1
|
Salehi S. A comprehensive review on using injectable chitosan microgels for osteochondral tissue repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:647-662. [PMID: 39460952 DOI: 10.1080/09205063.2024.2419715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Restoring cartilage to healthy state is challenging due to low cell density and hence low regenerative capacity. The current platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, by engineering and implanting cell microaggregates in higher concentrations, efficient formation of new cartilage can be achieved, even in the absence of exogenous growth factors. Therefore, one-step surgeries are preferable for novel treatments and we need cell laden microgels allowing the formation of microaggregaets in vivo. Injectability is a key parameter for in situ forming the shape and minimally invasive clinical applications. Hydrogels as bioinks can restore damaged tissues to their primary shape. Chitosan is a polysaccharide derived from chitin with abundant usage in tissue engineering. This review highlights the use of chitosan as an injectable hydrogel for osteochondral defects. Several studies focused on encapsulating mesenchymal stem cells within chitosan hydrogels have been categorized and incorporating microfluidic devices has been identified in the forefront to form microgels. Additionally, the printability is another convenience of chitosan for using in 3D printing for cartilage tissue engineering which is described in this review.
Collapse
Affiliation(s)
- Sarah Salehi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
2
|
Meteling M, Johnbosco C, Wolfel A, Conceição F, Govindaraj K, Moreira Teixeira L, Leijten J. High-Throughput Single-Cell Analysis of Local Nascent Protein Deposition in 3D Microenvironments via Extracellular Protein Identification Cytometry (EPIC). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415981. [PMID: 39629556 DOI: 10.1002/adma.202415981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/17/2024] [Indexed: 02/13/2025]
Abstract
Extracellular matrix (ECM) guides cell behavior and tissue fate. Cell populations are notoriously heterogeneous leading to large variations in cell behavior at the single-cell level. Although insights into population heterogeneity are valuable for fundamental biology, regenerative medicine, and drug testing, current ECM analysis techniques only provide either averaged population-level data or single-cell data from a limited number of cells. Here, extracellular protein identification cytometry (EPIC) is presented as a novel platform technology that enables high-throughput measurements of local nascent protein deposition at single-cell level. Specifically, human primary chondrocytes are microfluidically encapsulated in enzymatically crosslinked microgels of 16 picoliter at kHz rates, forming large libraries of discrete 3D single-cell microniches in which ECM can be deposited. ECM proteins are labeled using fluorescence immunostaining to allow for nondestructive analysis via flow cytometry. This approach reveals population heterogeneity in matrix deposition at unprecedented throughput, allowing for the identification and fluorescent activated cell sorting-mediated isolation of cellular subpopulations. Additionally, it is demonstrated that inclusion of a second cell into microgels allows for studying the effect of cell-cell contact on matrix deposition. In summary, EPIC enables high-throughput single-cell analysis of nascent proteins in 3D microenvironments, which is anticipated to advance fundamental knowledge and tissue engineering applications.
Collapse
Affiliation(s)
- Marieke Meteling
- Leijten Laboratory, Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Castro Johnbosco
- Leijten Laboratory, Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Alexis Wolfel
- Leijten Laboratory, Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Francisco Conceição
- Department of Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Kannan Govindaraj
- Leijten Laboratory, Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Liliana Moreira Teixeira
- Department of Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Jeroen Leijten
- Leijten Laboratory, Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| |
Collapse
|
3
|
Tripathi S, Dash M, Chakraborty R, Lukman HJ, Kumar P, Hassan S, Mehboob H, Singh H, Nanda HS. Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications. Biomater Sci 2024; 13:93-129. [PMID: 39535021 DOI: 10.1039/d4bm01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over eight million surgical procedures are conducted annually in the United Stats to address organ failure or tissue losses. In response to this pressing need, recent medical advancements have significantly improved patient outcomes, primarily through innovative reconstructive surgeries utilizing tissue grafting techniques. Despite tremendous efforts, repairing damaged tissues remains a major clinical challenge for bioengineers and clinicians. 3D bioprinting is an additive manufacturing technique that holds significant promise for creating intricately detailed constructs of tissues, thereby bridging the gap between engineered and actual tissue constructs. In contrast to non-biological printing, 3D bioprinting introduces added intricacies, including considerations for material selection, cell types, growth, and differentiation factors. However, technical challenges arise, particularly concerning the delicate nature of living cells in bioink for tissue construction and limited knowledge about the cell fate processes in such a complex biomechanical environment. A bioink must have appropriate viscoelastic and rheological properties to mimic the native tissue microenvironment and attain desired biomechanical properties. Hence, the properties of bioink play a vital role in the success of 3D bioprinted substitutes. This review comprehensively delves into the scientific aspects of tissue-centric or tissue-specific bioinks and sheds light on the current challenges of the translation of bioinks and bioprinting.
Collapse
Affiliation(s)
- Shivi Tripathi
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Ruchira Chakraborty
- Biodesign and Medical Device Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Harri Junaedi Lukman
- Department of Engineering and Management, College of Engineering, Prince Sultan University, Riyadh 12435, Saudi Arabia
| | - Prasoon Kumar
- Biodesign and Medical Device Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Shabir Hassan
- Department of Biological Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Centre (BTC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hassan Mehboob
- Department of Engineering and Management, College of Engineering, Prince Sultan University, Riyadh 12435, Saudi Arabia
| | - Harpreet Singh
- Dr B R Ambedkar National Institute of Technology Jalandhar, Grand Trunk Road, Barnala Amritsar Bypass Rd, Jalandhar, Punjab 14401111, India
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
- Terasaki Institute for Biomedical Innovation, 21100 Erwin, St Los Angeles, CA 91367, USA
| |
Collapse
|
4
|
Elgin S, Silberman E, Shapira A, Dvir T. Customizable Hydrogel Coating of ECM-Based Microtissues for Improved Cell Retention and Tissue Integrity. Gels 2024; 10:515. [PMID: 39195044 DOI: 10.3390/gels10080515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Overcoming the oxygen diffusion limit of approximately 200 µm remains one of the most significant and intractable challenges to be overcome in tissue engineering. The fabrication of hydrogel microtissues and their assembly into larger structures may provide a solution, though these constructs are not without their own drawbacks; namely, these hydrogels are rapidly degraded in vivo, and cells delivered via microtissues are quickly expelled from the area of action. Here, we report the development of an easily customized protocol for creating a protective, biocompatible hydrogel barrier around microtissues. We show that calcium carbonate nanoparticles embedded within an ECM-based microtissue diffuse outwards and, when then exposed to a solution of alginate, can be used to generate a coated layer around the tissue. We further show that this technique can be fine-tuned by adjusting numerous parameters, granting us full control over the thickness of the hydrogel coating layer. The microtissues' protective hydrogel functioned as hypothesized in both in vitro and in vivo testing by preventing the cells inside the tissue from escaping and protecting the microdroplets against external degradation. This technology may provide microtissues with customized properties for use as sources of regenerative therapies.
Collapse
Affiliation(s)
- Shani Elgin
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eric Silberman
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Center for Nanoscience & Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Assaf Shapira
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Center for Nanoscience & Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Dvir
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Center for Nanoscience & Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Si H, Chen Y, Jiang K, Ma K, Ramsey E, Oakey J, Sun M, Jiang Z. Deterministic Single-Cell Encapsulation in PEG Norbornene Microgels for Promoting Anti-Inflammatory Response and Therapeutic Delivery of Mesenchymal Stromal Cells. Adv Healthc Mater 2024; 13:e2304386. [PMID: 38373601 PMCID: PMC11246722 DOI: 10.1002/adhm.202304386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Tissue engineering at single-cell resolution has enhanced therapeutic efficacy. Droplet microfluidics offers a powerful platform that allows deterministic single-cell encapsulation into aqueous droplets, yet the direct encapsulation of cells into microgels remains challenging. Here, the design of a microfluidic device that is capable of single-cell encapsulation within polyethylene glycol norbornene (PEGNB) hydrogels on-chip is reported. Cells are first ordered in media within a straight microchannel via inertial focusing, followed by the introduction of PEGNB solution from two separate, converging channels. Droplets are thoroughly mixed by passage through a serpentine channel, and microgels are formed by photo-photopolymerization. This platform uniquely enables both single-cell encapsulation and excellent cell viability post-photo-polymerization. More than 90% of singly encapsulated mesenchymal stromal cells (MSCs) remain alive for 7 days. Notably, singly encapsulated MSCs have elevated expression levels in genes that code anti-inflammatory cytokines, for example, IL-10 and TGF-β, thus enhancing the secretion of proteins of interest. Following injection into a mouse model with induced inflammation, singly encapsulated MSCs show a strong retention rate in vivo, reduce overall inflammation, and mitigate liver damage. These translational results indicate that deterministic single-cell encapsulation could find use in a broad spectrum of tissue engineering applications.
