors. Overall, this review covers a wide range of the field uniquely and provides essential information for designing "lab-on-a-chip" systems for synthesizing magnetic nanoparticles, labeling bioparticles with them, and sorting and detecting them on a single chip.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Department of Biomedical Engineering, University of Neyshabur, Neyshabur 9319774446, Iran
| | | | - Merivan Şaşmaz
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Adiyaman University, Adiyaman 02040, Turkey;
| |
Collapse
|
12
|
Microfluidic assembly of pomegranate-like hierarchical microspheres for efflux regulation in oral drug delivery. Acta Biomater 2021; 126:277-290. [PMID: 33774198 DOI: 10.1016/j.actbio.2021.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Herein, a multi-functional nano-in-micro hierarchical microsphere system is demonstrated for controlling the intestinal efflux pumps that affect the oral bioavailability of many therapeutic drugs. The hierarchical particles were generated by a co-flow microfluidic device and consisted of porous silica nanoparticles packed in Eudragit® polymeric matrix. Meropenem (MER), a last-resort antibacterial drug, was loaded into porous silica (MCM-48) with a loading capacity of 34.3 wt%. In this unique materials combination, MCM-48 enables ultrahigh loading of a hydrophilic MER, while the Eudragit® polymers not only protect MER from gastric pH but also act as an antagonist for p-glycoprotein protein efflux pumps to reduce the efflux of MER back into the gastrointestinal lumen. We investigated the in-vitro temporal MER release and bidirectional (absorptive and secretory) drug permeation model across the Caco-2 monolayer. The bioavailability of MER was significantly improved by all of the prepared formulations (i.e. increased absorptive transport and reduced secretory transport). The Eudragit® RSPO formulated MER-MCM showed the best performance with an efflux ratio (i.e. secretory transport/absorptive transport) of 0.35, which is 7.4 folds less than pure MER (2.62). Lastly, the prepared formulations were able to retain the antibacterial activity of MER against Staphylococcus aureus and Pseudomonas aeruginosa. STATEMENT OF SIGNIFICANCE: Meropenem (MER) is a last resort antibiotic used for the treatment of drug-resistant and acute infections and only available as intravenous injectable dosage due to its poor chemical and thermal stability, and ultra-poor oral bioavailability because of the efflux action of P-glycoprotein (P-gp) pumps. Multifunctional colloidal micro/nanoparticles can help to solve these issues. Herein, we designed pomegranate-like hierarchical microspheres comprised of porous silica nanoparticles and enteric Eudragit® polymers (Eudragit®S100, Eudragit®RSPO, and Eudragit®RS100) using a co-flow microfluidic device. Our formulations allow for ultrahigh loading of hydrophilic MER, protects MER from gastric pH, and also block P-gp efflux pumps for enhanced MER permeation/retention with Eudragit®RSPO - showing 13.9-folds higher permeation and 7.4-folds reduction in efflux ratio in a bi-directional Caco-2 monolayer culture system.
Collapse
|
13
|
Wen H, Tamarov K, Happonen E, Lehto V, Xu W. Inorganic Nanomaterials for Photothermal‐Based Cancer Theranostics. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huang Wen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Konstantin Tamarov
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Emilia Happonen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Vesa‐Pekka Lehto
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Wujun Xu
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| |
Collapse
|
14
|
Savagatrup S, Ma D, Zhong H, Harvey KS, Kimerling LC, Agarwal AM, Swager TM. Dynamic Complex Emulsions as Amplifiers for On-Chip Photonic Cavity-Enhanced Resonators. ACS Sens 2020; 5:1996-2002. [PMID: 32441524 DOI: 10.1021/acssensors.0c00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the recent emergence of microcavity resonators as label-free biological and chemical sensors, practical applications still require simple and robust methods to impart chemical selectivity and reduce the cost of fabrication. We introduce the use of hydrocarbon-in-fluorocarbon-in-water (HC/FC/W) double emulsions as a liquid top cladding that expands the versatility of optical resonators as chemical sensors. The all-liquid complex emulsions are tunable droplets that undergo dynamic and reversible morphological transformations in response to a change in the chemical environment (e.g., exposure to targeted analytes). This chemical-morphological coupling drastically modifies the effective refractive index, allowing the complex emulsions to act as a chemical transducer and signal amplifier. We detect this large change in the refractive index by tracking the shift of the enveloped resonant spectrum of a silicon nitride (Si3N4) racetrack resonator-based sensor, which correlates well with a change in the morphology of the complex droplets. This combination of soft materials (dynamic complex emulsions) and hard materials (on-chip resonators) provides a unique platform for liquid-phase, real-time, and continuous detection of chemicals and biomolecules for miniaturized and remote, environmental, medical, and wearable sensing applications.
Collapse
Affiliation(s)
- Suchol Savagatrup
- Department of Chemistry and Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Danhao Ma
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Huikai Zhong
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kent S. Harvey
- Department of Chemistry and Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lionel C. Kimerling
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anuradha M. Agarwal
- Materials Research Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry and Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Tahir N, Madni A, Li W, Correia A, Khan MM, Rahim MA, Santos HA. Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. Int J Pharm 2020; 581:119275. [PMID: 32229283 DOI: 10.1016/j.ijpharm.2020.119275] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 01/02/2023]
Abstract
Lipid polymer hybrid nanoparticles (LPHNPs) have been merged as potential nanocarriers for treatment of cancer. In the present study, LPHNPs loaded with Sorafenib (SFN) were prepared with PLGA, Lecithin and DSPE-PEG 2000 by using the bulk nanoprecipitation and microfluidic (MF) co-flow nanoprecipitation techniques. Herein, a glass capillary microfluidic device was primed to optimize the LPHNPs and compared to the bulk nanoprecipitation method. The morphological analysis of prepared LPHNPs revealed the well-defined spherical nano-sized particles in bulk nanoprecipitation method. Whereas, core shell morphology was observed in the MF method. The formulation prepared by the MF method (MF1-MF3) indicated relatively higher % EE (95.0%, 93.8% and 88.7%) and controlled release of the SFN from the particles as compared to the LPHNPs obtained by the bulk nanoprecipitation method. However, the release of SFN from all LPHNP formulation followed Higuchi model (R2 = 0.9901-0.9389) with Fickian diffusion mechanism. Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) and powder X-rays diffraction (pXRD) studies depicted the compatibility of SFN with all the structural components. In addition, the colloidal stability, in vitro cytotoxicity and cell growth inhibition studies of LPHNPs also demonstrated stability in biological media, biocompatibility and safety with enhanced anti-proliferative effects than the free SFN in breast cancer and prostate cancer cells. In conclusion, LPHNPs provided a prospective platform for the cancer chemotherapy and substantially improved the knowledge of fabrication and optimization of the hybrid nanoparticles.
Collapse
Affiliation(s)
- Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan; Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan.
