1
|
Singha T, Tomar S, Chakraborty S, Das S, Satpati B. Improved Alcohol Oxidation through Combined Effects of Tensile Lattice Strain and Twin Defects in Core-Shell Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309736. [PMID: 38459644 DOI: 10.1002/smll.202309736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Indexed: 03/10/2024]
Abstract
The direct alcohol fuel cells (DAFCs) rely on alcohol oxidation reactions (AORs) to produce electricity, which require catalysts with optimized electronic structure to accelerate the sluggish AORs. Herein, an epitaxial growth of Pd layer onto the pentatwinned Au@Ag core-shell nanorods (NRs) is reported to synthesize highly strained Au@AgPd core-shell NRs. The tensile strain in the AgPd shell of the Au@AgPd nanorods (NRs) arises not only from the core-shell lattice mismatch but also from twinning and lattice distortion occurring at the five twinned boundaries present in the structure. Theoretical simulations prove that the presence of tensile strains in the AgPd layer leads to a significant upward shift of the d-band center of the Pd site toward the Fermi level which remarkably changes the adsorption energy of alcohols on the surface. Highly strained Au@AgPd NRs show exceptional mass activities in electrochemical oxidation of biomass-derived alcohols (ethylene glycol, ethanol, and glycerol) reaching up to 18.66, 15.6, and 7.90 A mgpd -1, respectively. These values are 23.3, 23.6, and 23.2 times higher than commercial Pd/C catalysts. This strain engineering strategy set the platform for the design and synthesis of highly efficient and versatile catalysts for the construction of high-performance DAFCs.
Collapse
Affiliation(s)
- Tukai Singha
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Shalini Tomar
- Material Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI), A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj, 211019, India
| | - Sudip Chakraborty
- Material Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI), A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj, 211019, India
| | - Shuvankar Das
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Biswarup Satpati
- Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| |
Collapse
|
2
|
Wang H, Liang Y, Liu S, Yu H, Deng K, Xu Y, Li X, Wang Z, Wang L. Electron Regulation of Heterostructured Pt/Rh Metallene Boosts Ethylene Glycol Electrooxidation and Hydrogen Evolution. Inorg Chem 2023; 62:14477-14483. [PMID: 37610771 DOI: 10.1021/acs.inorgchem.3c02487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The research on high-efficiency two-dimensional (2D) catalytic materials for the small-molecule oxidation-assisted hydrogen evolution reaction (HER) is prospective for efficient hydrogen production. Herein, we report heterostructured Pt/Rh metallene with Pt nanoparticles (NPs) uniformly anchored on Rh metallene for the HER and ethylene glycol oxidation reaction (EGOR). The ultrathin sheet structure of the Pt/Rh metallene offers high surface areas and sufficient active sites. More importantly, the Pt/Rh heterostructure can optimize catalytic active centers and adjust electronic structure. Thus, Pt/Rh metallene exhibits superior electrocatalytic HER activity with a low overpotential of 28 mV in 1 M KOH at 10 mA cm-2 and EGOR activity with a specific activity of 8.39 mA cm-2 in 1 M KOH with 3 M EG, along with outstanding CO tolerance. In a two-electrode system, Pt/Rh metallene requires a low potential of 0.51 V for stable and efficient hydrogen production at 10 mA cm-2 in 1 M KOH + 3 M EG, with the simultaneous production of high-value-added products. The job proposes an attractive strategy for the synthesis of 0D/2D metallene toward simultaneous energy-saving hydrogen production and chemical update.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuqin Liang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
3
|
Tan DX, Wang YL, Tan WY, Yang XY, Ma RH, Xu SY, Deng ZY. Controlled synthesis of Pd–Ag nanowire networks with high-density defects as highly efficient electrocatalysts for methanol oxidation reaction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Fu L, Liu K, Lyu Z, Sun Y, Cai J, Wang S, Wang Q, Xie S. Two-dimensional template-directed synthesis of one-dimensional kink-rich Pd 3Pb nanowires for efficient oxygen reduction. J Colloid Interface Sci 2023; 634:827-835. [PMID: 36565624 DOI: 10.1016/j.jcis.2022.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Developing facile synthetic strategies toward ultrafine one-dimensional (1D) nanowires (NWs) with rich catalytic hot spots is pivotal for exploring effective heterogeneous catalysts. Herein, we demonstrate a two-dimensional (2D) template-directed strategy for synthesizing 1D kink-rich Pd3Pb NWs with abundant grain boundaries to serve as high-efficiency electrocatalysts toward oxygen reduction reaction (ORR). In this one-pot synthesis, ultrathin Pd nanosheets were initially generated, which then served as self-sacrificial 2D nano-templates. A dynamic equilibrium growth was subsequently established on the 2D Pd nanosheets through the center-selected etching of Pd atoms and edge-preferred co-deposition of Pd/Pb atoms. This was followed by the oriented attachment of the generated Pd/Pb alloy nanograins and fragments. Thus, kink-rich Pd3Pb NWs with rich grain boundary defects were obtained in high yield, and these NWs were used as electrocatalytic active catalysts. The surface electronic interaction between Pd and Pb atoms effectively decreased the surface d-band center to weaken the binding of oxygen-containing intermediates toward improved ORR kinetics. Specifically, the kink-rich Pd3Pb NWs/C catalyst delivered outstanding ORR mass activity and specific activity (2.26 A⋅mgPd-1 and 2.59 mA⋅cm-2, respectively) in an alkaline solution. These values were respectively 13.3 and 10.8 times those of state-of-the-art commercial Pt/C catalyst. This study provides an innovative strategy for fabricating defect-rich low-dimensional nanocatalysts for efficient energy conversion catalysis.
Collapse
Affiliation(s)
- Luhong Fu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Kai Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Zixi Lyu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yu Sun
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Junlin Cai
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shupeng Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Qiuxiang Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shuifen Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
5
|
Xu B, Liu T, Liang X, Dou W, Geng H, Yu Z, Li Y, Zhang Y, Shao Q, Fan J, Huang X. Pd-Sb Rhombohedra with an Unconventional Rhombohedral Phase as a Trifunctional Electrocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206528. [PMID: 36120846 DOI: 10.1002/adma.202206528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Crystal phase engineering is an important strategy for designing noble-metal-based catalysts with optimized activity and stability. From the thermodynamic point of view, it remains a great challenge to synthesize unconventional phases of noble metals. Here, a new class of Pd-based nanostructure with unconventional rhombohedral Pd20 Sb7 phase is successfully synthesized. Benefiting from the high proportion of the unique exposed Pd20 Sb7 (003) surface, Pd20 Sb7 rhombohedra display much enhanced ethanol oxidation reaction (EOR) and oxygen reduction reaction performance compared with commercial Pd/C. Moreover, Pd20 Sb7 rhombohedra are also demonstrated as an effective air cathode in non-aqueous Li-air batteries with an overpotential of only 0.24 V. Density functional theory calculations reveal that the unique exposed facets of Pd20 Sb7 rhombohedra can not only reduce the excessive adsorption of CH3 CO* to CH3 COOH on Pd for promoting EOR process, but also weaken CO binding and CO poisoning. This work provides a new class of unconventional intermetallic nanomaterials with enhanced electrocatalytic activity.