Collapse
Affiliation(s)
- Hangjun Si
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 46000, China
| | - Yuanzhuo Chen
- Department of Emergency Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Kun Jiang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 46000, China
| | - Ke Ma
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 46000, China
| | - Edward Ramsey
- Sustainable Technology Research Centre, University of Science and Technology Liaoning, Anshan, Liaoning, 46000, China
| | - John Oakey
- Department of Chemical & Biological Engineering, University of Wyoming, Laramie, WY, 82071, USA
| | - Mingming Sun
- Department of Emergency Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongliang Jiang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 46000, China
| |
Collapse
|
6
|
Kamperman T, Willemen NGA, Kelder C, Koerselman M, Becker M, Lins L, Johnbosco C, Karperien M, Leijten J. Steering Stem Cell Fate within 3D Living Composite Tissues Using Stimuli-Responsive Cell-Adhesive Micromaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205487. [PMID: 36599686 PMCID: PMC10074101 DOI: 10.1002/advs.202205487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Indexed: 06/12/2023]
Abstract
Engineered living microtissues such as cellular spheroids and organoids have enormous potential for the study and regeneration of tissues and organs. Microtissues are typically engineered via self-assembly of adherent cells into cellular spheroids, which are characterized by little to no cell-material interactions. Consequently, 3D microtissue models currently lack structural biomechanical and biochemical control over their internal microenvironment resulting in suboptimal functional performance such as limited stem cell differentiation potential. Here, this work report on stimuli-responsive cell-adhesive micromaterials (SCMs) that can self-assemble with cells into 3D living composite microtissues through integrin binding, even under serum-free conditions. It is demonstrated that SCMs homogeneously distribute within engineered microtissues and act as biomechanically and biochemically tunable designer materials that can alter the composite tissue microenvironment on demand. Specifically, cell behavior is controlled based on the size, stiffness, number ratio, and biofunctionalization of SCMs in a temporal manner via orthogonal secondary crosslinking strategies. Photo-based mechanical tuning of SCMs reveals early onset stiffness-controlled lineage commitment of differentiating stem cell spheroids. In contrast to conventional encapsulation of stem cell spheroids within bulk hydrogel, incorporating cell-sized SCMs within stem cell spheroids uniquely provides biomechanical cues throughout the composite microtissues' volume, which is demonstrated to be essential for osteogenic differentiation.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Niels G. A. Willemen
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Cindy Kelder
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Michelle Koerselman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Malin Becker
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Luanda Lins
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Castro Johnbosco
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| |
Collapse
|
7
|
Tevlek A, Kecili S, Ozcelik OS, Kulah H, Tekin HC. Spheroid Engineering in Microfluidic Devices. ACS OMEGA 2023; 8:3630-3649. [PMID: 36743071 PMCID: PMC9893254 DOI: 10.1021/acsomega.2c06052] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) cell culture techniques are commonly employed to investigate biophysical and biochemical cellular responses. However, these culture methods, having monolayer cells, lack cell-cell and cell-extracellular matrix interactions, mimicking the cell microenvironment and multicellular organization. Three-dimensional (3D) cell culture methods enable equal transportation of nutrients, gas, and growth factors among cells and their microenvironment. Therefore, 3D cultures show similar cell proliferation, apoptosis, and differentiation properties to in vivo. A spheroid is defined as self-assembled 3D cell aggregates, and it closely mimics a cell microenvironment in vitro thanks to cell-cell/matrix interactions, which enables its use in several important applications in medical and clinical research. To fabricate a spheroid, conventional methods such as liquid overlay, hanging drop, and so forth are available. However, these labor-intensive methods result in low-throughput fabrication and uncontrollable spheroid sizes. On the other hand, microfluidic methods enable inexpensive and rapid fabrication of spheroids with high precision. Furthermore, fabricated spheroids can also be cultured in microfluidic devices for controllable cell perfusion, simulation of fluid shear effects, and mimicking of the microenvironment-like in vivo conditions. This review focuses on recent microfluidic spheroid fabrication techniques and also organ-on-a-chip applications of spheroids, which are used in different disease modeling and drug development studies.
Collapse
Affiliation(s)
- Atakan Tevlek
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
| | - Seren Kecili
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Ozge S. Ozcelik
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Haluk Kulah
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - H. Cumhur Tekin
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| |
Collapse
|
8
|
Schot M, Araújo-Gomes N, van Loo B, Kamperman T, Leijten J. Scalable fabrication, compartmentalization and applications of living microtissues. Bioact Mater 2023; 19:392-405. [PMID: 35574053 PMCID: PMC9062422 DOI: 10.1016/j.bioactmat.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 10/27/2022] Open
Abstract
Living microtissues are used in a multitude of applications as they more closely resemble native tissue physiology, as compared to 2D cultures. Microtissues are typically composed of a combination of cells and materials in varying combinations, which are dictated by the applications' design requirements. Their applications range wide, from fundamental biological research such as differentiation studies to industrial applications such as cruelty-free meat production. However, their translation to industrial and clinical settings has been hindered due to the lack of scalability of microtissue production techniques. Continuous microfluidic processes provide an opportunity to overcome this limitation as they offer higher throughput production rates as compared to traditional batch techniques, while maintaining reproducible control over microtissue composition and size. In this review, we provide a comprehensive overview of the current approaches to engineer microtissues with a focus on the advantages of, and need for, the use of continuous processes to produce microtissues in large quantities. Finally, an outlook is provided that outlines the required developments to enable large-scale microtissue fabrication using continuous processes.
Collapse
Affiliation(s)
- Maik Schot
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Nuno Araújo-Gomes
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Bas van Loo
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Tom Kamperman
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Jeroen Leijten
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| |
Collapse
|
9
|
Biohybrid materials: Structure design and biomedical applications. Mater Today Bio 2022; 16:100352. [PMID: 35856044 PMCID: PMC9287810 DOI: 10.1016/j.mtbio.2022.100352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022]
Abstract
Biohybrid materials are proceeded by integrating living cells and non-living materials to endow materials with biomimetic properties and functionalities by supporting cell proliferation and even enhancing cell functions. Due to the outstanding biocompatibility and programmability, biohybrid materials provide some promising strategies to overcome current problems in the biomedical field. Here, we review the concept and unique features of biohybrid materials by comparing them with conventional materials. We emphasize the structure design of biohybrid materials and discuss the structure-function relationships. We also enumerate the application aspects of biohybrid materials in biomedical frontiers. We believe this review will bring various opportunities to promote the communication between cell biology, material sciences, and medical engineering.
