1
|
Li S, Zhang Y, Zhao Z, Cheng S, Li Z, Liu Y, Deng Q, Dai J, Zheng Y, Lin Z. Ultrastable and Low-Threshold Two-Photon-Pumped Amplified Spontaneous Emission from CsPbBr 3/Ag Hybrid Microcavity. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1622. [PMID: 39452959 PMCID: PMC11510617 DOI: 10.3390/nano14201622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Halide perovskite materials have garnered significant research attention due to their remarkable performance in both photoharvesting photovoltaics and photoemission applications. Recently, self-assembled CsPbBr3 superstructures (SSs) have been demonstrated to be promising lasing materials. In this study, we report the ultrastable two-photon-pumped amplified stimulated emission from a CsPbBr3 SS/Ag hybrid microcavity with a low threshold of 0.8 mJ/cm2 at room temperature. The experimental results combined with numerical simulations show that the CsPbBr3 SS exhibits a significant enhancement in the electromagnetic properties in the hybrid microcavity on Ag film, leading to the uniform spatial temperature distribution under the irradiation of a pulsed laser, which is conducive to facilitate the recrystallization process of the QDs and improve their structural integrity and optical properties. This study provides a new idea for the application of CsPbBr3/Ag hybrid microcavity in photonic devices, demonstrating its potential in efficient optical amplification and upconversion lasers.
Collapse
Affiliation(s)
- Shulei Li
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (S.L.); (Y.Z.); (Z.Z.); (S.C.); (Z.L.); (Y.L.); (Q.D.); (Y.Z.)
| | - Yatao Zhang
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (S.L.); (Y.Z.); (Z.Z.); (S.C.); (Z.L.); (Y.L.); (Q.D.); (Y.Z.)
| | - Zhiran Zhao
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (S.L.); (Y.Z.); (Z.Z.); (S.C.); (Z.L.); (Y.L.); (Q.D.); (Y.Z.)
| | - Shiyi Cheng
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (S.L.); (Y.Z.); (Z.Z.); (S.C.); (Z.L.); (Y.L.); (Q.D.); (Y.Z.)
| | - Zixin Li
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (S.L.); (Y.Z.); (Z.Z.); (S.C.); (Z.L.); (Y.L.); (Q.D.); (Y.Z.)
| | - Yuanyuan Liu
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (S.L.); (Y.Z.); (Z.Z.); (S.C.); (Z.L.); (Y.L.); (Q.D.); (Y.Z.)
| | - Quantong Deng
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (S.L.); (Y.Z.); (Z.Z.); (S.C.); (Z.L.); (Y.L.); (Q.D.); (Y.Z.)
| | - Jun Dai
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (S.L.); (Y.Z.); (Z.Z.); (S.C.); (Z.L.); (Y.L.); (Q.D.); (Y.Z.)
| | - Yunbao Zheng
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (S.L.); (Y.Z.); (Z.Z.); (S.C.); (Z.L.); (Y.L.); (Q.D.); (Y.Z.)
| | - Zhenxu Lin
- School of Material Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| |
Collapse
|
2
|
Goldberg I, Elkhouly K, Annavarapu N, Hamdad S, Gonzalez MC, Genoe J, Gehlhaar R, Heremans P. Toward Thin-Film Laser Diodes with Metal Halide Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314193. [PMID: 39177182 DOI: 10.1002/adma.202314193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Indexed: 08/24/2024]
Abstract
Metal halide perovskite semiconductors hold a strong promise for enabling thin-film laser diodes. Perovskites distinguish themselves from other non-epitaxial media primarily through their ability to maintain performance at high current densities, which is a critical requirement for achieving injection lasing. Coming in a wide range of varieties, numerous perovskites delivered low-threshold optical amplified spontaneous emission and optically pumped lasing when combined with a suitable optical cavity. A progression toward electrically pumped lasing requires the development of efficient light-emitting structures with reduced optical losses and high radiative efficiency at lasing-level current densities. This involves a set of important trade-offs in terms of material choice, stack and waveguide design, as well as resonator integration. In this Perspective, the key milestones are highlighted that have been achieved in the study of passive optical waveguides and light-emitting diodes, and these learnings are translated toward more complex laser diode architectures. Finally, a novel resonator integration route is proposed that is capable of relaxing optical and electrical design constraints.