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Muhammad Muzamil Khan
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Muhammad Abdur Rahim
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
16
|
Sedighi M, Rahimi F, Shahbazi MA, Rezayan AH, Kettiger H, Einfalt T, Huwyler J, Witzigmann D. Controlled Tyrosine Kinase Inhibitor Delivery to Liver Cancer Cells by Gate-Capped Mesoporous Silica Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:239-251. [PMID: 35019440 DOI: 10.1021/acsabm.9b00772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma is the most common type of primary malignancy in the liver and one of the most common types of cancer worldwide. Its readily increasing mortality rate highlights the urgent need for the development of efficient therapeutic strategies. Tyrosine kinase inhibitors (TKIs) such as sorafenib and sunitinib are used as efficient angiogenesis inhibitors for this purpose. However, despite their pharmacological effects, their transfer into clinical practice is characterized by their poor aqueous solubility and accumulation in off-target tissues, resulting in unfavorable side effects. Here, we report a nanocomposite made of amine-functionalized mesoporous silica nanocomposites (MSNs) that are surface-coated with cerium oxide nanoparticles (CNPs) for the controlled delivery and release of TKIs. Amine-functionalized MSNs were prepared using a sol-gel method and loaded with TKIs. To trap drug molecules into the mesoporous structure, CNPs were covalently conjugated to the surface of MSNs. The synthesis and functionalization steps were controlled using different characterization methods, confirming the desired morphology and structure, the identity of functional groups on the surface, successful coating, and appropriate loading efficiency. Under physiological conditions, CNP-capped MSNs demonstrated a sustained drug release over time as a result of CNPs' gatekeeping effect on the payloads. Strong cellular interactions with different liver cancer cells and enhanced cellular uptake were also observed in vitro for the gate-capped MSNs. Internalization of nanocomposites induced cell death via the production of reactive oxygen species, and subsequent activation of apoptosis pathways. This study demonstrates that gate-capped MSNs are promising chemotherapeutic vehicles characterized by a sustained drug release profile and high cellular internalization.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran.,Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Fereshteh Rahimi
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Mohammad-Ali Shahbazi
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 4513956184 Zanjan, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Helene Kettiger
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Tomaz Einfalt
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Dominik Witzigmann
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland.,Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, V6T 1Z3 Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Di D, Qu X, Liu C, Fang L, Quan P. Continuous production of celecoxib nanoparticles using a three-dimensional-coaxial-flow microfluidic platform. Int J Pharm 2019; 572:118831. [DOI: 10.1016/j.ijpharm.2019.118831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 01/07/2023]
|
18
|
Sun T, Han J, Liu S, Wang X, Wang ZY, Xie Z. Tailor-Made Semiconducting Polymers for Second Near-Infrared Photothermal Therapy of Orthotopic Liver Cancer. ACS NANO 2019; 13:7345-7354. [PMID: 31188558 DOI: 10.1021/acsnano.9b03910] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Liver tumor is one of the most lethal cancers due to its low ratio of surgical resection, high recurrence rate, and invasiveness. Photothermal therapy (PTT) possesses many advantages for cancer therapy because of its noninvasive nature. However, most PTT is conducted in the first near-infrared (NIR-I) window, so second near-infrared (NIR-II) photosensitizers with higher penetrating ability and clinical prospects are seriously desirable. Herein, a semiconducting polymer with optimized absorption in NIR-I and NIR-II regions is obtained by ternary copolymerization methodology. The prepared nanoparticle (NP) from the semiconducting polymer is used for treatment of orthotopic liver cancer upon laser irradiation. Compared with an 808 nm laser, a 1064 nm laser leads to more effective inhibition toward orthotopic liver cancer in the same conditions. These results thus demonstrate that the NIR-II polymeric NPs may inspire another aspect for highly efficient therapy of various orthotopic cancers.
Collapse
Affiliation(s)
- Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun 130022 , People's Republic of China
| | - Jinfeng Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun 130022 , People's Republic of China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun 130022 , People's Republic of China
| | - Xin Wang
- Department of Thyroid Surgery , The First Hospital of Jilin University , 71 Xinmin Street , Changchun 130021 , People's Republic of China
| | - Zhi Yuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun 130022 , People's Republic of China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun 130022 , People's Republic of China
| |
Collapse
|
19
|
Guzmán-Oyarzo D, Plaza T, Recio-Sánchez G, Abdalla DSP, Salazar LA, Hernández-Montelongo J. Use of nPSi-βCD Composite Microparticles for the Controlled Release of Caffeic Acid and Pinocembrin, Two Main Polyphenolic Compounds Found in a Chilean Propolis. Pharmaceutics 2019; 11:E289. [PMID: 31248192 PMCID: PMC6630447 DOI: 10.3390/pharmaceutics11060289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Propolis is widely recognized for its various therapeutic properties. These are attributed to its rich composition in polyphenols, which exhibit multiple biological properties (e.g., antioxidant, anti-inflammatory, anti-angiogenic). Despite its multiple benefits, oral administration of polyphenols results in low bioavailability at the action site. An alternative to face this problem is the use of biomaterials at nano-micro scale due to its high versatility as carriers and delivery systems of various drugs and biomolecules. The aim of this work is to determine if nPSi-βCD microparticles are a suitable material for the load and controlled release of caffeic acid (CA) and pinocembrin (Pin), two of the main components of a Chilean propolis with anti-atherogenic and anti-angiogenic activity. Polyphenols and nPSi-βCD microparticles cytocompatibility studies were carried out with human umbilical vein endothelial cells (HUVECs). Results from physicochemical characterization demonstrated nPSi-βCD microparticles successfully retained and controlled release CA and Pin. Furthermore, nPSi-βCD microparticles presented cytocompatibility with HUVECs culture at concentrations of 0.25 mg/mL. These results suggest that nPSi-βCD microparticles could safely be used as an alternate oral delivery system to improve controlled release and bioavailability of CA or Pin-and eventually other polyphenols-thus enhancing its therapeutic effect for the treatment of different diseases.
Collapse
Affiliation(s)
- Dina Guzmán-Oyarzo
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile.
| | - Tanya Plaza
- Bioproducts and Advanced Materials Research Center (BioMA), Faculty of Engineering, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Temuco 4813302, Chile.
| | - Gonzalo Recio-Sánchez
- Bioproducts and Advanced Materials Research Center (BioMA), Faculty of Engineering, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Temuco 4813302, Chile.
- Department of Physical and Mathematical Sciences, Faculty of Engineering, Universidad Católica de Temuco, Temuco 4813302, Chile.
| | - Dulcineia S P Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, Avenida Professor Lineu Prestes 580, CEP 05508-000 São Paulo, SP, Brazil.
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile.
| | - Jacobo Hernández-Montelongo
- Bioproducts and Advanced Materials Research Center (BioMA), Faculty of Engineering, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Temuco 4813302, Chile.