Collapse
|
10
|
Miksch CE, Skillin NP, Kirkpatrick BE, Hach GK, Rao VV, White TJ, Anseth KS. 4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200951. [PMID: 35732614 PMCID: PMC9463109 DOI: 10.1002/smll.202200951] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/18/2022] [Indexed: 05/02/2023]
Abstract
Granular synthetic hydrogels are useful bioinks for their compatibility with a variety of chemistries, affording printable, stimuli-responsive scaffolds with programmable structure and function. Additive manufacturing of microscale hydrogels, or microgels, allows for the fabrication of large cellularized constructs with percolating interstitial space, providing a platform for tissue engineering at length scales that are inaccessible by bulk encapsulation where transport of media and other biological factors are limited by scaffold density. Herein, synthetic microgels with varying degrees of degradability are prepared with diameters on the order of hundreds of microns by submerged electrospray and UV photopolymerization. Porous microgel scaffolds are assembled by particle jamming and extrusion printing, and semi-orthogonal chemical cues are utilized to tune the void fraction in printed scaffolds in a logic-gated manner. Scaffolds with different void fractions are easily cellularized post printing and microgels can be directly annealed into cell-laden structures. Finally, high-throughput direct encapsulation of cells within printable microgels is demonstrated, enabling large-scale 3D culture in a macroporous biomaterial. This approach provides unprecedented spatiotemporal control over the properties of printed microporous annealed particle scaffolds for 2.5D and 3D tissue culture.
Collapse
Affiliation(s)
- Connor E Miksch
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Grace K Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Varsha V Rao
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
11
|
Wei Z, Wang S, Hirvonen J, Santos HA, Li W. Microfluidics Fabrication of Micrometer-Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Adv Healthc Mater 2022; 11:e2200846. [PMID: 35678152 PMCID: PMC11468590 DOI: 10.1002/adhm.202200846] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 01/24/2023]
Abstract
Micrometer-sized hydrogels are cross-linked three-dimensional network matrices with high-water contents and dimensions ranging from several to hundreds of micrometers. Due to their excellent biocompatibility and capability to mimic physiological microenvironments in vivo, micrometer-sized hydrogels have attracted much attention in the biomedical engineering field. Their biological properties and applications are primarily influenced by their chemical compositions and geometries. However, inhomogeneous morphologies and uncontrollable geometries limit traditional micrometer-sized hydrogels obtained by bulk mixing. In contrast, microfluidic technology holds great potential for the fabrication of micrometer-sized hydrogels since their geometries, sizes, structures, compositions, and physicochemical properties can be precisely manipulated on demand based on the excellent control over fluids. Therefore, micrometer-sized hydrogels fabricated by microfluidic technology have been applied in the biomedical field, including drug encapsulation, cell encapsulation, and tissue engineering. This review introduces micrometer-sized hydrogels with various geometries synthesized by different microfluidic devices, highlighting their advantages in various biomedical applications over those from traditional approaches. Overall, emerging microfluidic technologies enrich the geometries and morphologies of hydrogels and accelerate translation for industrial production and clinical applications.
Collapse
Affiliation(s)
- Zhenyang Wei
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Shiqi Wang
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Jouni Hirvonen
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
- Department of Biomedical EngineeringW.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity Medical Center Groningen/University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Wei Li
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| |
Collapse
|
12
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
13
|
Zhang H, Zhang L, An C, Zhang Y, Shao F, Gao Y, Zhang Y, Li H, Zhang Y, Ren C, Sun K, He W, Cheng F, Wang H, Weitz DA. Large-scale single-cell encapsulation in microgels through metastable droplet-templating combined with microfluidic-integration. Biofabrication 2022; 14. [PMID: 35593920 DOI: 10.1088/1758-5090/ac7168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
Current techniques for the generation of cell-laden microgels are limited by numerous challenges, including poorly uncontrolled batch-to-batch variations, processes that are both labor- and time-consuming, the high expense of devices and reagents, and low production rates; this hampers the translation of laboratory findings to clinical applications. To address these challenges, we develop a droplet-based microfluidic strategy based on metastable droplet-templating and microchannel integration for the substantial large-scale production of single cell-laden alginate microgels. Specifically, we present a continuous processing method for microgel generation by introducing amphiphilic perfluoronated alcohols to obtain metastable emulsion droplets as sacrificial templates. In addition, to adapt to the metastable emulsion system, integrated microfluidic chips containing 80 drop-maker units are designed and optimized based on the computational fluid dynamics simulation. This strategy allows single cell encapsulation in microgels at a maximum production rate of 10 ml hr-1 of cell suspension while retaining cell viability and functionality. These results represent a significant advance toward using cell-laden microgels for clinical-relevant applications, including cell therapy, tissue regeneration and 3D bioprinting.
Collapse
Affiliation(s)
- Haoyue Zhang
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Liyuan Zhang
- Harvard School of Engineering and Applied Sciences, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge, MA 02138, Cambridge, Massachusetts, MA 02138, UNITED STATES
| | - Chuanfeng An
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Yang Zhang
- Shenzhen University, Laboratory of Regenerative Biomaterials, Department of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, P.R. China, Shenzhen, Guangdong, 518037, CHINA
| | - Fei Shao
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Yijie Gao
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, 42 Xuegong Street, Shahekou district, Dalian, Liaoning province, Dalian, Liaoning, 116033, CHINA
| | - Yonghao Zhang
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Hanting Li
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Yujie Zhang
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Changle Ren
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, 42 Xuegong Street, Shahekou district, Dalian, Liaoning province, Dalian, Liaoning, 116033, CHINA
| | - Kai Sun
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Wei He
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Fang Cheng
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Huanan Wang
- dalian university of technology, Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, 116024, CHINA
| | - David A Weitz
- Harvard School of Engineering and Applied Sciences, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge, MA 02138, Cambridge, Massachusetts, MA 02138, UNITED STATES
| |
Collapse
|
14
|
Wang W, Wang S. Cell-based biocomposite engineering directed by polymers. LAB ON A CHIP 2022; 22:1042-1067. [PMID: 35244136 DOI: 10.1039/d2lc00067a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological cells such as bacterial, fungal, and mammalian cells always exploit sophisticated chemistries and exquisite micro- and nano-structures to execute life activities, providing numerous templates for engineering bioactive and biomorphic materials, devices, and systems. To transform biological cells into functional biocomposites, polymer-directed cell surface engineering and intracellular functionalization have been developed over the past two decades. Polymeric materials can be easily adopted by various cells through polymer grafting or in situ hydrogelation and can successfully bridge cells with other functional materials as interfacial layers, thus achieving the manufacture of advanced biocomposites through bioaugmentation of living cells and transformation of cells into templated materials. This review article summarizes the recent progress in the design and construction of cell-based biocomposites by polymer-directed strategies. Furthermore, the applications of cell-based biocomposites in broad fields such as cell research, biomedicine, and bioenergy are discussed. Last, we provide personal perspectives on challenges and future trends in this interdisciplinary area.
Collapse
Affiliation(s)
- Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Liu D, Sun M, Zhang J, Hu R, Fu W, Xuanyuan T, Liu W. Single-cell droplet microfluidics for biomedical applications. Analyst 2022; 147:2294-2316. [DOI: 10.1039/d1an02321g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the recent advances in the fundamentals of single-cell droplet microfluidics and its applications in biomedicine, providing insights into design and establishment of single-cell microsystems and their further performance.
Collapse
Affiliation(s)
- Dan Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Rui Hu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenzhu Fu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
16
|
Chen Z, Lv Z, Zhang Z, Weitz DA, Zhang H, Zhang Y, Cui W. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. EXPLORATION (BEIJING, CHINA) 2021; 1:20210036. [PMID: 37323691 PMCID: PMC10191056 DOI: 10.1002/exp.20210036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/02/2021] [Indexed: 06/15/2023]
Abstract
Hydrogel microspheres are a novel functional material, arousing much attention in various fields. Microfluidics, a technology that controls and manipulates fluids at the micron scale, has emerged as a promising method for fabricating hydrogel microspheres due to its ability to generate uniform microspheres with controlled geometry. With the development of microfluidic devices, more complicated hydrogel microspheres with multiple structures can be constructed. This review presents an overview of advances in microfluidics for designing and engineering hydrogel microspheres. It starts with an introduction to the features of hydrogel microspheres and microfluidic techniques, followed by a discussion of material selection for fabricating microfluidic devices. Then the progress of microfluidic devices for single-component and composite hydrogel microspheres is described, and the method for optimizing microfluidic devices is also given. Finally, this review discusses the key research directions and applications of microfluidics for hydrogel microsphere in the future.