Collapse
Affiliation(s)
- Iakov Goldberg
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Karim Elkhouly
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Nirav Annavarapu
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Sarah Hamdad
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Maider Calderon Gonzalez
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Jan Genoe
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | | | - Paul Heremans
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| |
Collapse
|
3
|
Shi H, Chen L, Moutaabbid H, Feng Z, Zhang G, Wang L, Li Y, Guo H, Liu C. Mechanism of Pressure-Modulated Self-Trapped Exciton Emission in Cs 2TeCl 6 Double Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405692. [PMID: 39221636 DOI: 10.1002/smll.202405692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Pressure-modulated self-trapped exciton (STE) emission mechanism in all-inorganic lead-free metal halide double perovskites characterized by large Stokes-shifted broadband emission, has attracted much attention across various fields such as optics, optoelectronics, and biomedical sciences. Here, by employing the all-inorganic lead-free metal halide double perovskite Cs2TeCl6 as a paradigm, the authors elucidate that the performance of STE emission can be modulated by pressure, attributable to the pressure-induced evolution of the electronic state (ES). Two ES transitions happen at pressures of 1.6 and 5.8 GPa, sequentially. The electronic behaviors of Cs2TeCl6 can be jointly modulated by both pressure and ES transitions. When the pressure reaches 1.6 GPa, the Huang-Rhys factor S, indicative of the strength of electron-phonon coupling, attains an optimum value of ≈12.0, correlating with the pressure-induced photoluminescence (PL) intensity of Cs2TeCl6 is 4.8-fold that of its PL intensity under ambient pressure. Through analyzing the pressure-dependent STE dynamic behavioral changes, the authors have revealed the microphysical mechanism underlying the pressure-modulated enhancement and quenching of STE emission in Cs2TeCl6.
Collapse
Affiliation(s)
- Han Shi
- School of Physics Science & Information Technology, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Lin Chen
- School of Physics Science & Information Technology, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Hicham Moutaabbid
- CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Université, 4 place Jussieu, Paris, 75005, France
| | - Zhenbao Feng
- School of Physics Science & Information Technology, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Guozhao Zhang
- School of Physics Science & Information Technology, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Lingrui Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yinwei Li
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Haizhong Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Cailong Liu
- School of Physics Science & Information Technology, Liaocheng University, Liaocheng, 252059, P. R. China
| |
Collapse
|
4
|
Zhang Q, Zhang D, Liao Z, Cao YB, Kumar M, Poddar S, Han J, Hu Y, Lv H, Mo X, Srivastava AK, Fan Z. Perovskite Light-Emitting Diodes with Quantum Wires and Nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405418. [PMID: 39183527 DOI: 10.1002/adma.202405418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Indexed: 08/27/2024]
Abstract
Perovskite materials, celebrated for their exceptional optoelectronic properties, have seen extensive application in the field of light-emitting diodes (LEDs), where research is as abundant as the proverbial "carloads of books." In this review, the research of perovskite materials is delved into from a dimensional perspective, with a focus on the exemplary performance of low-dimensional perovskite materials in LEDs. This discussion predominantly revolves around perovskite quantum wires and perovskite nanorods. Perovskite quantum wires are versatile in their growth, compatible with both solution-based and vapor-phase growth, and can be deposited over large areas-even on spherical substrates-to achieve commendable electroluminescence (EL). Perovskite nanorods, on the other hand, boast a suite of superior characteristics, such as polarization properties and tunability of the transition dipole moment, endowing them with the great potential to enhance light extraction efficiency. Furthermore, zero-dimensional (0D) perovskite materials like nanocrystals (NCs) are also the subject of widespread research and application. This review reflects on and synthesizes the unique qualities of the aforementioned materials while exploring their vital roles in the development of high-efficiency perovskite LEDs (PeLEDs).