Collapse
Affiliation(s)
- Bingyan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaocong Liang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Wenjie Dou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Zhang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Jingmin Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Li T, Jiang W, Liu Y, Jia R, Shi L, Huang L. Localized surface plasmon resonance induced assembly of bimetal nanochains. J Colloid Interface Sci 2021; 607:1888-1897. [PMID: 34695738 DOI: 10.1016/j.jcis.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022]
Abstract
Bimetal nanochains (NCs) are attracting increasing attention in the fields of catalysis and electrocatalysis due to the synergistic effects in electronic and optical properties, but the fabrication of bimetal NCs remains challenging. Here, we report a general strategy named "nucleation in the irradiation then growth in the dark" for the preparation of Au/M (second metal) NCs. In the irradiation stage, the localized surface plasmon resonance (LSPR) effect of Au NPs is excited to overcome the nucleation energy barrier for the deposition of second metals (Pt, Ag and Pd). In the followed dark process, the preferential growth of second metals on the existed nucleus leads to the formation of nanochain rather than the core/shell nanostructure. In the model reaction of electrocatalytic hydrogen evolution, the optimized Au/Pt NCs showed much better performance compared with the commercial Pt/C.
Collapse
Affiliation(s)
- Ting Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China; Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Wentao Jiang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yidan Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China; Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Rongrong Jia
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liyi Shi
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
7
|
Gao F, Zhang Y, You H, Li Z, Zou B, Du Y. Solvent-Mediated Shell Dimension Reconstruction of Core@Shell PdAu@Pd Nanocrystals for Robust C1 and C2 Alcohol Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101428. [PMID: 34213824 DOI: 10.1002/smll.202101428] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Indexed: 06/13/2023]
Abstract
The core@shell structure dimension of the Pd-based nanocrystals deeply impacts their catalytic properties for C1 and C2 alcohol oxidation reactions. However, the precise simultaneous control on the synthesis of core@shell nanocrystals with different shell dimensions is difficult, and most synthesis on Pd-based core@shell nanocatalysts involves the surfactants participation by multiple steps, thus leads to limited catalytic properties. Herein, for the first time, a facile one-step surfactant-free strategy is developed for shell dimension reconstruction of PdAu@Pd core@shell nanocrystals by altering volume ratios of mixed solvents. The Pd-based sunflower-like (SL) and coral grass-like (CGL) nanocrystals are obtained with different 2D hexagonal nanosheet assembles and 3D network shells, respectively. Benefitting from the clean surface shell of 2D ultrathin nanosheets structure, high atom utilization efficiency, and robust electronic effect. The PdAu@Pd SL achieves the ascendant methanol/ethanol/ethylene glycol oxidation reaction (MOR/EOR/EGOR) activities, much higher than Pd/C catalysts, as well as the improved antipoisoning ability. Notably, this one-step construction shell dimension of PdAu@Pd core@shell catalysts not only provide a significant reference for the improvement of surfactant-free synthetic routes, but also shed light on the advanced engineering on shell dimensions in core@shell nanostructures for electrocatalysis and so forth.
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Yangping Zhang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Huaming You
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Zhuolin Li
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Bin Zou
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Kottayintavida R, Gopalan NK. PdAu alloy nano wires for the elevated alcohol electro-oxidation reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Li Z, Gao F, Zou B, Wu Z, Zhang Y, Du Y. Core@shell PtAuAg@PtAg Hollow Nanodendrites as Effective Electrocatalysts for Methanol and Ethylene Glycol Oxidation. Inorg Chem 2021; 60:9977-9986. [PMID: 34133159 DOI: 10.1021/acs.inorgchem.1c01254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pt-based catalysts with core@shell structures are widely used in alcohol oxidations due to their excellent catalytic performance. In this work, we synthesized a series of core@shell PtAuAg@PtAg hollow nanodendrites (HNDs) with different compositions by a simple seed-mediated method. The PtAuAg@PtAg HNDs with a hollow core and dendritic shell exhibit excellent catalytic performance for ethylene glycol oxidation reaction (EGOR) and methanol oxidation reaction (MOR). Among these, Pt38Au29Ag33 HNDs have the highest mass activity (12364.0 mA mgPt-1/3278.0 mA mgPt-1) for EGOR and MOR, which is 4.2 times and 5.3 times higher than that of commercial Pt/C (2941.0 mA mgPt-1/617.6 mA mgPt-1), respectively. More importantly, after successive cyclic voltammetry tests, the retained mass activities of Pt38Au29Ag33 HNDs are 3913.8 mA mgPt-1 and 348.3 mA mgPt-1, which are much higher than that of commercial Pt/C as well. The excellent catalytic performance of PtAuAg@PtAg HNDs can be attributed to the structure of HNDs, which can greatly increase the surface area and active sites, as well as the electronic and synergistic effects among Pt, Au, and Ag. This research may provide new ideas for the development of high-efficiency hollow catalytic materials for EGOR and MOR.
Collapse
Affiliation(s)
- Zhuolin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Bin Zou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
10
|
Qiao B, Yang T, Shi S, Jia N, Chen Y, Chen X, An Z, Chen P. Highly Active Hollow RhCu Nanoboxes toward Ethylene Glycol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006534. [PMID: 33590702 DOI: 10.1002/smll.202006534] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The efficient electrocatalysts toward the ethylene glycol oxidation reaction (EGOR) are highly desirable for direct ethylene glycol fuel cells because of the sluggish kinetics of anodic EGOR. Herein, porous RhCu nanoboxes are successfully prepared through facile galvanic replacement reaction and succedent sodium borohydride reduction strategy. Benefiting from hierarchical pore structure, RhCu nanoboxes display excellent electrocatalytic performance toward the EGOR in alkaline medium with a mass activity of 775.1 A gRh -1 , which is 2.8 times as large as that of commercial Rh nanocrystals. Moreover, the long-term stability of RhCu nanoboxes is better than that of commercial Rh nanocrystals. Furthermore, the theoretical calculations demonstrate that RhCu nanoboxes possess lower adsorption energy of CO and lower reaction barrier (0.27 eV) for the COads oxidation with aid of the adsorbed OHads species, resulting in the outstanding electrocatalytic performance toward the EGOR. This work provides a meaningful reference for developing highly effective electrocatalysts toward the EGOR.