Collapse
Affiliation(s)
- Zehao Chen
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhendong Lv
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhen Zhang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
| | - David A. Weitz
- Department of Physics and Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi University and Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yuhui Zhang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| |
Collapse
|
17
|
Kamperman T, Henke S, Crispim JF, Willemen NGA, Dijkstra PJ, Lee W, Offerhaus HL, Neubauer M, Smink AM, de Vos P, de Haan BJ, Karperien M, Shin SR, Leijten J. Tethering Cells via Enzymatic Oxidative Crosslinking Enables Mechanotransduction in Non-Cell-Adhesive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102660. [PMID: 34476848 PMCID: PMC8530967 DOI: 10.1002/adma.202102660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/10/2021] [Indexed: 05/14/2023]
Abstract
Cell-matrix interactions govern cell behavior and tissue function by facilitating transduction of biomechanical cues. Engineered tissues often incorporate these interactions by employing cell-adhesive materials. However, using constitutively active cell-adhesive materials impedes control over cell fate and elicits inflammatory responses upon implantation. Here, an alternative cell-material interaction strategy that provides mechanotransducive properties via discrete inducible on-cell crosslinking (DOCKING) of materials, including those that are inherently non-cell-adhesive, is introduced. Specifically, tyramine-functionalized materials are tethered to tyrosines that are naturally present in extracellular protein domains via enzyme-mediated oxidative crosslinking. Temporal control over the stiffness of on-cell tethered 3D microniches reveals that DOCKING uniquely enables lineage programming of stem cells by targeting adhesome-related mechanotransduction pathways acting independently of cell volume changes and spreading. In short, DOCKING represents a bioinspired and cytocompatible cell-tethering strategy that offers new routes to study and engineer cell-material interactions, thereby advancing applications ranging from drug delivery, to cell-based therapy, and cultured meat.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
- Division of Engineering in MedicineBrigham and Women's HospitalHarvard Medical School65 Landsdowne StreetCambridgeMA02139USA
| | - Sieger Henke
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - João F. Crispim
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Niels G. A. Willemen
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Pieter J. Dijkstra
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Wooje Lee
- Optical SciencesMESA+ Institute for NanotechnologyUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Herman L. Offerhaus
- Optical SciencesMESA+ Institute for NanotechnologyUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Martin Neubauer
- Physical Chemistry IIUniversity of BayreuthUniversitätsstrasse 30D‐95447BayreuthGermany
| | - Alexandra M. Smink
- Department of Pathology and Medical BiologySection of ImmunoendocrinologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1 (EA11)Groningen9713 GZThe Netherlands
| | - Paul de Vos
- Department of Pathology and Medical BiologySection of ImmunoendocrinologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1 (EA11)Groningen9713 GZThe Netherlands
| | - Bart J. de Haan
- Department of Pathology and Medical BiologySection of ImmunoendocrinologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1 (EA11)Groningen9713 GZThe Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Su Ryon Shin
- Division of Engineering in MedicineBrigham and Women's HospitalHarvard Medical School65 Landsdowne StreetCambridgeMA02139USA
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| |
Collapse
|
18
|
Argentiere S, Siciliano PA, Blasi L. How Microgels Can Improve the Impact of Organ-on-Chip and Microfluidic Devices for 3D Culture: Compartmentalization, Single Cell Encapsulation and Control on Cell Fate. Polymers (Basel) 2021; 13:3216. [PMID: 34641032 PMCID: PMC8512905 DOI: 10.3390/polym13193216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
The Organ-on-chip (OOC) devices represent the new frontier in biomedical research to produce micro-organoids and tissues for drug testing and regenerative medicine. The development of such miniaturized models requires the 3D culture of multiple cell types in a highly controlled microenvironment, opening new challenges in reproducing the extracellular matrix (ECM) experienced by cells in vivo. In this regard, cell-laden microgels (CLMs) represent a promising tool for 3D cell culturing and on-chip generation of micro-organs. The engineering of hydrogel matrix with properly balanced biochemical and biophysical cues enables the formation of tunable 3D cellular microenvironments and long-term in vitro cultures. This focused review provides an overview of the most recent applications of CLMs in microfluidic devices for organoids formation, highlighting microgels' roles in OOC development as well as insights into future research.
Collapse
Affiliation(s)
| | | | - Laura Blasi
- Institute for Microelectronics and Microsystems IMM-CNR, Via Monteroni, University Campus, 73100 Lecce, Italy; (S.A.); (P.A.S.)
| |
Collapse
|
19
|
Pang L, Ding J, Liu XX, Kou Z, Guo L, Xu X, Fan SK. Microfluidics-Based Single-Cell Research for Intercellular Interaction. Front Cell Dev Biol 2021; 9:680307. [PMID: 34458252 PMCID: PMC8397490 DOI: 10.3389/fcell.2021.680307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Intercellular interaction between cell-cell and cell-ECM is critical to numerous biology and medical studies, such as stem cell differentiation, immunotherapy and tissue engineering. Traditional methods employed for delving into intercellular interaction are limited by expensive equipment and sophisticated procedures. Microfluidics technique is considered as one of the powerful measures capable of precisely capturing and manipulating cells and achieving low reagent consumption and high throughput with decidedly integrated functional components. Over the past few years, microfluidics-based systems for intercellular interaction study at a single-cell level have become frequently adopted. This review focuses on microfluidic single-cell studies for intercellular interaction in a 2D or 3D environment with a variety of cell manipulating techniques and applications. The challenges to be overcome are highlighted.
Collapse
Affiliation(s)
- Long Pang
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Jing Ding
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| | - Xi-Xian Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhixuan Kou
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Lulu Guo
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Xi Xu
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Shih-Kang Fan
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
20
|
Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules 2021; 26:molecules26123752. [PMID: 34202959 PMCID: PMC8234156 DOI: 10.3390/molecules26123752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
This article provides a systematic review of the crosslinking strategies used to produce microgel particles in microfluidic chips. Various ionic crosslinking methods for the gelation of charged polymers are discussed, including external gelation via crosslinkers dissolved or dispersed in the oil phase; internal gelation methods using crosslinkers added to the dispersed phase in their non-active forms, such as chelating agents, photo-acid generators, sparingly soluble or slowly hydrolyzing compounds, and methods involving competitive ligand exchange; rapid mixing of polymer and crosslinking streams; and merging polymer and crosslinker droplets. Covalent crosslinking methods using enzymatic oxidation of modified biopolymers, photo-polymerization of crosslinkable monomers or polymers, and thiol-ene “click” reactions are also discussed, as well as methods based on the sol−gel transitions of stimuli responsive polymers triggered by pH or temperature change. In addition to homogeneous microgel particles, the production of structurally heterogeneous particles such as composite hydrogel particles entrapping droplet interface bilayers, core−shell particles, organoids, and Janus particles are also discussed. Microfluidics offers the ability to precisely tune the chemical composition, size, shape, surface morphology, and internal structure of microgels by bringing multiple fluid streams in contact in a highly controlled fashion using versatile channel geometries and flow configurations, and allowing for controlled crosslinking.
Collapse
|
21
|
Babu S, Albertino F, Omidinia Anarkoli A, De Laporte L. Controlling Structure with Injectable Biomaterials to Better Mimic Tissue Heterogeneity and Anisotropy. Adv Healthc Mater 2021; 10:e2002221. [PMID: 33951341 PMCID: PMC11469279 DOI: 10.1002/adhm.202002221] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Indexed: 12/15/2022]
Abstract
Tissue regeneration of sensitive tissues calls for injectable scaffolds, which are minimally invasive and offer minimal damage to the native tissues. However, most of these systems are inherently isotropic and do not mimic the complex hierarchically ordered nature of the native extracellular matrices. This review focuses on the different approaches developed in the past decade to bring in some form of anisotropy to the conventional injectable tissue regenerative matrices. These approaches include introduction of macroporosity, in vivo pattering to present biomolecules in a spatially and temporally controlled manner, availability of aligned domains by means of self-assembly or oriented injectable components, and in vivo bioprinting to obtain structures with features of high resolution that resembles native tissues. Toward the end of the review, different techniques to produce building blocks for the fabrication of heterogeneous injectable scaffolds are discussed. The advantages and shortcomings of each approach are discussed in detail with ideas to improve the functionality and versatility of the building blocks.