Collapse
Affiliation(s)
- Qianpeng Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zebing Liao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Bryan Cao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Mallem Kumar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Junchao Han
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Ying Hu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Hualiang Lv
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoliang Mo
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Abhishek Kumar Srivastava
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Chandra S, Mustafa MA, Ghadir K, Bansal P, Deorari M, Alhameedi DY, Alubiady MHS, Al-Ani AM, Rab SO, Jumaa SS, Abosaoda MK. Synthesis, characterization, and practical applications of perovskite quantum dots: recent update. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03309-y. [PMID: 39073420 DOI: 10.1007/s00210-024-03309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
This review paper provides an in-depth analysis of Perovskite quantum dots (PQDs), a class of nanomaterials with unique optical and electronic properties that hold immense potential for various technological applications. The paper delves into the structural characteristics, synthesis methods, and characterization techniques of PQDs, highlighting their distinct advantages over other Quantum Dots (QDs). Various applications of PQDs in fields such as solar cells, LEDs, bioimaging, photocatalysis, and sensors are discussed, showcasing their versatility and promising capabilities. The ongoing advancements in PQD research and development point towards a bright future for these nanostructures in revolutionizing diverse industries and technologies.
Collapse
Affiliation(s)
- Subhash Chandra
- Department of Electrical Engineering, GLA University, Mathura, 281406, India
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq.
| | - Kamil Ghadir
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dheyaa Yahaia Alhameedi
- Department of Anesthesia, College of Health & Medical Technology, Sawa University, Almuthana, Iraq
| | | | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Salih Jumaa
- Department of Medical Engineering, National University of Science and Technology, Dhi Qar, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
6
|
Im TY, Kim JY, Jang W, Wang DH. Surface defect mitigation via alkyl-ligand-controlled purification for stable and high-luminescence perovskite quantum dots. NANOSCALE 2024; 16:12118-12126. [PMID: 38829365 DOI: 10.1039/d4nr00638k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Perovskite quantum dots (PQDs) have received considerable attention as fluorescent materials due to their excellent optical properties. However, because PQDs contain ionic bonds, they have the disadvantage of being vulnerable to environmental conditions, so improving their stability is essential. Indeed, recent research has focused on improving both the stability and luminescence of PQDs by mixing them with methyl acetate (MeOAc) to suppress surface defects via purification. MeOAc reacts with the surface ligands of PQDs, resulting in ligand-controlled purification. However, while the ligands are limited for the PQD synthesis, the effect of ligand alkyl-chain length has not been reported. Therefore, we report herein a strategy for obtaining stable PQDs with tunable performances by using amine ligands of various chain lengths. The amine ligand is selected because it is very effective in interacting with the halide vacancies present on the surface of the perovskite crystal structure. The results indicate that MeOAc becomes less effective as the chain length of the ligand is increased, and more effective as the chain length is decreased. Consequently, PQDs treated with MeOAc and a short-chain ligand afford a quantum yield (QY) of 79.2% and are highly stable when exposed to thermal and ambient conditions. Therefore, we suggest a facile approach to suppressing the degradation of PQDs during the fabrication process.
Collapse
Affiliation(s)
- Tae Yong Im
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jin Young Kim
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Woongsik Jang
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dong Hwan Wang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974, Republic of Korea.