Collapse
Affiliation(s)
- Bin Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Ting Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Shufeng Shi
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Nan Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Pei Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
11
|
Song T, Gao F, Guo S, Zhang Y, Li S, You H, Du Y. A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. NANOSCALE 2021; 13:3895-3910. [PMID: 33576356 DOI: 10.1039/d0nr07339c] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although great progress has been made in the synthesis of metal nanoparticles, good repeatability and accurate predictability are still difficult to achieve. This difficulty can be attributed to the synthetic method based primarily on observation and subjective experience, and the role of many surfactants remains unclear. It should be noted that surfactants play an important role in the synthetic process. Understanding their function and mechanism in the synthetic process is a prerequisite for the rational design of nanocatalysts with ideal morphology and performance. In this review article, the function of surfactants is introduced first, and then the mechanism of action of surfactants in controlling the morphology of nanoparticles is discussed according to the types of surfactants, and the promoting and sealing effects of surfactants on the crystal surface is revealed. The relationship between surfactants and the morphology structure of nanoparticles is studied. The removal methods of surfactants are discussed, and the existing problems in the current development strategy are summarized. Finally, the application of surfactants in controlling the morphology of metal nanocrystals is prospected. It is hoped that the review can open up new avenues for the synthesis of nanocrystals.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
12
|
Zhang S, Liu K, Liu Z, Liu M, Zhang Z, Qiao Z, Ming L, Gao C. Highly Strained Au-Ag-Pd Alloy Nanowires for Boosted Electrooxidation of Biomass-Derived Alcohols. NANO LETTERS 2021; 21:1074-1082. [PMID: 33448860 DOI: 10.1021/acs.nanolett.0c04395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although strain engineering is effective in boosting the activities of noble metal catalysts, it remains desirable to construct fully strained catalysts to push the activity to even higher levels. Herein, we report a novel route to strong lattice strains of a Pd-based catalyst by radial growth of a Pd-rich phase on Au-Ag alloy nanowires that are no thicker than 1.5 nm. It creates not only tensile strains in the Pd-rich sheath due to the core-sheath lattice mismatch but also distortion and twinning of the lattice, producing nonhomogeneous local strains as hotspots for the catalysis. Toward the electrochemical oxidation of biomass-derived alcohols including ethanol, ethylene glycol, and glycerol, the highly strained nanowires outperformed their less strained counterparts and reached up to 13.6, 18.2, and 11.1 A mgPd-1, respectively. This strain engineering strategy may open new avenues to highly efficient catalysts for direct alcohol fuel cells and many other applications.
Collapse
Affiliation(s)
- Shumeng Zhang
- Center for Materials Chemistry, Frontier Institute of Science and Technology, and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Kai Liu
- Center for Materials Chemistry, Frontier Institute of Science and Technology, and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Zhaojun Liu
- Center for Materials Chemistry, Frontier Institute of Science and Technology, and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Moxuan Liu
- Center for Materials Chemistry, Frontier Institute of Science and Technology, and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Zhixue Zhang
- Center for Materials Chemistry, Frontier Institute of Science and Technology, and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Zhun Qiao
- Center for Materials Chemistry, Frontier Institute of Science and Technology, and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Liang Ming
- Fengcheng Advanced Energy Materials Research Institute, Ningbo, Zhejiang 315500, China
| | - Chuanbo Gao
- Center for Materials Chemistry, Frontier Institute of Science and Technology, and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
13
|
Liu Q, Wang X, Liu J, Zhou X, Meng Q, Zhou X, Sun D, Tang Y. Cyanogroup functionalized sub-2 nm ultrafine Pt nanonetworks reinforce electrocatalytic hydrogen evolution in a broad pH range. CrystEngComm 2021. [DOI: 10.1039/d1ce00796c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyanogroup functionalized Pt ultrafine nanonetworks are synthesized via a facile one-pot oil bath heating method, and exhibit excellent HER performance in a broad pH range.
Collapse
Affiliation(s)
- Qicheng Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinyi Zhou
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qingwei Meng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinrui Zhou
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
14
|
Abstract
Nanomaterials are widely used in electrocatalysts due to their quantum size effect and high utilization efficiency. There are two ways to improve the activity of nanoelectrocatalysts: increasing the number of active sites and improving the inherent activity of each catalytic site. The structure of the catalyst itself can be improved by increasing the number of exposed active sites per unit mass. The high porosity and three-dimensional network structure enable aerogels to have the characteristics of a large specific surface area, exposing many active sites and bringing structural stability through the self-supporting nature of aerogels. Thus, by adjusting the compositions of aerogels, the synergetic effect introduced by alloy elements can be utilized to further improve the single-site activity. In this review, we summarized the basic preparation strategy of aerogels and extended it to the preparation of alloys and special structure aerogels. Moreover, through the eight electrocatalysis cases, the outstanding catalytic performances and broad applicability of aerogel electrocatalysts are emphasized. Finally, we predict the future development of pure metallic aerogel electrocatalysts from the perspective of preparation to application.
Collapse
|
15
|
Insight into the Structures and Electrocatalytic Activities of PdAg Alloy on RGO in the Oxidation of Ethanol, Ethylene Glycol and Glycerol. Catal Letters 2020. [DOI: 10.1007/s10562-020-03447-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Xie YX, Cen SY, Ma YT, Chen HY, Wang AJ, Feng JJ. Facile synthesis of platinum-rhodium alloy nanodendrites as an advanced electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions. J Colloid Interface Sci 2020; 579:250-257. [DOI: 10.1016/j.jcis.2020.06.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 02/01/2023]
|
17
|
Sun Q, Xu H, Du Y. Recent Achievements in Noble Metal Catalysts with Unique Nanostructures for Liquid Fuel Cells. CHEMSUSCHEM 2020; 13:2540-2551. [PMID: 32096317 DOI: 10.1002/cssc.201903381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Indexed: 06/10/2023]
Abstract
In recent years, research efforts have been focused on the design and fabrication of highly efficient catalysts for liquid fuel cells, because the use of these cells is an important approach for alleviating environmental pollution and energy crises. However, the limitations of the catalytic performance of industrial Pt/C have strongly hindered the development of these fuel cells. The catalyst morphology has a strong impact on its performance; nanostructured catalysts are preferred as they offer large specific surface area and more exposed active centers. In view of this, many catalysts with unique structures have been synthesized in recent years, all of which show excellent catalytic performance characteristics. Despite these achievements, few efforts have been made to survey this field comprehensively. Herein, the recent advances in catalysts for liquid fuel cells are summarized, with a focus on noble metal catalysts with unique morphologies such as nanowires, nanosheets, and assembly structures. Their formation mechanisms are discussed critically. The relationship between the unique morphologies and excellent performance of these catalysts is also explored. This work may provide guidelines for the further development of liquid fuel cells.