Collapse
Affiliation(s)
- Susan Babu
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 2Aachen52074Germany
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Max Planck School‐Matter to Life (MtL)Jahnstrasse 29Heidelberg69120Germany
| | - Filippo Albertino
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
| | | | - Laura De Laporte
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 2Aachen52074Germany
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Max Planck School‐Matter to Life (MtL)Jahnstrasse 29Heidelberg69120Germany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)Center for Biohybrid Medical Systems (CMBS)University Hospital RWTH AachenForckenbeckstrasse 55Aachen52074Germany
| |
Collapse
|
22
|
Pan Z, Bui L, Yadav V, Fan F, Chang HC, Hanjaya-Putra D. Conformal single cell hydrogel coating with electrically induced tip streaming of an AC cone. Biomater Sci 2021; 9:3284-3292. [PMID: 33949367 PMCID: PMC8127873 DOI: 10.1039/d0bm02100h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Encapsulation of single cells in a thin hydrogel provides a more precise control of stem cell niches and better molecular transport. Despite the recent advances in microfluidic technologies to allow encapsulation of single cells, existing methods rely on special crosslinking agents that are pre-coated on the cell surface and subject to the variation of the cell membrane, which limits their widespread adoption. This work reports a high-throughput single-cell encapsulation method based on the "tip streaming" mode of alternating current (AC) electrospray, with encapsulation efficiencies over 80% after tuned centrifugation. Dripping with multiple cells is curtailed due to gating by the sharp conic meniscus of the tip streaming mode that only allows one cell to be ejected at a time. Moreover, the method can be universally applied to both natural and synthetic hydrogels, as well as various cell types, including human multipotent mesenchymal stromal cells (hMSCs). Encapsulated hMSCs maintain good cell viability over an extended culture period and exhibit robust differentiation potential into osteoblasts and adipocytes. Collectively, electrically induced tip streaming enables high-throughput encapsulation of single cells with high efficiency and universality, which is applicable for various applications in cell therapy, pharmacokinetic studies, and regenerative medicine.
Collapse
Affiliation(s)
- Zehao Pan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA.
| | - Loan Bui
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Vivek Yadav
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA.
| | - Fei Fan
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA. and Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| | - Donny Hanjaya-Putra
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA. and Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| |
Collapse
|
23
|
Fornell A, Pohlit H, Shi Q, Tenje M. Acoustic focusing of beads and cells in hydrogel droplets. Sci Rep 2021; 11:7479. [PMID: 33820916 PMCID: PMC8021569 DOI: 10.1038/s41598-021-86985-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/18/2021] [Indexed: 01/12/2023] Open
Abstract
The generation of hydrogel droplets using droplet microfluidics has emerged as a powerful tool with many applications in biology and medicine. Here, a microfluidic system to control the position of particles (beads or astrocyte cells) in hydrogel droplets using bulk acoustic standing waves is presented. The chip consisted of a droplet generator and a 380 µm wide acoustic focusing channel. Droplets comprising hydrogel precursor solution (polyethylene glycol tetraacrylate or a combination of polyethylene glycol tetraacrylate and gelatine methacrylate), photoinitiator and particles were generated. The droplets passed along the acoustic focusing channel where a half wavelength acoustic standing wave field was generated, and the particles were focused to the centre line of the droplets (i.e. the pressure nodal line) by the acoustic force. The droplets were cross-linked by exposure to UV-light, freezing the particles in their positions. With the acoustics applied, 89 ± 19% of the particles (polystyrene beads, 10 µm diameter) were positioned in an area ± 10% from the centre line. As proof-of-principle for biological particles, astrocytes were focused in hydrogel droplets using the same principle. The viability of the astrocytes after 7 days in culture was 72 ± 22% when exposed to the acoustic focusing compared with 70 ± 19% for samples not exposed to the acoustic focusing. This technology provides a platform to control the spatial position of bioparticles in hydrogel droplets, and opens up for the generation of more complex biological hydrogel structures.
Collapse
Affiliation(s)
- Anna Fornell
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden.,MAXIV Laboratory, Lund University, 22484, Lund, Sweden
| | - Hannah Pohlit
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | - Qian Shi
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
24
|
Ling SD, Geng Y, Chen A, Du Y, Xu J. Enhanced single-cell encapsulation in microfluidic devices: From droplet generation to single-cell analysis. BIOMICROFLUIDICS 2020; 14:061508. [PMID: 33381250 PMCID: PMC7758092 DOI: 10.1063/5.0018785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 05/24/2023]
Abstract
Single-cell analysis to investigate cellular heterogeneity and cell-to-cell interactions is a crucial compartment to answer key questions in important biological mechanisms. Droplet-based microfluidics appears to be the ideal platform for such a purpose because the compartmentalization of single cells into microdroplets offers unique advantages of enhancing assay sensitivity, protecting cells against external stresses, allowing versatile and precise manipulations over tested samples, and providing a stable microenvironment for long-term cell proliferation and observation. The present Review aims to give a preliminary guidance for researchers from different backgrounds to explore the field of single-cell encapsulation and analysis. A comprehensive and introductory overview of the droplet formation mechanism, fabrication methods of microchips, and a myriad of passive and active encapsulation techniques to enhance single-cell encapsulation efficiency were presented. Meanwhile, common methods for single-cell analysis, especially for long-term cell proliferation, differentiation, and observation inside microcapsules, are briefly introduced. Finally, the major challenges faced in the field are illustrated, and potential prospects for future work are discussed.
Collapse
Affiliation(s)
- Si Da Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuhao Geng
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - An Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Kupikowska-Stobba B, Lewińska D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater Sci 2020; 8:1536-1574. [PMID: 32110789 DOI: 10.1039/c9bm01337g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer microcarriers are being extensively explored as cell delivery vehicles in cell-based therapies and hybrid tissue and organ engineering. Spherical microcarriers are of particular interest due to easy fabrication and injectability. They include microbeads, composed of a porous matrix, and microcapsules, where matrix core is additionally covered with a semipermeable membrane. Microcarriers provide cell containment at implantation site and protect the cells from host immunoresponse, degradation and shear stress. Immobilized cells may be genetically altered to release a specific therapeutic product directly at the target site, eliminating side effects of systemic therapies. Cell microcarriers need to fulfil a number of extremely high standards regarding their biocompatibility, cytocompatibility, immunoisolating capacity, transport, mechanical and chemical properties. To obtain cell microcarriers of specified parameters, a wide variety of polymers, both natural and synthetic, and immobilization methods can be applied. Yet so far, only a few approaches based on cell-laden microcarriers have reached clinical trials. The main issue that still impedes progress of these systems towards clinical application is limited cell survival in vivo. Herein, we review polymer biomaterials and methods used for fabrication of cell microcarriers for in vivo biomedical applications. We describe their key limitations and modifications aiming at improvement of microcarrier in vivo performance. We also present the main applications of polymer cell microcarriers in regenerative medicine, pancreatic islet and hepatocyte transplantation and in the treatment of cancer. Lastly, we outline the main challenges in cell microimmobilization for biomedical purposes, the strategies to overcome these issues and potential future improvements in this area.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| | - Dorota Lewińska
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
26
|
Adhikari J, Roy A, Das A, Ghosh M, Thomas S, Sinha A, Kim J, Saha P. Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. Macromol Biosci 2020; 21:e2000179. [PMID: 33017096 DOI: 10.1002/mabi.202000179] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
In this review, few established cell printing techniques along with their parameters that affect the cell viability during bioprinting are considered. 3D bioprinting is developed on the principle of additive manufacturing using biomaterial inks and bioinks. Different bioprinting methods impose few challenges on cell printing such as shear stress, mechanical impact, heat, laser radiation, etc., which eventually lead to cell death. These factors also cause alteration of cells phenotype, recoverable or irrecoverable damages to the cells. Such challenges are not addressed in detail in the literature and scientific reports. Hence, this review presents a detailed discussion of several cellular bioprinting methods and their process-related impacts on cell viability, followed by probable mitigation techniques. Most of the printable bioinks encompass cells within hydrogel as scaffold material to avoid the direct exposure of the harsh printing environment on cells. However, the advantages of printing with scaffold-free cellular aggregates over cell-laden hydrogels have emerged very recently. Henceforth, optimal and favorable crosslinking mechanisms providing structural rigidity to the cell-laden printed constructs with ideal cell differentiation and proliferation, are discussed for improved understanding of cell printing methods for the future of organ printing and transplantation.