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Chen L, Chu Y, Qin X, Gao Z, Zhang G, Zhang H, Wang Q, Li Q, Guo H, Li Y, Liu C. Ultrafast Dynamics Across Pressure-Induced Electronic State Transitions, Fluorescence Quenching, and Bandgap Evolution in CsPbBr 3 Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308016. [PMID: 38308192 PMCID: PMC11005694 DOI: 10.1002/advs.202308016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Indexed: 02/04/2024]
Abstract
This work investigates the impact of pressure on the structural, optical properties, and electronic structure of CsPbBr3 quantum dots (QDs) using steady-state photoluminescence, steady-state absorption, and femtosecond transient absorption spectroscopy, reaching a maximum pressure of 3.38 GPa. The experimental results indicate that CsPbBr3 QDs undergo electronic state (ES) transitions from ES-I to ES-II and ES-II to ES-III at 0.38 and 1.08 GPa, respectively. Intriguingly, a mixed state of ES-II and ES-III is observed within the pressure range of 1.08-1.68 GPa. The pressure-induced fluorescence quenching in ES-II is attributed to enhanced defect trapping and reduced radiative recombination. Above 1.68 GPa, fluorescence vanishes entirely, attributed to the complete phase transformation from ES-II to ES-III in which radiative recombination becomes non-existent. Notably, owing to stronger quantum confinement effects, CsPbBr3 QDs exhibit an impressive bandgap tuning range of 0.497 eV from 0 to 2.08 GPa, outperforming nanocrystals by 1.4 times and bulk counterparts by 11.3 times. Furthermore, this work analyzes various carrier dynamics processes in the pressure-induced bandgap evolution and electron state transitions, and systematically studies the microphysical mechanisms of optical properties in CsPbBr3 QDs under pressure, offering insights for optimizing optical properties and designing novel materials.
Collapse
Affiliation(s)
- Lin Chen
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Ya Chu
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Xiaxia Qin
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Zhijian Gao
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Guozhao Zhang
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Haiwa Zhang
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Qinglin Wang
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Qian Li
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Haizhong Guo
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Yinwei Li
- Laboratory of Quantum Functional Materials Design and ApplicationSchool of Physics and Electronic EngineeringJiangsu Normal UniversityXuzhou221116P. R. China
| | - Cailong Liu
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| |
Collapse
|
8
|
Laref R, Massuyeau F, Gautier R. Role of Hydrogen Bonding on the Design of New Hybrid Perovskites Unraveled by Machine Learning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306481. [PMID: 37759386 DOI: 10.1002/smll.202306481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Selecting a set of reactants to accurately design a new low dimensional hybrid perovskite could greatly accelerate the discovery of materials with great potential in photovoltaics, or solid-state lighting. However, this design is challenging as most hybrid metal halides are not perovskites and no feature is clearly associated to the structural characteristics of the inorganic metal halide network. This work first demonstrates that the organic molecules are key parameters to determine the structure type of the inorganic network (i.e., perovskite versus non-perovskite). Then, machine learning (ML) algorithms are used to identify the key features of the organic cations leading to the perovskite structure type. Using a large dataset of hybrid metal halides, this work extracts the organic molecules of all hybrid lead halide compounds, calculates 2756 molecular descriptors and fingerprints for each of these molecules, and are able to predict through ML techniques if a specific organic amine will lead to the perovskite type with an accuracy up to 88.65%. Descriptors related to hydrogen bonding are identified as important features. Thus, a simple but reliable design principle could be demonstrated: the presence of primary ammonium cation is the primary condition to prepare hybrid lead halide perovskites regardless of their dimensionalities.
Collapse
Affiliation(s)
- Rachid Laref
- Centre National de la Recherche Scientifique (CNRS), IMN, 2 rue de la Houssinière, Nantes, 44322, France
| | - Florian Massuyeau
- Centre National de la Recherche Scientifique (CNRS), IMN, 2 rue de la Houssinière, Nantes, 44322, France
| | - Romain Gautier
- Centre National de la Recherche Scientifique (CNRS), IMN, 2 rue de la Houssinière, Nantes, 44322, France
| |
Collapse
|
9
|
Clinckemalie L, Pradhan B, Brande RV, Zhang H, Vandenwijngaerden J, Saha RA, Romolini G, Sun L, Vandenbroucke D, Bonn M, Wang HI, Debroye E. Phase-engineering compact and flexible CsPbBr 3 microcrystal films for robust X-ray detection. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:655-663. [PMID: 38188498 PMCID: PMC10766070 DOI: 10.1039/d3tc01903a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
All-inorganic CsPbBr3 perovskites have gained significant attention due to their potential in direct X-ray detection. The fabrication of stable, pinhole-free thick films remains challenging, hindering their integration in durable, large-area high-resolution devices. In this study, we propose a facile strategy using a non-conductive polymer to create a flexible, compact thick film under ambient conditions. Furthermore, we investigate the effect of introducing the 2D CsPb2Br5 phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport. Upon X-ray exposure, the devices consisting of the dual phase exhibit improved stability and more effective operation at higher voltages. Rietveld refinement shows that, due to the presence of the second phase, local distortions and Pb-vacancies are introduced within the CsPbBr3 lattice. This in turn presumably increases the ion migration energy barrier, resulting in a very low dark current and hence, enhanced stability. This feature might benefit local charge extraction and, ultimately, the X-ray image resolution. These findings also suggest that introducing a second phase in the perovskite structure can be advantageous for efficient photon-to-charge carrier conversion, as applied in medical imaging.