Collapse
Affiliation(s)
- Qiwen Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
18
|
Song T, Gao F, Zhang Y, Chen C, Wang C, Li S, Shang H, Du Y. Efficient polyalcohol oxidation electrocatalysts enabled by PtM (M = Fe, Co, and Ni) nanocubes surrounded by (200) crystal facets. NANOSCALE 2020; 12:9842-9848. [PMID: 32342072 DOI: 10.1039/d0nr00163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to the high-density (200) crystal planes and abundant active sites, cubic platinum nanomaterials have become outstanding electrocatalysts in promoting fuel cell reactions. However, because of the fact that the facet-controlled synthesis is difficult, it is still a grand challenge to synthesize a sequence of Pt-based nanocubes via a universal method. Herein, we report a general and simple eco-friendly solvothermal method to prepare (200)-enclosed PtM nanocubes. Different from the other nanomaterials, nanocubes are conducive to mass transfer. Moreover, the synergistic and electronic effects between M and Pt are profitable to improve the utilization of precious metals. We used (200)-encapsulated nanocrystals to evaluate their electrocatalytic performance towards glycerol and ethylene glycol oxidation reactions in an alkaline medium. In particular, Pt4Co nanocubes showed superior mass activities in glycerol and ethylene glycol oxidation reactions, which are 6.2- and 5.0-fold higher than those obtained for commercial Pt/C catalysts, respectively. Meanwhile, Pt4M catalysts manifested excellent stability in the endurance test, which is attributed to the alloying effect promoting the electrooxidation of intermediates. Our study provides an ideal method for the construction of Pt-based bimetallic nanocubes, which can be used for anode reactions of polyol fuel cells and beyond.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
19
|
K. Kehoe D, Romeral L, Lundy R, A. Morris M, G. Lyons M, Gun’ko YK. One Dimensional AuAg Nanostructures as Anodic Catalysts in the Ethylene Glycol Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E719. [PMID: 32290300 PMCID: PMC7221585 DOI: 10.3390/nano10040719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022]
Abstract
Direct alcohol fuel cells are highly promising as efficient power sources for various mobile and portable applications. However, for the further advancement of fuel cell technology it is necessary to develop new, cost-effective Pt-free electrocatalysts that could provide efficient alcohol oxidation and also resist cross-over poisoning. Here, we report new electrocatalytic materials for ethylene glycol oxidation, which are based on AuAg linear nanostructures. We demonstrate a low temperature tunable synthesis that enables the preparation of one dimensional (1D) AuAg nanostructures ranging from nanowires to a new nano-necklace-like structure. Using a two-step method, we showed that, by aging the initial reaction mixture at various temperatures, we produced ultrathin AuAg nanowires with a diameter of 9.2 ± 2 and 3.8 ± 1.6 nm, respectively. These nanowires exhibited a high catalytic performance for the electro-oxidation of ethylene glycol with remarkable poisoning resistance. These results highlight the benefit of 1D metal alloy-based nanocatalysts for fuel cell applications and are expected to make an important contribution to the further development of fuel cell technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Yurii K. Gun’ko
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland; (D.K.K.); (L.R.); (R.L.); (M.A.M.); (M.G.L.)
| |
Collapse
|
20
|
Gao J, Mao M, Li P, Liu R, Song H, Sun K, Zhang S. Segmentation and Re-encapsulation of Porous PtCu Nanoparticles by Generated Carbon Shell for Enhanced Ethylene Glycol Oxidation and Oxygen-Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6298-6308. [PMID: 31927902 DOI: 10.1021/acsami.9b20504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hierarchical porous carbon-encapsulated ultrasmall PtCu (UsPtCu@C) nanoparticles (NPs) were constructed based on segmentation and re-encapsulation of porous PtCu NPs by using glucose as a green biomass carbon source. The synergistic electronic effect from the bimetallic elements can enhance the catalytic activity by adjusting the surface electronic structure of Pt. Most importantly, the generated porous carbon shell provided a large contact surface area, excellent electrical conductivity, and structural stability, and the ultrasmall PtCu NPs exhibited an increased electrochemical performance compared with their PtCu matrix because of the exposure of more catalytically active centers. This synergistic relationship between the components resulted in enhanced catalytic activity and better stability of the obtained UsPtCu@C for ethylene glycol oxidation reaction and the oxygen-reduction reaction in alkaline electrolyte, which was higher than the PtCu NPs and commercial Pt/C (20 wt % Pt on Vulcan XC-72). The electrochemically active surface areas of the UsPtCu@C, PtCu NPs, and commercial Pt/C were calculated to be approximately 230.2, 32.8, and 64.0 m2/gPt, respectively; the mass activity of the UsPtCu@C for the ethylene glycol oxidation reaction was 8.5 A/mgPt, which was 14.2 and 8.5 times that of PtCu NPs and commercial Pt/C, respectively. The specific activity of UsPtCu@C was 3.7 mA/cmpt2, which was 2.1 and 2.3 times that of PtCu NPs and commercial Pt/C, respectively. The onset potential (Eon-set) of UsPtCu@C for the oxygen-reduction reaction was 0.96 V (vs reversible hydrogen electrode, RHE), which was 110 and 60 mV higher than PtCu and commercial Pt/C, respectively. The half-wave potentials (E1/2) of UsPtCu@C, PtCu, and Pt/C were 0.88, 0.56, and 0.82 V (vs RHE), respectively, which indicated that the UsPtCu@C catalyst had an excellent bifunctional electrocatalytic activity.