- Department of Physical and Mathematical Sciences, Faculty of Engineering, Universidad Católica de Temuco, Temuco 4813302, Chile.
| |
Collapse
|
20
|
Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proc Natl Acad Sci U S A 2019; 116:7744-7749. [PMID: 30926671 DOI: 10.1073/pnas.1817251116] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Effective cancer therapies often demand delivery of combinations of drugs to inhibit multidrug resistance through synergism, and the development of multifunctional nanovehicles with enhanced drug loading and delivery efficiency for combination therapy is currently a major challenge in nanotechnology. However, such combinations are more challenging to administer than single drugs and can require multipronged approaches to delivery. In addition to being stable and biodegradable, vehicles for such therapies must be compatible with both hydrophobic and hydrophilic drugs, and release drugs at sustained therapeutic levels. Here, we report synthesis of porous silicon nanoparticles conjugated with gold nanorods [composite nanoparticles (cNPs)] and encapsulate them within a hybrid polymersome using double-emulsion templates on a microfluidic chip to create a versatile nanovehicle. This nanovehicle has high loading capacities for both hydrophobic and hydrophilic drugs, and improves drug delivery efficiency by accumulating at the tumor after i.v. injection in mice. Importantly, a triple-drug combination suppresses breast tumors by 94% and 87% at total dosages of 5 and 2.5 mg/kg, respectively, through synergy. Moreover, the cNPs retain their photothermal properties, which can be used to significantly inhibit multidrug resistance upon near-infrared laser irradiation. Overall, this work shows that our nanovehicle has great potential as a drug codelivery nanoplatform for effective combination therapy that is adaptable to other cancer types and to molecular targets associated with disease progression.
Collapse
|
21
|
Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019; 48:5564-5595. [DOI: 10.1039/c8cs01003j] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling 2D organic biomaterials exhibit versatile abilities for structural and functional tailoring, as well as high potential for biomedical applications.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
- Faculty of Physics and Astronomy
- University of Jena
| | - Coucong Gong
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Gang Wei
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
- Cixi Institute of Biomedical Engineering
| |
Collapse
|
22
|
Costa DF, Mendes LP, Torchilin VP. The effect of low- and high-penetration light on localized cancer therapy. Adv Drug Deliv Rev 2019; 138:105-116. [PMID: 30217518 DOI: 10.1016/j.addr.2018.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/30/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022]
Abstract
The design of a delivery system allowing targeted and controlled drug release has been considered one of the main strategies used to provide individualized cancer therapy, to improve survival statistics, and to enhance quality-of-life. External stimuli including low- and high-penetration light have been shown to have the ability to turn drug delivery on and off in a non-invasive remotely-controlled fashion. The success of this approach has been closely related to the development of a variety of drug delivery systems - from photosensitive liposomes to gold nanocages - and relies on multiple mechanisms of drug release activation. In this review, we make reference to the two extremes of the light spectrum and their potential as triggers for the delivery of antitumor drugs, along with the most recent achievements in preclinical trials and the challenges to an efficient translation of this technology to the clinical setting.
Collapse
|
23
|
Maher S, Kumeria T, Aw MS, Losic D. Diatom Silica for Biomedical Applications: Recent Progress and Advances. Adv Healthc Mater 2018; 7:e1800552. [PMID: 30118185 DOI: 10.1002/adhm.201800552] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/12/2018] [Indexed: 12/30/2022]
Abstract
Diatoms are unicellular photosynthetic algae enclosed in porous 3D nanopatterned silica enclosures called "frustules." The diatom frustules are made from biosilica self-assembled into intricate porous shells that feature unique properties including high specific surface area, biocompatibility, tailorable surface chemistry, thermal stability, and high mechanical and chemical resistance. The ability to cultivate diatoms in artificial environments and their abundant availability of diatom frustules as mineable fossilized mineral deposits (diatomite or diatomaceous earth; DE) make diatom silica a promising natural alternative to synthetic porous silica for a broad range of biomedical, environmental, agricultural, and energy applications. This review article provides a comprehensive and current account of the use of natural DE silica materials in biomedical applications focused mainly on drug delivery with some highlights on biosensing, tissue engineering, and clotting agents. The article also covers some basic physical and chemical aspects of DE material such as purification, surface chemical functionalization, biocompatibility, and cellular uptake that are critical for the development of an efficient drug carrier.
Collapse
Affiliation(s)
- Shaheer Maher
- School of Chemical Engineering The University of Adelaide Engineering North Building 5005 Adelaide Australia
| | - Tushar Kumeria
- School of Pharmacy The University of Queensland Pharmacy Australia Center of Excellence Building Woolloongabba Queensland 4102 Australia
| | - Moom Sin Aw
- School of Chemical Engineering The University of Adelaide Engineering North Building 5005 Adelaide Australia
| | - Dusan Losic
- School of Chemical Engineering The University of Adelaide Engineering North Building 5005 Adelaide Australia
| |
Collapse
|
24
|
Zhou H, Qian H. Preparation and characterization of pH-sensitive nanoparticles of budesonide for the treatment of ulcerative colitis. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2601-2609. [PMID: 30174414 PMCID: PMC6110634 DOI: 10.2147/dddt.s170676] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective The aim of this study was to develop pH sensitive nanoparticles of budesonide for the treatment of ulcerative colitis. Methods The NPs system was characterized by the transmission electron microscopy (TEM), particle size, drug loading and encapsulation efficiency. In addition, in vitro drug release prop-erties and pharmacokinetics were also investigated in detail. The optimized formulation was examined for its in-vivo targeting potential using 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in a rat model. Results Dynamic light-scattering results showed that the particle size of budesonide-Eudragit S100/poly(lactic-co-glycolic acid) nanoparticles was around 110.5 nm, with a polydispersity index of 0.098. Transmission electron microscopy images showed that BUD-ES100/PLGA NPs were spherical with uniform size and relatively smooth surfaces. In vitro release showed that BUD-ES100/PLGA NPs required minimal release of drugs during its transit in the stomach and the upper small intestine to ensure that a maximum dose reached the colon. After the pharma-codynamic treatment, the myeloperoxidase value of BUD-ES100/PLGA NPs was close to the normal group. The histopathological examination of rectum showed that no sign of damages such as epithelial necrosis and sloughing epithelial cells was detected. Conclusion Our findings suggested that BUD-ES100/PLGA NPs were a promising alternative to single pH-dependent systems for colitis therapy.
Collapse
Affiliation(s)
- Hong Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China, .,Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China,
| |
Collapse
|
25
|
Zeng Z, Zhao P, Liu L, Gao X, Mao HQ, Chen Y. Lipid Stabilized Solid Drug Nanoparticles for Targeted Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24969-24974. [PMID: 30024145 DOI: 10.1021/acsami.8b07024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticle-based chemotherapeutics have gained widespread interest in medicine due to their tunable pharmacokinetics and pharmacodynamics. Various drug delivery vehicles have been developed including polymer, liposome nanoparticles, and some of them have already made clinical impacts. Despite these advances, drug payload of these formulations is limited (typically <10%). Here, we report a general and scalable approach to prepare lipid-coated solid drug nanoparticles by combining flash nanoprecipitation and extrusion technique, which enables optimization of individual steps separately and flexibility in selection of nanoparticle surface functionalities. Using methotrexate as a model drug, the nanoparticles significantly outperformed free drug in tumor growth suppression.