Collapse
Affiliation(s)
- Jaideep Adhikari
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Avinava Roy
- A. Roy, Dr. M. Ghosh, Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Anindya Das
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Manojit Ghosh
- A. Roy, Dr. M. Ghosh, Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Sabu Thomas
- Prof. S. Thomas, School of Chemical Sciences, MG University, Kottayam, Kerala, 686560, India
| | - Arijit Sinha
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Jinku Kim
- Prof. J. Kim, Department of Bio and Chemical Engineering, Hongik University, Sejong, 30016, South Korea
| | - Prosenjit Saha
- Dr. P. Saha, Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, Arch Water Front Building, Salt Lake City, Kolkata, 700091, India
| |
Collapse
|
27
|
Ouyang L, Armstrong JPK, Chen Q, Lin Y, Stevens MM. Void-free 3D Bioprinting for In-situ Endothelialization and Microfluidic Perfusion. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909009. [PMID: 35677899 PMCID: PMC7612826 DOI: 10.1002/adfm.201909009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. We address both of these issues by introducing a versatile 3D bioprinting strategy, in which a templating bioink is deposited layer-by-layer alongside a matrix bioink to establish void-free multimaterial structures. After crosslinking the matrix phase, the templating phase is sacrificed to create a well-defined 3D network of interconnected tubular channels. This void-free 3D printing (VF-3DP) approach circumvents the traditional concerns of structural collapse, deformation and oxygen inhibition, moreover, it can be readily used to print materials that are widely considered "unprintable". By pre-loading endothelial cells into the templating bioink, the inner surface of the channels can be efficiently cellularized with a confluent endothelial layer. This in-situ endothelialization method can be used to produce endothelium with a far greater uniformity than can be achieved using the conventional post-seeding approach. This VF-3DP approach can also be extended beyond tissue fabrication and towards customized hydrogel-based microfluidics and self-supported perfusable hydrogel constructs.
Collapse
|
28
|
van Loo B, Salehi S, Henke S, Shamloo A, Kamperman T, Karperien M, Leijten J. Enzymatic outside-in cross-linking enables single-step microcapsule production for high-throughput three-dimensional cell microaggregate formation. Mater Today Bio 2020; 6:100047. [PMID: 32300754 PMCID: PMC7152680 DOI: 10.1016/j.mtbio.2020.100047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Cell-laden hydrogel microcapsules enable the high-throughput production of cell aggregates, which are relevant for three-dimensional tissue engineering and drug screening applications. However, current microcapsule production strategies are limited by their throughput, multistep protocols, and limited amount of compatible biomaterials. We here present a single-step process for the controlled microfluidic production of single-core microcapsules using enzymatic outside-in cross-linking of tyramine-conjugated polymers. It was hypothesized that a physically, instead of the conventionally explored biochemically, controlled enzymatic cross-linking process would improve the reproducibility, operational window, and throughput of shell formation. Droplets were flown through a silicone delay line, which allowed for highly controlled diffusion of the enzymatic cross-linking initiator. The microcapsules' cross-linking density and shell thickness is strictly depended on the droplet's retention time in the delay line, which is predictably controlled by flow rate. The here presented hydrogel cross-linking method allows for facile and cytocompatible production of cell-laden microcapsules compatible with the formation and biorthogonal isolation of long-term viable cellular spheroids for tissue engineering and drug screening applications.
Collapse
Affiliation(s)
- B. van Loo
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - S.S. Salehi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - S. Henke
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - A. Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
- Corresponding author.
| | - T. Kamperman
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - M. Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
| | - J. Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522, NB Enschede, the Netherlands
- Corresponding author.
| |
Collapse
|
29
|
Jo YK, Lee D. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903736. [PMID: 31559690 DOI: 10.1002/smll.201903736] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Biopolymers are macromolecules that are derived from natural sources and have attractive properties for a plethora of biomedical applications due to their biocompatibility, biodegradability, low antigenicity, and high bioactivity. Microfluidics has emerged as a powerful approach for fabricating polymeric microparticles (MPs) with designed structures and compositions through precise manipulation of multiphasic flows at the microscale. The synergistic combination of materials chemistry afforded by biopolymers and precision provided by microfluidic capabilities make it possible to design engineered biopolymer-based MPs with well-defined physicochemical properties that are capable of enabling an efficient delivery of therapeutics, 3D culture of cells, and sensing of biomolecules. Here, an overview of microfluidic approaches is provided for the design and fabrication of functional MPs from three classes of biopolymers including polysaccharides, proteins, and microbial polymers, and their advances for biomedical applications are highlighted. An outlook into the future research on microfluidically-produced biopolymer MPs for biomedical applications is also provided.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
30
|
Kamperman T, Teixeira LM, Salehi SS, Kerckhofs G, Guyot Y, Geven M, Geris L, Grijpma D, Blanquer S, Leijten J. Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing. LAB ON A CHIP 2020; 20:490-495. [PMID: 31841123 DOI: 10.1039/c9lc00980a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microfluidic droplet generators excel in generating monodisperse micrometer-sized droplets and particles. However, the low throughput of conventional droplet generators hinders their clinical and industrial translation. Current approaches to parallelize microdevices are challenged by the two-dimensional nature of the standard fabrication methods. Here, we report the facile production of three-dimensionally (3D) parallelized microfluidic droplet generators consisting of stacked and radially multiplexed channel designs. Computational fluid dynamics simulations form the design basis for a microflow distributor that ensures similar flow rates through all droplet generators. Stereolithography is the selected technique to fabricate microdevices, which enables the manufacturing of hollow channels with dimensions as small as 50 μm. The microdevices could be operated up to 4 bars without structural damage, including deformation of channels, or leakage of the on-chip printed Luer-Lok type connectors. The printed microdevices readily enable the production of water-in-oil emulsions, as well as polymer containing droplets that act as templates for both solid and core-shell hydrogel microparticles. The cytocompatibility of the 3D printed device is demonstrated by encapsulating mesenchymal stem cells in hydrogel microcapsules, which results in the controllable formation of stem cell spheroids that remain viable and metabolically active for at least 21 days. Thus, the unique features of stereolithography fabricated microfluidic devices allow for the parallelization of droplet generators in a simple yet effective manner by enabling the realization of (complex) 3D designs.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Liliana Moreira Teixeira
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands. and Regenerative Medicine Utrecht, Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Seyedeh Sarah Salehi
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands. and Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11155-9567, Tehran, Iran
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium and Department Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 LEUVEN, Belgium and Biomechanics Lab - Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Place du Levant 2/L5.04.02, 1348, Louvain-la-Neuve, Belgium and IREC - Institut de Recherche Expérimentale et Clinique, UCLouvain, Avenue Hippocrate, 55 bte B1.55.02, 1200 Woluwé-Saint-Lambert, Belgium
| | - Yann Guyot
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium and Biomechanics Research Unit, GIGA in silico medicine, Université de Liège, Avenue de l'Hopital 11, 4000 Liège, Belgium
| | - Mike Geven
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium and Biomechanics Research Unit, GIGA in silico medicine, Université de Liège, Avenue de l'Hopital 11, 4000 Liège, Belgium
| | - Dirk Grijpma
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands
| | - Sebastien Blanquer
- Institut Charles Gerhardt Montpellier - UMR5253, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| |
Collapse
|
31
|
Li Y, Motschman JD, Kelly ST, Yellen BB. Injection Molded Microfluidics for Establishing High-Density Single Cell Arrays in an Open Hydrogel Format. Anal Chem 2020; 92:2794-2801. [PMID: 31934750 PMCID: PMC7295173 DOI: 10.1021/acs.analchem.9b05099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we develop an injection molded microfluidic approach for single cell analysis by making use of (1) rapidly curing injectable hydrogels, (2) a high density microfluidic weir trap array, and (3) reversibly bonded PDMS lids that are strong enough to withstand the injection molding process, but which can be peeled off after the hydrogel sets. This approach allows for single cell patterns to be created with densities exceeding 40 cells per mm2, is amenable to high speed imaging, and creates microfluidic devices that enable efficient nutrient and gas exchange and the delivery of specific biological and chemical reagents to individual cells. We show that it is possible to organize up to 10 000 single cells in a few minutes on the device, and we developed an image analysis program to automatically analyze the single-cell capture efficiency. The results show single cell trapping rates were better than 80%. We also demonstrate that the genomic DNA of the single cells trapped in the hydrogel can be amplified via localized, multiple displacement amplification in a massively parallel format, which offers a promising strategy for analyzing single cell genomes. Finally, we show the ability to perform selective staining of individual cells with a commercial bioprinter, providing proof of concept of its ability to deliver tailored reagents to specific cells in an array for future downstream analysis. This injection molded microfluidic approach leverages the benefits of both closed and open microfluidics, allows multiday single cell cultures, direct access to the trapped cells for genotypic end point studies.