Collapse
Affiliation(s)
- Juanjuan Gao
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , P. R. China
| | - Mengxi Mao
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Peiwen Li
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Rumeng Liu
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Haiou Song
- School of Environment , Nanjing Normal University , Nanjing 210097 , P. R. China
| | - Kuan Sun
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering , Chongqing University , Chongqing 400044 , P. R. China
| | - Shupeng Zhang
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| |
Collapse
|
21
|
Trimetallic PtRhCo petal-assembled alloyed nanoflowers as efficient and stable bifunctional electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions. J Colloid Interface Sci 2020; 559:206-214. [DOI: 10.1016/j.jcis.2019.10.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022]
|
22
|
Duan JJ, Zheng XX, Niu HJ, Feng JJ, Zhang QL, Huang H, Wang AJ. Porous dendritic PtRuPd nanospheres with enhanced catalytic activity and durability for ethylene glycol oxidation and oxygen reduction reactions. J Colloid Interface Sci 2020; 560:467-474. [DOI: 10.1016/j.jcis.2019.10.082] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022]
|
23
|
Gao H, Zhai C, Yuan C, Liu ZQ, Zhu M. Snowflake-like Cu2S as visible-light-carrier for boosting Pd electrocatalytic ethylene glycol oxidation under visible light irradiation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Lau KS, Tan ST, Ginting RT, Khiew PS, Chin SX, Chia CH. A mechanistic study of silver nanostructure incorporating reduced graphene oxide via a flow synthesis approach. NEW J CHEM 2020. [DOI: 10.1039/c9nj04881b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An improved capacitive behaviour of reduced graphene oxide with the incorporation of silver nanoparticles and silver nanowires.
Collapse
Affiliation(s)
- Kam Sheng Lau
- Materials Science Program, Faculty of Science and Technology
- Universiti Kebangsaan Malaysia
- 43600 Bangi
- Malaysia
| | - Sin Tee Tan
- Department of Physics
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Riski Titian Ginting
- Department of Electrical Engineering
- Universitas Prima Indonesia
- Medan 20118
- Indonesia
| | - Poi Sim Khiew
- Center of Nanotechnology and Advanced Materials
- Faculty of Engineering
- University of Nottingham Malaysia Campus
- Semenyih
- Malaysia
| | - Siew Xian Chin
- Materials Science Program, Faculty of Science and Technology
- Universiti Kebangsaan Malaysia
- 43600 Bangi
- Malaysia
- ASASIpintar Program, Pusat PERMATApintar®
| | - Chin Hua Chia
- Materials Science Program, Faculty of Science and Technology
- Universiti Kebangsaan Malaysia
- 43600 Bangi
- Malaysia
| |
Collapse
|
25
|
Duan Y, Liu Z, Zhao B, Liu J. Raspberry-like Pd3Pb alloy nanoparticles: superior electrocatalytic activity for ethylene glycol and glycerol oxidation. RSC Adv 2020; 10:15769-15774. [PMID: 35493644 PMCID: PMC9052386 DOI: 10.1039/d0ra00564a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/11/2020] [Indexed: 11/30/2022] Open
Abstract
Pd3Pb catalysts are one of the state-of-the-art catalysts for the electrooxidation of alcohols. Herein, raspberry-like Pd3Pb catalysts are synthesized via a simple method. The materials are characterized using various physical techniques. The electrocatalytic behaviors of the products towards the oxidation of ethylene glycol and glycerol are investigated. Electrochemical results show that the raspberry-like Pd3Pb nanostructure produces excellent electrocatalytic activity and stability towards the electrooxidation of ethylene glycol and glycerol in alkaline media, which endows the prepared nanostructure with promising potential in applications like fuel cells. Raspberry-like Pd3Pb nanoparticles are prepared and employed as electrocatalyst towards ethylene glycol and glycerol oxidation.![]()
Collapse
Affiliation(s)
- Yujie Duan
- School of Chemistry & Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Zhelin Liu
- School of Chemistry & Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Bo Zhao
- School of Chemistry & Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Nano Innovation Institute
- Inner Mongolia University for Nationalities
- Tongliao
| |
Collapse
|
26
|
Chen C, Xu H, Shang H, Jin L, Song T, Wang C, Gao F, Zhang Y, Du Y. Ultrafine PtCuRh nanowire catalysts with alleviated poisoning effect for efficient ethanol oxidation. NANOSCALE 2019; 11:20090-20095. [PMID: 31612887 DOI: 10.1039/c9nr05954g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a green power source, direct ethanol fuel cells (DEFCs) have broad application prospects. However, most catalysts of DEFCs still exhibit defects, such as the difficulty of C-C bond cleavage, serious CO poisoning and limited catalytic activity. Here, we report ultrafine PtCuRh nanowires (NWs) with outstanding anti-CO-poisoning properties and enhanced activity. The average diameter of the ultrafine PtCuRh NWs is about 1.49 nm, effectively improving the atomic utilization efficiency (UE) of platinum. Owing to the combination of an ultrafine nanostructure, good electronic interaction and the high UE of Pt atoms, the optimized ultrafine PtCuRh NWs/C display superior electrocatalytic activity and stability compared with commercial Pt/C for the ethanol oxidation reaction (EOR). More importantly, further electrochemical results demonstrate that the incorporation of Rh is beneficial for enhancing the antipoisoning capability for some CO-like intermediates. Meanwhile, the synthetic method in this report is robust and universal, and can also be applied to the synthesis of ultrafine trimetallic PtCuPd and PtCuIr nanowires.
Collapse
Affiliation(s)
- Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
27
|
Zhang RL, Feng JJ, Zhang L, Shi CG, Wang AJ. Ultrathin PdFePb nanowires: One-pot aqueous synthesis and efficient electrocatalysis for polyhydric alcohol oxidation reaction. J Colloid Interface Sci 2019; 555:276-283. [PMID: 31386996 DOI: 10.1016/j.jcis.2019.07.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022]
Abstract
Synthesis of high-efficiency catalysts for alcohol oxidation reaction caused great interest in direct alcohol fuel cells (DAFCs). Ultrathin PdFePb nanowires (NWs) with an average diameter of 2.3 nm were synthesized by a simple and fast one-pot aqueous synthesis, using octylphenoxypolyethoxyethanol (NP-40) as the structure-directing agent. The as-prepared PdFePb NWs displayed an increscent electrochemically active surface area (ECSA, 121.18 m2 g-1 Pd). For ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR), PdFePb NWs exhibited much higher activity and superior stability, outperforming those of homemade PdFe NWs, PdPb NWs, commercial Pd black and Pd/C (20 wt%). These results reveal dramatically high catalytic activity and durability of ultrathin PdFePb NWs in enhancing polyols electrooxidation.