Collapse
Affiliation(s)
- Zhipeng Zeng
- School of Materials Science and Engineering, Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Pengfei Zhao
- School of Materials Science and Engineering, Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lixin Liu
- School of Materials Science and Engineering, Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaohu Gao
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Hai-Quan Mao
- Institute for NanoBioTechnology and Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
- Department of Biomedical Engineering and Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , Maryland 21287 , United States
| | - Yongming Chen
- School of Materials Science and Engineering, Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
26
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu D, Lipponen K, Quan P, Wan X, Zhang H, Mäkilä E, Salonen J, Kostiainen R, Hirvonen J, Kotiaho T, Santos HA. Impact of Pore Size and Surface Chemistry of Porous Silicon Particles and Structure of Phospholipids on Their Interactions. ACS Biomater Sci Eng 2018; 4:2308-2313. [PMID: 30159385 PMCID: PMC6108535 DOI: 10.1021/acsbiomaterials.8b00343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
![]()
By exploiting its porous structure
and high loading capacity, porous
silicon (PSi) is a promising biomaterial to fabricate protocells and
biomimetic reactors. Here, we have evaluated the impact of physicochemical
properties of PSi particles [thermally oxidized PSi, TOPSi; annealed
TOPSi, AnnTOPSi; (3-aminopropyl) triethoxysilane functionalized thermally
carbonized PSi, APTES-TCPSi; and thermally hydrocarbonized PSi, THCPSi]
on their surface interactions with different phospholipids. All of
the four phospholipids were similarly adsorbed by the surface of PSi
particles, except for TOPSi. Among four PSi particles, TOPSi with
hydrophilic surface and smaller pore size showed the weakest adsorption
toward phosphatidylcholines. By increasing the pore size from roughly
12.5 to 18.0 nm (TOPSi vs AnnTOPSi), the quantity of phosphatidylcholines
adsorbed by TOPSi was enhanced to the same level of hydrophilic APTES-TCPSi
and hydrophobic THCPSi. The 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) exhibited the highest release ratio of phospholipids from all
four PSi particles, and phosphatidylserine (DPPS) showed the lowest
release ratio of phospholipids from PSi particles, except for TOPSi,
which adsorbed less phospholipids due to the small pore size. There
is consistency in the release extent of phospholipids from PSi particles
and the isosteric heat of adsorption. Overall, our study demonstrates
the importance of pore size and surface chemistry of PSi particles
as well as the structure of phospholipids on their interactions. The
obtained information can be employed to guide the selection of PSi
particles and phospholipids to fabricate highly ordered structures,
for example, protocells, or biomimetic reactors.
Collapse
Affiliation(s)
- Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Katriina Lipponen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Peng Quan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiaocao Wan
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Hongbo Zhang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Department of Pharmaceutical Science, Åbo Akademi University, Turku FI-20520, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku FI-20014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku FI-20014, Finland
| | - Risto Kostiainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Tapio Kotiaho
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
28
|
Wang X, Liu J, Wang P, deMello A, Feng L, Zhu X, Wen W, Kodzius R, Gong X. Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes (Basel) 2018; 9:E283. [PMID: 29874840 PMCID: PMC6027171 DOI: 10.3390/genes9060283] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Recently, microfluidic technologies have attracted an enormous amount of interest as potential new tools for a large range of applications including materials synthesis, chemical and biological detection, drug delivery and screening, point-of-care diagnostics, and in-the-field analysis. Their ability to handle extremely small volumes of fluids is accompanied by additional benefits, most notably, rapid and efficient mass and heat transfer. In addition, reactions performed within microfluidic systems are highly controlled, meaning that many advanced materials, with uniform and bespoke properties, can be synthesized in a direct and rapid manner. In this review, we discuss the utility of microfluidic systems in the synthesis of materials for a variety of biological applications. Such materials include microparticles or microcapsules for drug delivery, nanoscale materials for medicine or cellular assays, and micro- or nanofibers for tissue engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Peizhou Wang
- Advanced Placement of Chemistry Program, International Department, Huzhou New Century Foreign Language School, Huzhou 313100, China.
| | | | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Xiaoli Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, the American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| |
Collapse
|
29
|
Fontana F, Figueiredo P, Zhang P, Hirvonen JT, Liu D, Santos HA. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev 2018; 131:3-21. [PMID: 29738786 DOI: 10.1016/j.addr.2018.05.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
Abstract
The use of drug nanocrystals in the drug formulation is increasing due to the large number of poorly water-soluble drug compounds synthetized and due to the advantages brought by the nanonization process. The downsizing processes are done using a top-down approach (milling and homogenization currently employed at the industrial level), while the crystallization process is performed by bottom-up techniques (e.g., antisolvent precipitation, use of supercritical fluids or spray and freeze drying). In addition, the production of nanocrystals in confined environment can be achieved within microfluidics channels. This review analyzes the processes for the preparation of nanocrystals and co-crystals, divided by top-down and bottom-up approaches, together with their combinations. The combination of both strategies merges the favorable features of each process and avoids the disadvantages of single processes. Overall, the applicability of drug nanocrystals is highlighted by the widespread research on the production processes at the engineering, pharmaceutical, and nanotechnology level.
Collapse
|
30
|
Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, Santos HA. Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703740. [PMID: 29534311 DOI: 10.1002/adma.201703740] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/16/2017] [Indexed: 05/24/2023]
Abstract
In the past two decades, porous silicon (PSi) has attracted increasing attention for its potential biomedical applications. With its controllable geometry, tunable nanoporous structure, large pore volume/high specific surface area, and versatile surface chemistry, PSi shows significant advantages over conventional drug carriers. Here, an overview of recent progress in the use of PSi in drug delivery and cancer immunotherapy is presented. First, an overview of the fabrication of PSi with various geometric structures is provided, with particular focus on how the unique geometry of PSi facilitates its biomedical applications, especially for drug delivery. Second, surface chemistry and modification of PSi are discussed in relation to the strengthening of its performance in drug delivery and bioimaging. Emerging technologies for engineering PSi-based composites are then summarized. Emerging PSi advances in the context of cancer immunotherapy are also highlighted. Overall, very promising research results encourage further exploration of PSi for biomedical applications, particularly in drug delivery and cancer immunotherapy, and future translation of PSi into clinical applications.
Collapse
Affiliation(s)
- Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yaping Ding
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
31
|
Salonen J, Mäkilä E. Thermally Carbonized Porous Silicon and Its Recent Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703819. [PMID: 29484727 DOI: 10.1002/adma.201703819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/08/2017] [Indexed: 06/08/2023]
Abstract
Recent progress in research on thermally carbonized porous silicon (TCPSi) and its applications is reported. Despite a slow start, thermal carbonization has now started to gain interest mainly due to new emerging areas for applications. These new areas, such as optical sensing, drug delivery, and energy storage, require stable surface chemistry and physical properties. TCPSi is known to have all of these desired properties. Herein, the above-listed properties of TCPSi are summarized, and the carbonization processes, functionalization, and characterization of TCPSi are reviewed. Moreover, some of the emerging fields of TCPSi applications are discussed and recent advances in the fields are introduced.