Collapse
Affiliation(s)
- Lotte Clinckemalie
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Bapi Pradhan
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Roel Vanden Brande
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Heng Zhang
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | | | - Rafikul Ali Saha
- cMACS, Department of Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Giacomo Romolini
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Li Sun
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | - Elke Debroye
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
10
|
Maheshwaran A, Bae H, Park J, Jung H, Hwang Y, Kim J, Park C, Kang B, Song M, Lee Y. Low-Temperature Cross-Linkable Hole Transport Materials for Solution-Processed Quantum Dot and Organic Light-Emitting Diodes with High Efficiency and Color Purity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45167-45176. [PMID: 37699415 DOI: 10.1021/acsami.3c09106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo[b,d]furan-3-yl)-N,N-bis(4-vinylphenyl)aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10-4 cm2 V-1 s-1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A-1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A-1, and outstanding CIE(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs.
Collapse
Affiliation(s)
- Athithan Maheshwaran
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyejeong Bae
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Jaehyoung Park
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyeonwoo Jung
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Youngjun Hwang
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Jongyoun Kim
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Chaehyun Park
- Department of Energy & Electronic Materials, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Sungsan-gu, Changwon-si, Gyeongsangnam-do 51508, Republic of Korea
| | - Byeongjae Kang
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Myungkwan Song
- Department of Energy & Electronic Materials, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Sungsan-gu, Changwon-si, Gyeongsangnam-do 51508, Republic of Korea
| | - Youngu Lee
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| |
Collapse
|
11
|
Chen WC, Chen LC, Liu FJ, Tsai WC, Tung BH, Venkatesan M, Tsai ML, Lin JH, Kuo CC. Perovskite-Nanocrystal-Doped Cellulose Nanocrystal Ligands for Electrospun Nanofibers with Excellent Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207685. [PMID: 36897028 DOI: 10.1002/smll.202207685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Indexed: 06/08/2023]
Abstract
Because of their exceptional physical and thermal properties, cellulose nanocrystals (CNCs) are a highly promising bio-based material for reinforcing fillers. Studies have revealed that some functional groups from CNCs can be used as a capping ligand to coordinate with metal nanoparticles or semiconductor quantum dots during the fabrication of novel complex materials. Therefore, through CNCs ligand encapsulation and electrospinning, perovskite-NC-embedded nanofibers with exceptional optical and thermal stability are demonstrated. The results indicate that, after continuous irradiation or heat cycling, the relative photoluminescence (PL) emission intensity of the CNCs-capped perovskite-NC-embedded nanofibers is maintained at ≈90%. However, the relative PL emission intensity of both ligand-free and long-alkyl-ligand-doped perovskite-NC-embedded nanofibers decrease to almost 0%. These results are attributable to the formation of specific clusters of perovskite NCs along with the CNCs structure and thermal property improvement of polymers. CNCs-doped luminous complex materials offer a promising avenue for stability-demanding optoelectronic devices and other novel optical applications.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
- Department of Chemical Engineering and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Lung-Chih Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Fu-Jie Liu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Wei-Chen Tsai
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Bo-Han Tung
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Meng-Lin Tsai
- Institute of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Ja-Hon Lin
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| |
Collapse
|
12
|
Gunnarsson WB, Roh K, Zhao L, Murphy JP, Grede AJ, Giebink NC, Rand BP. Toward Nonepitaxial Laser Diodes. Chem Rev 2023. [PMID: 37219995 DOI: 10.1021/acs.chemrev.2c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Thin-film organic, colloidal quantum dot, and metal halide perovskite semiconductors are all being pursued in the quest for a wavelength-tunable diode laser technology that does not require epitaxial growth on a traditional semiconductor substrate. Despite promising demonstrations of efficient light-emitting diodes and low-threshold optically pumped lasing in each case, there are still fundamental and practical barriers that must be overcome to reliably achieve injection lasing. This review outlines the historical development and recent advances of each material system on the path to a diode laser. Common challenges in resonator design, electrical injection, and heat dissipation are highlighted, as well as the different optical gain physics that make each system unique. The evidence to date suggests that continued progress for organic and colloidal quantum dot laser diodes will likely hinge on the development of new materials or indirect pumping schemes, while improvements in device architecture and film processing are most critical for perovskite lasers. In all cases, systematic progress will require methods that can quantify how close new devices get with respect to their electrical lasing thresholds. We conclude by discussing the current status of nonepitaxial laser diodes in the historical context of their epitaxial counterparts, which suggests that there is reason to be optimistic for the future.