Collapse
Affiliation(s)
- Ru-Lan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuan-Guo Shi
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; Nantong Reform Petrochemical Company Limited, Nantong 226007, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
28
|
Wang Y, Jiang X, Fu G, Li Y, Tang Y, Lee JM, Tang Y. Cu 5Pt Dodecahedra with Low-Pt Content: Facile Synthesis and Outstanding Formic Acid Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34869-34877. [PMID: 31502819 DOI: 10.1021/acsami.9b09153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tailoring composition and structure are significantly important to improve the utilization and optimize the performance of the precious Pt catalyst toward various reactions, which greatly relies on the feasible synthesis approach. Herein, we demonstrate that Cu-rich Cu5Pt alloys with unique excavated dodecahedral frame-like structure (Cu5Pt nanoframes) can be synthesized via simply adjusting the amounts of salt precursors and surfactants under hydrothermal conditions. It is established that the presence of hexamethylenetetramine and cetyltrimethylammonium bromide, as well as the selection of a proper Pt/Cu ratio are key for the acquisition of the target product. The immediate appeal of this material stems from frame-like architecture and ultralow Pt content involved, which can be used to greatly improve the utilization efficiency of Pt atoms. When benchmarked against commercial catalysts, the developed Cu5Pt nanostructures display superior electrocatalytic performance toward formic acid oxidation, owing to unique electronic effect and ensemble effect. This work elucidates a promising methodology for the synthesis of Pt-based nanostructures while highlights the significance of composition and structure in electrocatalysis.
Collapse
Affiliation(s)
- Yao Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xian Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Gengtao Fu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Singapore
| | - Yuhan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yidan Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Singapore
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
29
|
Zhang Y, Gao F, Song T, Wang C, Chen C, Du Y. Novel networked wicker-like PtFe nanowires with branch-rich exteriors for efficient electrocatalysis. NANOSCALE 2019; 11:15561-15566. [PMID: 31393499 DOI: 10.1039/c9nr05325e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The construction of Pt-based networked nanowire nanocatalysts with high performance is significant in the application of direct alcohol fuel cells. However, it is still a challenge to precisely regulate the surface structure and further improve their catalytic behavior. For this purpose, we have synthesized a series of novel networked wicker-like PtFe nanowire catalysts, different from previous networked nanowire catalysts with smooth surfaces, and the PtFe catalysts possess branch-rich exteriors on the rough surface of each nanowire similar to wickers and they interconnect with each other, which lead to rich steps and defects. Importantly, after electrochemical tests, the composition-optimized Pt3Fe nanowires were found to exhibit superior catalytic performance towards the ethanol oxidation reaction (EOR) and methanol oxidation reaction (MOR) compared to that of commercial Pt/C catalysts in acid media. In particular, the specific activities of Pt3Fe nanowires are 7.3 and 7.1 times higher than those of the Pt/C catalysts for EOR and MOR, respectively. In addition, the Pt3Fe nanowires also show the best durability among these catalysts after 1000 successive cycles, and their residual activities are far better than those of the Pt/C catalysts. The synthesis of wicker-like networked PtFe nanowires offers a new guideline to tune the structure and composition of nanocatalysts for their use in direct alcohol fuel cells and beyond.
Collapse
Affiliation(s)
- Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
30
|
Li HH, Yu SH. Recent Advances on Controlled Synthesis and Engineering of Hollow Alloyed Nanotubes for Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803503. [PMID: 30645003 DOI: 10.1002/adma.201803503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/15/2018] [Indexed: 06/09/2023]
Abstract
The past decade has witnessed great progress in the synthesis and electrocatalytic applications of 1D hollow alloy nanotubes with controllable compositions and fine structures. Hollow nanotubes have been explored as promising electrocatalysts in the fuel cell reactions due to their well-controlled surface structure, size, porosity, and compositions. In addition, owing to the self-supporting ability of 1D structure, hollow nanotubes are capable of avoiding catalyst aggregation and carbon corrosion during the catalytic process, which are two other issues for the widely investigated carbon-supported nanoparticle catalysts. It is currently a great challenge to achieve high activity and stability at a relatively low cost to realize commercialization of these catalysts. An overview of the structural and compositional properties of 1D hollow alloy nanotubes, which provide a large number of accessible active sites, void spaces for electrolytes/reactants impregnation, and structural stability for suppressing aggregation, is presented. The latest advances on several strategies such as hard template and self-templating methods for controllable synthesis of hollow alloyed nanotubes with controllable structures and compositions are then summarized. Benefiting from the advantages of the unique properties and facile synthesis approaches, the capability of 1D hollow nanotubes is then highlighted by discussing examples of their applications in fuel-cell-related electrocatalysis. Finally, the remaining challenges and potential solutions in the field are summarized to provide some useful clues for the future development of 1D hollow alloy nanotube materials.
Collapse
Affiliation(s)
- Hui-Hui Li
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
31
|
Chen C, Jin L, Shang H, Song T, Gao F, Zhang Y, Wang C, Wang C, Du Y. Monodispersed bimetallic platinum-copper alloy nanospheres as efficient catalysts for ethylene glycol electrooxidation. J Colloid Interface Sci 2019; 551:81-88. [PMID: 31075636 DOI: 10.1016/j.jcis.2019.04.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Designing and fabricating highly active and efficient catalysts are of vital importance for the practical applications of direct ethylene glycol fuel cells (DEGFCs). In this study, we employ a feasible one-pot synthetic method to construct highly monodispersed PtCu nanospheres (NSs) as high-efficiency anode electrocatalysts for DEGFCs. Interestingly, the optimized carbon supported Pt1Cu1 NSs can display the highest mass activity of 2146.9 mA mg-1 in 1 M KOH + 1 M EG solution under the scan rate of 50 mV s-1, which is 1.9 times higher than that of commercial Pt/C catalysts. This is ascribed to the favorable electronic effect between Pt and Cu, which is beneficial for ethylene glycol oxidation reaction (EGOR) in fuel cells. Meanwhile, such monodispersed Pt1Cu1 NSs can also exhibit excellent durability, where the Pt1Cu1 catalyst retains 62.6% of the initial value after the cyclic voltammetry of 500 cycles. This work not only provides a significant approach for designing catalysts for fuel cells, but also constructs a novel class of active and stable electrocatalysts for EGOR.