Collapse
Affiliation(s)
- Jarno Salonen
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
32
|
Liu D, Chen J, Jiang T, Li W, Huang Y, Lu X, Liu Z, Zhang W, Zhou Z, Ding Q, Santos HA, Yin G, Fan J. Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamate-Induced Excitotoxicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706032. [PMID: 29441625 DOI: 10.1002/adma.201706032] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/17/2017] [Indexed: 06/08/2023]
Abstract
New treatment strategies for spinal cord injury with good therapeutic efficacy are actively pursued. Here, acetalated dextran (AcDX), a biodegradable polymer obtained by modifying vicinal diols of dextran, is demonstrated to protect the traumatically injured spinal cord. To facilitate its administration, AcDX is formulated into microspheres (≈7.2 µm in diameter) by the droplet microfluidic technique. Intrathecally injected AcDX microspheres effectively reduce the traumatic lesion volume and inflammatory response in the injured spinal cord, protect the spinal cord neurons from apoptosis, and ultimately, recover the locomotor function of injured rats. The neuroprotective feature of AcDX microspheres is achieved by sequestering glutamate and calcium ions in cerebrospinal fluid. The scavenging of glutamate and calcium ion reduces the influx of calcium ions into neurons and inhibits the formation of reactive oxygen species. Consequently, AcDX microspheres attenuate the expression of proapoptotic proteins, Calpain, and Bax, and enhance the expression of antiapoptotic protein Bcl-2. Overall, AcDX microspheres protect traumatically injured spinal cord by alleviating the glutamate-induced excitotoxicity. This study opens an exciting perspective toward the application of neuroprotective AcDX for the treatment of severe neurological diseases.
Collapse
Affiliation(s)
- Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-0014, Helsinki, Finland
- John A. Paulson School of Applied Science and Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Jian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Orthopaedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yao Huang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Institute of Sport Medicine, The Affiliated Hospital of Nanjing, University of TCM, Nanjing, 210004, China
| | - Xiyi Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Weixia Zhang
- John A. Paulson School of Applied Science and Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Zheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qirui Ding
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-0014, Helsinki, Finland
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
33
|
Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev 2018; 128:101-114. [PMID: 29277543 DOI: 10.1016/j.addr.2017.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production.
Collapse
|
34
|
Martins JP, Torrieri G, Santos HA. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opin Drug Deliv 2018; 15:469-479. [PMID: 29508630 DOI: 10.1080/17425247.2018.1446936] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Nanoparticles are anticipated to overcome persistent challenges in efficient drug delivery, but the limitations associated with conventional methods of preparation are resulting in slow translation from research to clinical applications. Due to their enormous potential, microfluidic technologies have emerged as an advanced approach for the development of drug delivery systems with well-defined physicochemical characteristics and in a reproducible manner. AREAS COVERED This review provides an overview of microfluidic devices and materials used for their manufacturing, together with the flow patterns and regimes commonly used for nanoparticle preparation. Additionally, the different geometries used in droplet microfluidics are reviewed, with particular attention to the co-flow geometry used for the production of nanoparticles. Finally, this review summarizes the main and most recent nanoparticulate systems prepared using microfluidics, including drug nanosuspensions, polymeric, lipid, structured, and theranostic nanoparticles. EXPERT OPINION The production of nanoparticles at industrial scale is still a challenge, but the microfluidic technologies bring exciting opportunities to develop drug delivery systems that can be engineered in an easy, cost-effective and reproducible manner. As a highly interdisciplinary research field, more efforts and general acceptance are needed to allow for the translation of nanoparticulate drug delivery systems from academic research to the clinical practice.
Collapse
Affiliation(s)
- João Pedro Martins
- a Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , Helsinki , Finland
| | - Giulia Torrieri
- a Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , Helsinki , Finland
| | - Hélder A Santos
- a Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , Helsinki , Finland.,b Helsinki Institute of Life Science (HiLIFE) , University of Helsinki , Helsinki , Finland
| |
Collapse
|
35
|
Hu Y, Hu H, Yan J, Zhang C, Li Y, Wang M, Tan W, Liu J, Pan Y. Multifunctional Porous Iron Oxide Nanoagents for MRI and Photothermal/Chemo Synergistic Therapy. Bioconjug Chem 2018; 29:1283-1290. [PMID: 29402074 DOI: 10.1021/acs.bioconjchem.8b00052] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanoagents of integrating multiple imaging and therapeutic modalities have attracted tremendous attention for biomedical applications. Herein, we synthesize porous hollow Fe3O4 as a theranostic agent for MRI and combined photothermal/chemo cancer therapy. The as-prepared porous iron oxide nanoagents allow for T2-weighted MR imaging. Interestingly, we demonstrate that the porous structure endows the nanoagents an outstanding photothermal property for cancer cell killing, in comparison with other types of iron oxide nanomaterials. Under the exposure of an NIR laser, the heat produced by porous Fe3O4 can accelerate the release of the loaded drug (e.g., DOX) to enhance chemotherapeutic efficacy, promoting the ablation of cancer cells with synergistic photothermal/chemotherapy.