Collapse
Affiliation(s)
- Ying Li
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jeffrey D. Motschman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Sean T. Kelly
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Benjamin B. Yellen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
32
|
Salehi SS, Shamloo A, Hannani SK. Microfluidic technologies to engineer mesenchymal stem cell aggregates-applications and benefits. Biophys Rev 2020; 12:123-133. [PMID: 31953794 PMCID: PMC7040154 DOI: 10.1007/s12551-020-00613-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional cell culture and the forming multicellular aggregates are superior over traditional monolayer approaches due to better mimicking of in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform-sized multicellular aggregates. Microfluidic technology describes a platform of techniques comprising microchannels to manipulate the small number of reagents with unique properties and capabilities suitable for biological studies. The focus of this review is to highlight recent studies of using microfluidics, especially droplet-based types for the formation, culture, and harvesting of mesenchymal stem cell aggregates and their subsequent application in stem cell biology, tissue engineering, and drug screening. Droplet-based microfluidics can be used to form microgels as carriers for delivering cells and to provide biological cues to the target tissue so as to be minimally invasive. Stem cell-laden microgels with a shape-forming property can be used as smart building blocks by injecting them into the injured tissue thereby constituting the cornerstone of tissue regeneration.
Collapse
Affiliation(s)
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
33
|
Affiliation(s)
- Yun Ding
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Philip D. Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| |
Collapse
|
34
|
Hasturk O, Kaplan DL. Cell armor for protection against environmental stress: Advances, challenges and applications in micro- and nanoencapsulation of mammalian cells. Acta Biomater 2019; 95:3-31. [PMID: 30481608 PMCID: PMC6534491 DOI: 10.1016/j.actbio.2018.11.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Unlike unicellular organisms and plant cells surrounded with a cell wall, naked plasma membranes of mammalian cells make them more susceptible to environmental stresses encountered during in vitro biofabrication and in vivo cell therapy applications. Recent advances in micro- and nanoencapsulation of single mammalian cells provide an effective strategy to isolate cells from their surroundings and protect them against harsh environmental conditions. Microemulsification and droplet-based microfluidics have enabled researchers to encapsulate single cells within a variety of microscale hydrogel materials with a range of biochemical and mechanical properties and functionalities including enhanced cell-matrix interactions or on-demand degradation. In addition to microcapsules, nanocoatings of various organic and inorganic substances on mammalian cells have allowed for the formation of protective shells. A wide range of synthetic and natural polymers, minerals and supramolecular metal-organic complexes have been deposited as nanolayers on the cells via electrostatic interactions, receptor-ligand binding, non-specific interactions, and in situ polymerization/crosslinking. Here, current strategies in encapsulation of single mammalian cells along with challenges and advances are reviewed. Protection of encapsulated stem cells, fibroblasts, red and white blood cells and cancer cells against harsh in vitro and in vivo conditions including anoikis, UV radiation, physical forces, proteolytic enzymes and immune clearance are discussed. STATEMENT OF SIGNIFICANCE: The mechanical fragility of the plasma membrane and susceptibility to extracellular biochemical factors due to the lack of a physical barrier like a tough cell wall or exoskeleton make mammalian cells extra sensitive to harsh environmental conditions. This sensitively, in turn, limits the ex vivo storage, handling and manipulation of mammalian cells, as well as their in vivo applications. Environmental stresses such as exposure to UV, reactive chemicals and mechanical stress during biofabrication processes like 3D bioprinting can often compromise cell viability and function. Micro- and nanoencapsulation of single mammalian cells in protective shells have emerged as promising approaches to isolate cells from their surroundings and enhance resistance against perturbations in conditions during regenerative medicine and tissue engineering applications. In this review, the current state of art of single cell encapsulation strategies and the challenges associated with these technologies are discussed in detail. This is followed by the review of the protection provided by cell armor against a range of harsh in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
35
|
Johnson MA, Kleinberger R, Abu Helal A, Latchminarine N, Ayyash A, Shi S, Burke NAD, Holloway AC, Stöver HDH. Quantifying cellular protrusion in alginate capsules with covalently crosslinked shells. J Microencapsul 2019; 36:421-431. [DOI: 10.1080/02652048.2019.1618404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mitchell A. Johnson
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Rachelle Kleinberger
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Ali Abu Helal
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Nicole Latchminarine
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Ahmed Ayyash
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Shanna Shi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Nicholas A. D. Burke
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Harald D. H. Stöver
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
36
|
Kamperman T, van Loo B, Gurian M, Henke S, Karperien M, Leijten J. On-the-fly exchangeable microfluidic nozzles for facile production of various monodisperse micromaterials. LAB ON A CHIP 2019; 19:1977-1984. [PMID: 31017163 PMCID: PMC6555637 DOI: 10.1039/c9lc00054b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microfluidic manufacturing platforms have advanced the production of monodisperse, shape-controlled, and chemically defined micromaterials. However, conventional microfabrication platforms are typically designed and fabricated as single-purpose and single-use tools, which limits their efficiency, versatility, and overall potential. We here present an on-the-fly exchangeable nozzle concept that operates in a transparent, 3D, and reusable microfluidic device produced without cleanroom technology. The facile exchange and repositioning of the nozzles readily enables the production of monodisperse water-in-oil and oil-in-water emulsions, solid and core-shell microspheres, microfibers, and even Janus type micromaterials with controlled diameters ranging from 10 to 1000 μm using a single microfluidic device.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Bas van Loo
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Melvin Gurian
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Sieger Henke
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| |
Collapse
|
37
|
Cai B, Ji TT, Wang N, Li XB, He RX, Liu W, Wang G, Zhao XZ, Wang L, Wang Z. A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells. LAB ON A CHIP 2019; 19:422-431. [PMID: 30575843 DOI: 10.1039/c8lc01130c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Non-adherent cells play key roles in various biological processes. Studies on this type of cell, especially at single-cell resolution, help reveal molecular mechanisms underlying many biological and pathological processes. The emerging microfluidics technology has developed effective methods for analyzing cells. However, it remains challenging to treat and monitor single live non-adherent cells in an in situ, long-term, and real-time manner. Herein, a microfluidic platform was set up to generate and anchor cell-laden water-in-oil-in-water (W/O/W) double emulsions (DEs) to investigate these cells. Within the device, W/O/W DEs encapsulating non-adherent cells were generated through two adjacent flow-focusing structures and subsequently anchored in an array of microchambers. These droplets maintained the W/O/W structure and the anchorage status in the continuous perfusion fluid for at least one week. The mass transfer of different molecules with suitable molecular weights and partition coefficients between the interior and exterior of W/O/W DEs could be regulated by perfusion fluid flow rates. These features endow this platform with potential to continuously supply encapsulated non-adherent cells with nutrients or small-molecule stimuli/drugs through fluid perfusion. Meanwhile, the confinement of cells in the anchored DEs favored long-term monitoring of cellular dynamic behaviors and responses. As a proof of concept, fluorescein diacetate (FDA) was employed to visualize the cellular uptake and biochemical metabolism of TF-1 human erythroleukemia cells. We believe that this W/O/W DE anchorage and perfusion platform would benefit single-cell-level studies as well as small-molecule drug discovery requiring live non-adherent cells.