Collapse
Affiliation(s)
- Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Caiqin Wang
- College of Science & Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
32
|
Wang C, Song P, Gao F, Song T, Zhang Y, Chen C, Li L, Jin L, Du Y. Precise synthesis of monodisperse PdAg nanoparticles for size-dependent electrocatalytic oxidation reactions. J Colloid Interface Sci 2019; 544:284-292. [DOI: 10.1016/j.jcis.2019.02.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
|
33
|
Gao F, Zhang Y, Song P, Wang J, Yan B, Sun Q, Li L, Zhu X, Du Y. Shape-control of one-dimensional PtNi nanostructures as efficient electrocatalysts for alcohol electrooxidation. NANOSCALE 2019; 11:4831-4836. [PMID: 30816372 DOI: 10.1039/c8nr09892a] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bimetallic one-dimensional (1D) nanostructures such as nanowires (NWs) and nanorods (NRs), serving as high-efficiency anode electrocatalysts, have attracted extensive attention in the past decade. However, the precise design and synthesis of 1D Pt-based nanocrystals with tunable morphology and size still remain an arduous challenge. Driven by this, we report a facile yet efficient strategy for the first time to prepare PtNi ultrafine NWs (UNWs), sinuous NWs (SNWs) and ultrashort NRs (UNRs) by adjusting the amount of citric acid, ascorbic acid and glucose. Detailed analysis of their electrocatalytic properties has indicated that the as-obtained PtNi SNWs exhibit the most outstanding electrocatalytic activity toward ethylene glycol oxidation reaction (EGOR) and glycerol oxidation (GOR), 4.5 and 4.3 times higher in mass activity as well as 4.3 and 3.9 times higher in specific activity compared with the commercial Pt/C catalyst. The as-prepared PtNi SNWs are also more stable than the commercial Pt/C catalyst after successive durability tests. The proposed method provides insight into more rational designs of bimetallic nanocatalysts with 1D architectures and the as-synthesized PtNi catalysts with improved electrocatalytic performance assist in promoting the further development of direct alcohol fuel cells (DAFCs).
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Karuppasamy L, Chen CY, Anandan S, Wu JJ. Low- and High-Index Faceted Pd Nanocrystals Embedded in Various Oxygen-Deficient WO x Nanostructures for Electrocatalytic Oxidation of Alcohol (EOA) and Carbon Monoxide (CO). ACS APPLIED MATERIALS & INTERFACES 2019; 11:10028-10041. [PMID: 30746935 DOI: 10.1021/acsami.8b22722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work suggests a modest hydrothermal method applied for the synthesis of oxygen-deficient WO x ( x = 2.75, 2.83, and 2.94) nanomaterials with various morphologies, such as bundled nanorods (NR), nanobelts (NB), and nanosheets (NS), by changing the inorganic additives, such as HCl, NaHSO4, and HNO3. In addition, WO x-supported high- and low-index faceted Pd nanoparticles (Pd-WO2.75 NB, Pd-WO2.83 NR, and Pd-WO2.94 NS) have been successfully synthesized by a facile sonochemical method to enhance the high electrocatalytic activity of electrocatalysts for alcohol electrooxidation, including ethanol, ethylene glycol, and glycerol. Among the three different electrocatalysts, the versatile high-index {520} faceted Pd nanoparticles on WO2.75 NB (Pd-WO2.75 NB) show better electrocatalytic performance compared to low-index {100} faceted Pd-WO2.83 NR and Pd-WO2.94 NS nanocomposites. This work has identified that the high-density low-coordinated surface atom of Pd strongly interacts with alcohol, which facilitates C-C bond cleavage and may prevent the CO poisoning of nanoparticles. Furthermore, the high concentration of oxygen-deficient nano composites provided additional benefit for the generation of OH species and boosted the electrocatalytic performance of alcohols as well.
Collapse
Affiliation(s)
| | | | - Sambandam Anandan
- Department of Chemistry , National Institute of Technology , Trichy 620015 , India
| | | |
Collapse
|
35
|
E B, Bu L, Shao Q, Li Y, Huang X. Efficient catalytic hydrogen generation by intermetallic platinum-lead nanostructures with highly tunable porous feature. Sci Bull (Beijing) 2019; 64:36-43. [PMID: 36659520 DOI: 10.1016/j.scib.2018.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023]
Abstract
The water-gas shift (WGS) reaction is an essential industrial reaction for upgrading hydrogen (H2) by removing carbon monoxide (CO), while highly efficient platinum (Pt)-based catalysts for WGS with simultaneously high activity and stability are still yet to be developed due to the poisoning issue during the reaction. Herein, we report on the porous PtPb peanut nanocrystals (porous PtPb PNCs) and porous PtPb octahedron nanocrystals (porous PtPb ONCs) with controllable ratios of Pt/Pb as extremely active and stable catalysts towards WGS reaction. It exhibits the composition-dependent activity with porous PtPb PNCs-40/ZnO being the most active for WGS to H2, 16.9 times higher than that of the commercial Pt/C. The porous PtPb PNCs-40/ZnO also display outstanding durability with barely activity decay and negligible structure and composition changes after ten successive reaction cycles. X-ray photoelectron spectroscopy (XPS) results reveal that the suitable binding energy of Pt 4f7/2 and the high ratio of Pt(0) to Pt(II) in porous PtPb PNCs/ZnO and porous PtPb ONCs/ZnO are crucial for the enhanced WGS activity. The CO stripping results indicate the optimized CO adsorption strength on the Pt surface ensure the excellent WGS activity and the outstanding durability. The present work demonstrates an important advance in tuning the porous metal nanomaterials as highly efficient and durable catalysts for catalysis, energy conversion and beyond.
Collapse
Affiliation(s)
- Bin E
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China
| | - Lingzheng Bu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yujing Li
- Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China; College of Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
36
|
Platinum–cadmium electrocatalyst for ethylene glycol electrochemical reaction in perchloric acid electrolyte. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Song P, Xu H, Wang J, Zhang Y, Gao F, Guo J, Shiraishi Y, Du Y. 1D alloy ultrafine Pt-Fe nanowires as efficient electrocatalysts for alcohol electrooxidation in alkaline media. NANOSCALE 2018; 10:16468-16473. [PMID: 30152828 DOI: 10.1039/c8nr04918a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fuel cells have been gaining much interest due to their advantages of high energy conversion efficiency, easy handling, etc., whereas some drawbacks of anode catalysts regarding limited performances have seriously restricted their practical applications. Therefore, the development of anode nanocatalysts with higher activity and stability has become an urgent need. In view of this, we have developed a facile wet-chemical approach to synthesize 1D alloy ultrafine Pt-Fe NWs, and we have also revealed the formation mechanism of the ultrafine Pt-Fe NWs using time-dependent studies. More importantly, 1D ultrafine nanowires with anisotropy, superior flexibility, high surface area and excellent conductivity are promising candidates for the improvement of nanocatalytic activity and stability enhancement. Therefore, the electrocatalytic activities of ultrafine Pt3Fe NWs in the oxidation of ethylene glycol and glycerol are 3.9 and 2.5 times greater than that of commercial Pt/C, respectively. Moreover, they provide excellent long-term stability. Our efforts may potentially promote the commercialization of fuel cells to some extent.