Collapse
Affiliation(s)
- Yayun Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu Province 215123 , China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Oncology , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , 510120 , China
| | - Jun Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu Province 215123 , China
| | - Chao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu Province 215123 , China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University , Soochow University , Suzhou , Jiangsu Province 215006 , China
| | - Mengyun Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University , Soochow University , Suzhou , Jiangsu Province 215006 , China
| | - Weiyi Tan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu Province 215123 , China
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu Province 215123 , China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu Province 215123 , China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Oncology , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , 510120 , China
| |
Collapse
|
36
|
Martins C, Araújo F, Gomes MJ, Fernandes C, Nunes R, Li W, Santos HA, Borges F, Sarmento B. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. Eur J Pharm Biopharm 2018; 138:111-124. [PMID: 29397261 DOI: 10.1016/j.ejpb.2018.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
The human immunodeficiency virus (HIV) uses the brain as reservoir, which turns it as a promising target to fight this pathology. Nanoparticles (NPs) of poly(lactic-co-glycolic) acid (PLGA) are potential carriers of anti-HIV drugs to the brain, since most of these antiretrovirals, as efavirenz (EFV), cannot surpass the blood-brain barrier (BBB). Forasmuch as the conventional production methods lack precise control over the final properties of particles, microfluidics emerged as a prospective alternative. This study aimed at developing EFV-loaded PLGA NPs through a conventional and microfluidic method, targeted to the BBB, in order to treat HIV neuropathology. Compared to the conventional method, NPs produced through microfluidics presented reduced size (73 nm versus 133 nm), comparable polydispersity (around 0.090), less negative zeta-potential (-14.1 mV versus -28.0 mV), higher EFV association efficiency (80.7% versus 32.7%) and higher drug loading (10.8% versus 3.2%). The microfluidics-produced NPs also demonstrated a sustained in vitro EFV release (50% released within the first 24 h). NPs functionalization with a transferrin receptor-binding peptide, envisaging BBB targeting, proved to be effective concerning nuclear magnetic resonance analysis (δ = -0.008 ppm; δ = -0.017 ppm). NPs demonstrated to be safe to BBB endothelial and neuron cells (metabolic activity above 70%), as well as non-hemolytic (1-2% of hemolysis, no morphological alterations on erythrocytes). Finally, functionalized nanosystems were able to interact more efficiently with BBB cells, and permeability of EFV associated with NPs through a BBB in vitro model was around 1.3-fold higher than the free drug.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Francisca Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria João Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carlos Fernandes
- CIQUP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, FI-00014 Helsinki, Finland; HiLIFE - Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - Fernanda Borges
- CIQUP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
37
|
Zhou T, Luo T, Song J, Qu J. Phasor–Fluorescence Lifetime Imaging Microscopy Analysis to Monitor Intercellular Drug Release from a pH-Sensitive Polymeric Nanocarrier. Anal Chem 2018; 90:2170-2177. [DOI: 10.1021/acs.analchem.7b04511] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ting Zhou
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Teng Luo
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
38
|
TiO 2 composite nanotubes embedded with CdS and upconversion nanoparticles for near infrared light driven photocatalysis. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62929-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Kerdsakundee N, Li W, Martins JP, Liu Z, Zhang F, Kemell M, Correia A, Ding Y, Airavaara M, Hirvonen J, Wiwattanapatapee R, Santos HA. Multifunctional Nanotube-Mucoadhesive Poly(methyl vinyl ether-co-maleic acid)@Hydroxypropyl Methylcellulose Acetate Succinate Composite for Site-Specific Oral Drug Delivery. Adv Healthc Mater 2017; 6. [PMID: 28714596 DOI: 10.1002/adhm.201700629] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Indexed: 11/11/2022]
Abstract
An advanced oral drug delivery system that can effectively deliver drugs with poor oral bioavailability is strongly desirable. Herein, a multifunctional nano-in-micro structured composite is developed by encapsulation of the mucoadhesive poly(methyl vinyl ether-co-maleic acid) modified halloysite nanotubes (HNTs) with the pH-responsive hydroxypropyl methylcellulose acetate succinate by the microfluidics to control the drug release, increase cell-particle interaction, and improve drug absorption. The microparticles show spherical shape, homogeneous particle size distribution (58 ± 1 µm), and pH-responsive dissolution behavior at pH > 6, and they prevent the premature release of curcumin in simulated pH conditions of the stomach and immediately release the curcumin in simulated pH conditions of the small intestine. The surface modification of HNT with mucoadhesive poly(methyl vinyl ether-co-maleic acid) significantly enhances its interactions with the intestinal Caco-2/HT29-MTX cells and the mouse small intestines, and increases the permeability of curcumin across the co-cultured Caco-2/HT29-MTX cell monolayers by about 13 times compared to the free curcumin. Therefore, the developed multifunctional nanotube-mucoadhesive poly(methyl vinyl ether-co-maleic acid)@hydroxypropyl methylcellulose acetate succinate composite is a promising oral drug delivery system for drugs with poor oral bioavailability.
Collapse
Affiliation(s)
- Nattha Kerdsakundee
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
- Department of Pharmaceutical Technology; Faculty of Pharmaceutical Sciences; Prince of Songkla University; 90110 Hat Yai Thailand
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - João Pedro Martins
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Feng Zhang
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Marianna Kemell
- Department of Chemistry; Faculty of Science; University of Helsinki; FI-00014 Helsinki Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Yaping Ding
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Mikko Airavaara
- Institute of Biotechnology; University of Helsinki; FI-00014 Helsinki Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Ruedeekorn Wiwattanapatapee
- Department of Pharmaceutical Technology; Faculty of Pharmaceutical Sciences; Prince of Songkla University; 90110 Hat Yai Thailand
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
- Helsinki Institute of Life Science; HiLIFE; University of Helsinki; FI-00014 Helsinki Finland
| |
Collapse
|
40
|
Abstract
Microparticles with controlled size and morphology are of significant interest in the field of drug delivery. Although advanced nanoparticles have been the object of a substantial number of reviews, fewer have focused on microparticles, especially for the delivery of drugs and growth factors to the wound site. Microparticles show distinct advantages, including ease of production and characterization, extended release properties, high drug loading and little concern about the toxicity as compared with the nanosized systems. This review presents an introduction to the pathophysiology of wound healing and provides an overview of some of the recent advances in microparticle-based drugs and growth factors delivery to wound sites.
Collapse
|
41
|
Li S, Zhang D, Sheng S, Sun H. Targeting thyroid cancer with acid-triggered release of doxorubicin from silicon dioxide nanoparticles. Int J Nanomedicine 2017; 12:5993-6003. [PMID: 28860762 PMCID: PMC5573063 DOI: 10.2147/ijn.s137335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Currently, therapy for thyroid cancer mainly involves surgery and radioiodine therapy. However, chemotherapy can be used in advanced and aggressive thyroid cancer that cannot be treated by other options. Nevertheless, a major obstacle to the successful treatment of thyroid cancer is the delivery of drugs to the thyroid gland. Here, we present an example of the construction of silicon dioxide nanoparticles with thyroid–stimulating-hormone receptor-targeting ligand that can specifically target the thyroid cancer. Doxorubicin nanoparticles can be triggered by acid to release the drug payload for cancer therapy. These nanoparticles shrink the tumor size in vivo with less toxic side effects. This research paves the way toward effective chemotherapy for thyroid cancer.
Collapse
Affiliation(s)
| | | | - Shihou Sheng
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Chang Chun, People's Republic of China
| | - Hui Sun
- Department of Thyroid Surgery
| |
Collapse
|
42
|
Su Y, Dang J, Zhang H, Zhang Y, Tian W. Supramolecular Host-Guest Interaction-Enhanced Adjustable Drug Release Based on β-Cyclodextrin-Functionalized Thermoresponsive Porous Polymer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7393-7402. [PMID: 28693323 DOI: 10.1021/acs.langmuir.7b01502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Drug delivery systems based on stimuli-responsive porous polymer films (PPFs) have been extensively investigated because of their many advantages. However, the ability to adjust the drug release from PPFs is not always perfect, and at times, it cannot satisfy real-world requirements. In this paper, supramolecular host-guest interactions were harnessed to overcome the difficulties associated with adjustable release from these systems by incorporating host molecules into the pore walls of thermoresponsive PPFs. β-Cyclodextrin-functionalized porous amphiphilic block copolymer films (β-CD-PBCPFs) with controllable pore parameters, high homogeneity, and large areas were prepared by combining the self-assembly and breath-figure methods. Drug-loaded β-CD-PBCPFs displayed thermoresponsive release behavior, which could be tuned by increasing the β-CD content in phosphate-buffered saline. The release was governed by the host-guest interactions of the β-CD moieties and drug molecules. The concept of host-guest interaction-enhanced adjustable release could be applied to different drug molecules, such as doxorubicin and metronidazole.