Collapse
Affiliation(s)
- Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang J, Yang Y, Kawazoe N, Chen G. Encapsulation of individual living cells with enzyme responsive polymer nanoshell. Biomaterials 2019; 197:317-326. [PMID: 30685690 DOI: 10.1016/j.biomaterials.2019.01.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/18/2022]
Abstract
Cell delivery in cell therapy is typically challenged by the low cell survival rate and immunological rejection during cells injection and circulation. Encapsulation of cells with semipermeable hydrogels or membranes can improve cell viability by resisting high shear force and inhibit immune response with the physical isolation effect. Herein, the individual HeLa cells and human mesenchymal stem cells (hMSCs) were encapsulated with enzyme responsive polymer nanoshell. The encapsulation shell was prepared via the Layer-by-Layer (LbL) assembly of functionalized gelatin and click chemistry of peptide linker and gelatin. The encapsulated cells showed high cell viability and could resist the physical stress. Moreover, the encapsulation shell had a prolonged encapsulation sustaining period and could effectively prevent the invasion of external entities. In addition, on-site cell release was realized via enzymolysis of the encapsulation shell by human matrix metalloproteinase-7 (MMP-7), an overexpressed enzyme on tumor area. The finding of this study proved a potential approach in cell therapy, especially for cell-based cancer therapy.
Collapse
Affiliation(s)
- Jianmin Yang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Yingjun Yang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
39
|
Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Mol Biotechnol 2018; 60:843-861. [DOI: 10.1007/s12033-018-0113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kamperman T, Karperien M, Le Gac S, Leijten J. Single-Cell Microgels: Technology, Challenges, and Applications. Trends Biotechnol 2018; 36:850-865. [PMID: 29656795 DOI: 10.1016/j.tibtech.2018.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Single-cell-laden microgels effectively act as the engineered counterpart of the smallest living building block of life: a cell within its pericellular matrix. Recent breakthroughs have enabled the encapsulation of single cells in sub-100-μm microgels to provide physiologically relevant microniches with minimal mass transport limitations and favorable pharmacokinetic properties. Single-cell-laden microgels offer additional unprecedented advantages, including facile manipulation, culture, and analysis of individual cell within 3D microenvironments. Therefore, single-cell microgel technology is expected to be instrumental in many life science applications, including pharmacological screenings, regenerative medicine, and fundamental biological research. In this review, we discuss the latest trends, technical challenges, and breakthroughs, and present our vision of the future of single-cell microgel technology and its applications.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. https://twitter.com/DBE_MIRA
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. https://twitter.com/UTwente
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. https://twitter.com/utwenteEN
| | - Jeroen Leijten
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands.
| |
Collapse
|
42
|
Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat Commun 2018; 9:791. [PMID: 29476078 PMCID: PMC5824814 DOI: 10.1038/s41467-017-02659-x] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Droplet-based single-cell RNA-seq has emerged as a powerful technique for massively parallel cellular profiling. While this approach offers the exciting promise to deconvolute cellular heterogeneity in diseased tissues, the lack of cost-effective and user-friendly instrumentation has hindered widespread adoption of droplet microfluidic techniques. To address this, we developed a 3D-printed, low-cost droplet microfluidic control instrument and deploy it in a clinical environment to perform single-cell transcriptome profiling of disaggregated synovial tissue from five rheumatoid arthritis patients. We sequence 20,387 single cells revealing 13 transcriptomically distinct clusters. These encompass an unsupervised draft atlas of the autoimmune infiltrate that contribute to disease biology. Additionally, we identify previously uncharacterized fibroblast subpopulations and discern their spatial location within the synovium. We envision that this instrument will have broad utility in both research and clinical settings, enabling low-cost and routine application of microfluidic techniques. Droplet-based single-cell RNA-seq is a powerful tool for cellular heterogeneity profiling in disease but is limited by instrumentation required. Here the authors develop a 3D printed microfluidic platform for massive parallel sequencing of rheumatoid arthritis tissues.
Collapse
|
43
|
Visser CW, Kamperman T, Karbaat LP, Lohse D, Karperien M. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. SCIENCE ADVANCES 2018; 4:eaao1175. [PMID: 29399628 PMCID: PMC5792224 DOI: 10.1126/sciadv.aao1175] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/03/2018] [Indexed: 05/18/2023]
Abstract
Microfluidic chips provide unparalleled control over droplets and jets, which have advanced all natural sciences. However, microfluidic applications could be vastly expanded by increasing the per-channel throughput and directly exploiting the output of chips for rapid additive manufacturing. We unlock these features with in-air microfluidics, a new chip-free platform to manipulate microscale liquid streams in the air. By controlling the composition and in-air impact of liquid microjets by surface tension-driven encapsulation, we fabricate monodisperse emulsions, particles, and fibers with diameters of 20 to 300 μm at rates that are 10 to 100 times higher than chip-based droplet microfluidics. Furthermore, in-air microfluidics uniquely enables module-based production of three-dimensional (3D) multiscale (bio)materials in one step because droplets are partially solidified in-flight and can immediately be printed onto a substrate. In-air microfluidics is cytocompatible, as demonstrated by additive manufacturing of 3D modular constructs with tailored microenvironments for multiple cell types. Its in-line control, high throughput and resolution, and cytocompatibility make in-air microfluidics a versatile platform technology for science, industry, and health care.
Collapse
Affiliation(s)
- Claas Willem Visser
- Physics of Fluids Group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Tom Kamperman
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Lisanne P. Karbaat
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| |
Collapse
|
44
|
Kamperman T, Henke S, Zoetebier B, Ruiterkamp N, Wang R, Pouran B, Weinans H, Karperien M, Leijten J. Nanoemulsion-induced enzymatic crosslinking of tyramine-functionalized polymer droplets. J Mater Chem B 2017; 5:4835-4844. [PMID: 32263999 DOI: 10.1039/c7tb00686a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In situ gelation of water-in-oil polymer emulsions is a key method to produce hydrogel particles. Although this approach is in principle ideal for encapsulating bioactive components such as cells, the oil phase can interfere with straightforward presentation of crosslinker molecules. Several approaches have been developed to induce in-emulsion gelation by exploiting the triggered generation or release of crosslinker molecules. However, these methods typically rely on photo- or acid-based reactions that are detrimental to cell survival and functioning. In this work, we demonstrate the diffusion-based supplementation of small molecules for the in-emulsion gelation of multiple tyramine-functionalized polymers via enzymatic crosslinking using a H2O2/oil nanoemulsion. This strategy is compatible with various emulsification techniques, thereby readily supporting the formation of monodisperse hydrogel particles spanning multiple length scales ranging from the nano- to the millimeter. As proof of principle, we leveraged droplet microfluidics in combination with the cytocompatible nature of enzymatic crosslinking to engineer hollow cell-laden hydrogel microcapsules that support the formation of viable and functional 3D microtissues. The straightforward, universal, and cytocompatible nature of nanoemulsion-induced enzymatic crosslinking facilitates its rapid and widespread use in numerous food, pharma, and life science applications.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|