Collapse
Affiliation(s)
- Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Huang XY, Zhu XY, Zhang XF, Zhang L, Feng JJ, Wang AJ. Simple solvothermal synthesis of uniform Pt66Ni34 nanoflowers as advanced electrocatalyst to significantly boost the catalytic activity and durability of hydrogen evolution reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.169] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Xu H, Song P, Fernandez C, Wang J, Zhu M, Shiraishi Y, Du Y. Sophisticated Construction of Binary PdPb Alloy Nanocubes as Robust Electrocatalysts toward Ethylene Glycol and Glycerol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12659-12665. [PMID: 29589908 DOI: 10.1021/acsami.8b00532] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The design of nanocatalysts by controlling pore size and particle characteristics is crucial to enhance the selectivity and activity of the catalysts. Thus, we have successfully demonstrated the synthesis of binary PdPb alloy nanocubes (PdPb NCs) by controlling pore size and particle characteristics. In addition, the as-obtained binary PdPb NCs exhibited superior electrocatalytic activity of 4.06 A mg-1 and 16.8 mA cm-2 toward ethylene glycol oxidation reaction and 2.22 A mg-1 and 9.2 mA cm-2 toward glycerol oxidation reaction when compared to the commercial Pd/C. These astonishing characteristics are attributed to the attractive nanocube structures as well as the large number of exposed active areas. Furthermore, the bifunctional effects originated from Pd and Pb interactions help to display high endurance with less activity decay after 500 cycles, showing a great potential in fuel cell applications.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences Robert Gordon University , Aberdeen AB10 7GJ , U.K
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 510632 , P. R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi , Sanyo-Onoda-shi , Yamaguchi 756-0884 , Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
- Tokyo University of Science Yamaguchi , Sanyo-Onoda-shi , Yamaguchi 756-0884 , Japan
| |
Collapse
|
40
|
Li DN, Wang AJ, Wei J, Zhang QL, Feng JJ. Dentritic platinum-palladium/palladium core-shell nanocrystals/reduced graphene oxide: One-pot synthesis and excellent electrocatalytic performances. J Colloid Interface Sci 2018; 514:93-101. [DOI: 10.1016/j.jcis.2017.11.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023]
|
41
|
Yu F, Xie Y, Tang H, Yang N, Meng X, Wang X, Tian XL, Yang X. Platinum decorated hierarchical porous structures composed of ultrathin titanium nitride nanoflakes for efficient methanol oxidation reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.137] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Feng JJ, Chen SS, Chen XL, Zhang XF, Wang AJ. One-pot fabrication of reduced graphene oxide supported dendritic core-shell gold@gold-palladium nanoflowers for glycerol oxidation. J Colloid Interface Sci 2018; 509:73-81. [DOI: 10.1016/j.jcis.2017.08.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/03/2017] [Accepted: 08/17/2017] [Indexed: 11/27/2022]
|
43
|
Lai J, Guo S. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702156. [PMID: 29116672 DOI: 10.1002/smll.201702156] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field.
Collapse
Affiliation(s)
- Jianping Lai
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Shaojun Guo
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
44
|
Ma Y, Gao W, Shan H, Chen W, Shang W, Tao P, Song C, Addiego C, Deng T, Pan X, Wu J. Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703460. [PMID: 29052926 DOI: 10.1002/adma.201703460] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/13/2017] [Indexed: 06/07/2023]
Abstract
Facile fabrication of advanced catalysts toward oxygen reduction reaction with improving activity and stability is significant for proton-exchange membrane fuel cells. Based on a generic solid-state reaction, this study reports a modified hydrogen-assisted, gas-phase synthesis for facile, scalable production of surfactant-free, thin, platinum-based nanowire-network electrocatalysts. The free-standing platinum and platinum-nickel alloy nanowires show improvements of up to 5.1 times and 10.9 times for mass activity with a minimum 2.6% loss after an accelerated durability test for 10k cycles; 8.5 times and 13.8 times for specific activity, respectively, compared to commercial Pt/C catalyst. In addition, combined with a wet impregnation method, different substrate-materials-supported platinum-based nanowires are obtained, which paves the way to practical application as a next-generation supported catalyst to replace Pt/C. The growth stages and formation mechanism are investigated by an in situ transmission electron microscopy study. It reveals that the free-standing platinum nanowires form in the solid state via metal-surface-diffusion-assisted oriented attachment of individual nanoparticles, and the interaction with gas molecules plays a critical role, which may represent a gas-molecular-adsorbate-modified growth in catalyst preparation.
Collapse
Affiliation(s)
- Yanling Ma
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenpei Gao
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, 92697, USA
| | - Hao Shan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenlong Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chris Addiego
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoqing Pan
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
45
|
Preparation of a highly active palladium nanoparticle/polyoxometalate/reduced graphene oxide nanocomposite by a simple photoreduction method and its application to the electrooxidation of ethylene glycol and glycerol. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Facile synthesis of bimetallic gold-palladium nanocrystals as effective and durable advanced catalysts for improved electrocatalytic performances of ethylene glycol and glycerol oxidation. J Colloid Interface Sci 2017; 509:10-17. [PMID: 28881200 DOI: 10.1016/j.jcis.2017.08.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022]
Abstract
In this work, well-defined bimetallic AuPd alloyed nanocrystals (AuPd NCs) were facilely synthesized by a straightforward and controllable one-step wet-chemical strategy, using a biomolecule (L-hydroxyproline, L-Hyp) as the green stabilizer and the structure-directing agent. Their morphology, size, composition, crystal structures and growth mechanism were investigated by a series of techniques. The synthesized architectures exhibited enlarged electrochemically active surface area (ECSA), improved catalytic activity, enhanced durability and stability towards ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR) in alkaline electrolytes in comparison with commercial Pd black catalyst.
Collapse
|
47
|
Jiang B, Li C, Qian H, Hossain MSA, Malgras V, Yamauchi Y. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores. Angew Chem Int Ed Engl 2017; 56:7836-7841. [DOI: 10.1002/anie.201703609] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/03/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Bo Jiang
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Cuiling Li
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Huayu Qian
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Md. Shahriar A. Hossain
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| | - Victor Malgras
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| |
Collapse
|
48
|
Jiang B, Li C, Qian H, Hossain MSA, Malgras V, Yamauchi Y. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bo Jiang
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Cuiling Li
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Huayu Qian
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Md. Shahriar A. Hossain
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| | - Victor Malgras
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonic (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| |
Collapse
|
49
|
PVP-stabilized PdAu nanowire networks prepared in different solvents endowed with high electrocatalytic activities for the oxidation of ethylene glycol and isopropanol. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Chen SS, Shi YC, Wang AJ, Lin XX, Feng JJ. Free-standing Pt nanowire networks with clean surfaces: Highly sensitive electrochemical detection of nitrite. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|