Collapse
Affiliation(s)
- Yuanwei Su
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University , Xi'an 710072, China
| | - Jing Dang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University , Xi'an 710072, China
| | - Haitao Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University , Xi'an 710072, China
| | - Yingyi Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University , Xi'an 710072, China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University , Xi'an 710072, China
| |
Collapse
|
43
|
Xu J, Zhang S, Machado A, Lecommandoux S, Sandre O, Gu F, Colin A. Controllable Microfluidic Production of Drug-Loaded PLGA Nanoparticles Using Partially Water-Miscible Mixed Solvent Microdroplets as a Precursor. Sci Rep 2017; 7:4794. [PMID: 28684775 PMCID: PMC5500499 DOI: 10.1038/s41598-017-05184-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/25/2017] [Indexed: 11/22/2022] Open
Abstract
We present a versatile continuous microfluidic flow-focusing method for the production of Doxorubicin (DOX) or Tamoxifen (TAM)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). We use a partially water-miscible solvent mixture (dimethyl sulfoxide DMSO+ dichloromethane DCM) as precursor drug/polymer solution for NPs nucleation. We extrude this partially water-miscible solution into an aqueous medium and synthesized uniform PLGA NPs with higher drug loading ability and longer sustained-release ability than conventional microfluidic or batch preparation methods. The size of NPs could be precisely tuned by changing the flow rate ratios, polymer concentration, and volume ratio of DCM to DMSO (VDCM/VDMSO) in the precursor emulsion. We investigated the mechanism of the formation of NPs and the effect of VDCM/VDMSO on drug release kinetics. Our work suggests that this original, rapid, facile, efficient and low-cost method is a promising technology for high throughput NP fabrication. For the two tested drugs, one hydrophilic (Doxorubicin) the other one hydrophobic (Tamoxifen), encapsulation efficiency (EE) as high as 88% and mass loading content (LC) higher than 25% were achieved. This new process could be extended as an efficient and large scale NP production method to benefit to fields like controlled drug release and nanomedicine.
Collapse
Affiliation(s)
- Jiang Xu
- Centre de Recherche Paul Pascal, CNRS, Univ. Bordeaux, 115 Avenue Schweitzer, 33600, Pessac, France
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- CNRS, Solvay, LOF (UMR 5258), Univ. Bordeaux, F-33600, Pessac, France
| | - Shusheng Zhang
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Anais Machado
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Sébastien Lecommandoux
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Olivier Sandre
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Frank Gu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Annie Colin
- Centre de Recherche Paul Pascal, CNRS, Univ. Bordeaux, 115 Avenue Schweitzer, 33600, Pessac, France.
- ESPCI Paris, PSL Research University, Sciences et Ingénierie de la matière Molle, CNRS(UMR 7615), 10, Rue Vauquelin, 75231, Paris Cedex 05, France.
| |
Collapse
|
44
|
Zhang H, Liu D, Wang L, Liu Z, Wu R, Janoniene A, Ma M, Pan G, Baranauskiene L, Zhang L, Cui W, Petrikaite V, Matulis D, Zhao H, Pan J, Santos HA. Microfluidic Encapsulation of Prickly Zinc-Doped Copper Oxide Nanoparticles with VD1142 Modified Spermine Acetalated Dextran for Efficient Cancer Therapy. Adv Healthc Mater 2017; 6. [PMID: 28272780 DOI: 10.1002/adhm.201601406] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Indexed: 01/27/2023]
Abstract
Structural features of nanoparticles have recently been explored for different types of applications. To explore specific particles as nanomedicine and physically destroy cancer is interesting, which might avoid many obstacles in cancer treatment, for example, drug resistance. However, one key element and technical challenge of those systems is to selectively target them to cancer cells. As a proof-of-concept, Prickly zinc-doped copper oxide (Zn-CuO) nanoparticles (Prickly NPs) have been synthesized, and subsequently encapsulated in a pH-responsive polymer; and the surface has been modified with a novel synthesized ligand, 3-(cyclooctylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl] benzenesulfonamide (VD1142). The Prickly NPs exhibit very effective cancer cell antiproliferative capability. Moreover, the polymer encapsulation shields the Prickly NPs from unspecific nanopiercing and, most importantly, VD1142 endows the engineered NPs to specifically target to the carbonic anhydrase IX, a transmembrane protein overexpressed in a wide variety of cancer tumors. Intracellularly, the Prickly NPs disintegrate into small pieces that upon endosomal escape cause severe damage to the endoplasmic reticulum and mitochondria of the cells. The engineered Prickly NP is promising in efficient and targeted cancer treatment and it opens new avenue in nanomedication.
Collapse
Affiliation(s)
- Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
- Harvard John A. Paulson School of Applied Science and Engineering; Harvard University; Cambridge MA 02138 USA
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Liang Wang
- Institute of Biotechnology; University of Helsinki; FI-00014 Helsinki Finland
| | - Zehua Liu
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Runrun Wu
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Agne Janoniene
- Department of Biothermodynamics and Drug Design; Institute of Biotechnology; Vilnius University; LT-10257 Vilnius Lithuania
| | - Ming Ma
- Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 China
| | - Guoqing Pan
- Department of Orthopaedics; The First Affiliated Hospital of Soochow University; Orthopaedic Institute; Soochow University; Suzhou 215006 China
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design; Institute of Biotechnology; Vilnius University; LT-10257 Vilnius Lithuania
| | - Linlin Zhang
- Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 China
| | - Wenguo Cui
- Department of Orthopaedics; The First Affiliated Hospital of Soochow University; Orthopaedic Institute; Soochow University; Suzhou 215006 China
| | - Vilma Petrikaite
- Department of Biothermodynamics and Drug Design; Institute of Biotechnology; Vilnius University; LT-10257 Vilnius Lithuania
- Department of Drug chemistry; Faculty of Pharmacy; Lithuanian University of Health Sciences; LT-44307 Kaunas Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design; Institute of Biotechnology; Vilnius University; LT-10257 Vilnius Lithuania
| | - Hongxia Zhao
- Institute of Biotechnology; University of Helsinki; FI-00014 Helsinki Finland
| | - Jianming Pan
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Hélder A. Santos
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| |
Collapse
|
45
|
Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA. Microfluidic-assisted fabrication of carriers for controlled drug delivery. LAB ON A CHIP 2017; 17:1856-1883. [PMID: 28480462 DOI: 10.1039/c7lc00242d] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The microfluidic technique has brought unique opportunities toward the full control over the production processes for drug delivery carriers, owing to the miniaturisation of the fluidic environment. In comparison to the conventional batch methods, the microfluidic setup provides a range of advantages, including the improved controllability of material characteristics, as well as the precisely controlled release profiles of payloads. This review gives an overview of different fluidic principles used in the literature to produce either polymeric microparticles or nanoparticles, focusing on the materials that could have an impact on drug delivery. We also discuss the relations between the particle size and size distribution of the obtained carriers, and the design and configuration of the microfluidic setups. Overall, the use of microfluidic technologies brings exciting opportunities to expand the body of knowledge in the field of controlled drug delivery and great potential to clinical translation of drug delivery systems.
Collapse
Affiliation(s)
- Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
46
|
Almeida PV, Shahbazi MA, Correia A, Mäkilä E, Kemell M, Salonen J, Hirvonen J, Santos HA. A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine (Lond) 2017; 12:1401-1420. [PMID: 28524813 DOI: 10.2217/nnm-2017-0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the chemotherapeutic potential of a novel multifunctional nanocomposite encapsulating both porous silicon (PSi) and gold (Au) nanoparticles in a polymeric nanocomplex. MATERIALS & METHODS The nanocomposite was physicochemically characterized and evaluated in vitro for biocompatibility, cellular internalization, endosomolytic properties, cytoplasmatic drug delivery and chemotherapeutic efficacy. RESULTS The nanocomposites were successfully produced and exhibited adequate physicochemical properties and superior in vitro cyto- and hemocompatibilities. The encapsulation of PSi nanoparticles in the nanocomplexes significantly enhanced their cellular internalization and enabled their endosomal escape, resulting in the efficient cytoplasmic delivery of these nanosystems. Sorafenib-loaded nanocomposites showed a potent in vitro antiproliferative effect on MDA-MB-231 breast cancer cells. CONCLUSION The multifunctional nanocomposite herein presented exhibits great potential as a chemotherapeutic nanoplatform.
Collapse
Affiliation(s)
- Patrick V Almeida
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland.,Department of Micro- & Nanotechnology, Technical University of Denmark, 2800 KGs. Lyngby, Denmark
| | - Alexandra Correia
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland
| | - Ermei Mäkilä
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland.,Laboratory of Industrial Physics, Department of Physics & Astronomy, University of Turku, FI-20014 Finland
| | - Marianna Kemell
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1 (P.O. Box 55), FI-00014 Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics & Astronomy, University of Turku, FI-20014 Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland.,Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-00014Helsinki, Finland
| |
Collapse
|
47
|
Wang X, Zhang M, Zhang L, Li L, Li S, Wang C, Su Z, Yuan Y, Pan W. Designed Synthesis of Lipid-Coated Polyacrylic Acid/Calcium Phosphate Nanoparticles as Dual pH-Responsive Drug-Delivery Vehicles for Cancer Chemotherapy. Chemistry 2017; 23:6586-6595. [DOI: 10.1002/chem.201700060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Wang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Manjie Zhang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Lingyu Zhang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Lu Li
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Shengnan Li
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Chungang Wang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Zhongmin Su
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Yue Yuan
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Weisan Pan
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| |
Collapse
|
48
|
Ollikainen E, Liu D, Kallio A, Mäkilä E, Zhang H, Salonen J, Santos HA, Sikanen TM. The impact of porous silicon nanoparticles on human cytochrome P450 metabolism in human liver microsomes in vitro. Eur J Pharm Sci 2017; 104:124-132. [PMID: 28366651 DOI: 10.1016/j.ejps.2017.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 02/05/2023]
Abstract
Engineered nanoparticles are increasingly used as drug carriers in pharmaceutical formulations. This study focuses on the hitherto unaddressed impact of porous silicon (PSi) nanoparticles on human cytochrome P450 (CYP) metabolism, which is the major detoxification route of most pharmaceuticals and other xenobiotics. Three different surface chemistries, including thermally carbonized PSi (TCPSi), aminopropylsilane-modified TCPSi (APTES-TCPSi) and alkyne-terminated thermally hydrocarbonized PSi (Alkyne-THCPSi), were compared for their effects on the enzyme kinetics of the major CYP isoforms (CYP1A2, CYP2A6, CYP2D6, and CYP3A4) in human liver microsomes (HLM) in vitro. The enzyme kinetic parameters, Km and Vmax, and the intrinsic clearance (CLint) were determined using FDA-recommended, isoenzyme-specific model reactions with and without PSi nanoparticles. Data revealed statistically significant alterations of most isoenzyme activities in HLM in the presence of nanoparticles at 1mg/ml concentration, and polymorphic CYP2D6 was the most vulnerable to enzyme inhibition. However, the observed CYP2D6 inhibition was shown to be dose-dependent in case of TCPSi and Alkyne-THCPSi nanoparticles and attenuated at the concentrations below 1μg/ml. Adsorption of the probe substrates onto the hydrophobic Alkyne-THCPSi particles was also observed and taken into account in the determination of the kinetic parameters. Three polymer additives commonly used in pharmaceutical nanoformulations (Pluronics F68 and F127, and polyvinylalcohol) were also separately screened for their effects on CYP isoenzyme activities. These polymers had less effect on the enzyme kinetic parameters, and resulted in increased activity rather than enzyme inhibition, in contrast to the PSi nanoparticles. Although the chosen subcellular model (HLM) is not able to predict the cellular disposition of PSi nanoparticles in hepatocytes and thus provides limited information of probability of CYP interactions in vivo, the present study suggests that mechanistic interactions by the PSi nanoparticles or the polymer stabilizers may appear if these are effectively uptaken by the hepatocytes.
Collapse
Affiliation(s)
- Elisa Ollikainen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Arttu Kallio
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tiina M Sikanen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
49
|
Tran KT, Nguyen TD. Lithography-based methods to manufacture biomaterials at small scales. JOURNAL OF SCIENCE: ADVANCED MATERIALS AND DEVICES 2017; 2:1-14. [DOI: 10.1016/j.jsamd.2016.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Liu D, Zhang H, Cito S, Fan J, Mäkilä E, Salonen J, Hirvonen J, Sikanen TM, Weitz DA, Santos HA. Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation. NANO LETTERS 2017; 17:606-614. [PMID: 28060521 DOI: 10.1021/acs.nanolett.6b03251] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although a number of techniques exist for generating structured organic nanocomposites, it is still challenging to fabricate them in a controllable, yet universal and scalable manner. In this work, a microfluidic platform, exploiting superfast (milliseconds) time intervals between sequential nanoprecipitation processes, has been developed for high-throughput production of structured core/shell nanocomposites. The extremely short time interval between the sequential nanoprecipitation processes, facilitated by the multiplexed microfluidic design, allows us to solve the instability issues of nanocomposite cores without using any stabilizers. Beyond high throughput production rate (∼700 g/day on a single device), the generated core/shell nanocomposites harness the inherent ultrahigh drug loading degree and enhanced payload dissolution kinetics of drug nanocrystals and the controlled drug release from polymer-based nanoparticles.
Collapse
Affiliation(s)
- Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Salvatore Cito
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University , 210029 Nanjing, China
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Tiina M Sikanen
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| |
Collapse
|