Collapse
Affiliation(s)
- William B Gunnarsson
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Kwangdong Roh
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Lianfeng Zhao
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - John P Murphy
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alex J Grede
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Noel C Giebink
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Barry P Rand
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Getachew G, Wibrianto A, Rasal AS, Batu Dirersa W, Chang JY. Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
14
|
Saikia A, Newar R, Das S, Singh A, Deuri DJ, Baruah A. Scopes and Challenges of Microfluidic Technology for Nanoparticle Synthesis, Photocatalysis and Sensor Applications: A Comprehensive Review. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
15
|
Bhowmick M, Ullrich B, Murchland M, Zhou X, Ramkumar C. Substrate and Excitation Intensity Dependence of Saturable Absorption in Perovskite Quantum Dot Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:871. [PMID: 36903749 PMCID: PMC10005065 DOI: 10.3390/nano13050871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Saturable absorption in perovskite quantum dot (PQD) films, leading to saturation in photoluminescence (PL), is reported. PL of drop-casting films was used to probe how excitation intensity and host-substrate influence the growth of PL intensity. The PQD films were deposited on single-crystal GaAs, InP, Si wafers and glass. Saturable absorption was confirmed through PL saturation in all films, with different excitation intensity thresholds, suggesting strong substrate-dependent optical properties, resulting from absorption nonlinearities in the system. The observations extend our former studies (Appl. Phys. Lett., 2021, 119, 19, 192103), wherein we pointed out that the PL saturation in QDs can be used to create all-optical switches in combination with a bulk semiconductor host.
Collapse
Affiliation(s)
- Mithun Bhowmick
- Department of Mathematical and Physical Sciences, Miami University, 4200 N University Blvd., Middletown, OH 45042, USA
| | | | - Madeline Murchland
- Department of Geology and Environmental Science, Miami University, 250 S Patterson Ave., Oxford, OH 45056, USA
| | - Xuan Zhou
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Chari Ramkumar
- Department of Physics, Geology & Engineering Technology, Northern Kentucky University, Nunn Drive, Highland Heights, KY 41099, USA
| |
Collapse
|
16
|
Aftenieva O, Brunner J, Adnan M, Sarkar S, Fery A, Vaynzof Y, König TAF. Directional Amplified Photoluminescence through Large-Area Perovskite-Based Metasurfaces. ACS NANO 2023; 17:2399-2410. [PMID: 36661409 PMCID: PMC9955732 DOI: 10.1021/acsnano.2c09482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Perovskite nanocrystals are high-performance, solution-processed materials with a high photoluminescence quantum yield. Due to these exceptional properties, perovskites can serve as building blocks for metasurfaces and are of broad interest for photonic applications. Here, we use a simple grating configuration to direct and amplify the perovskite nanocrystals' original omnidirectional emission. Thus far, controlling these radiation properties was only possible over small areas and at a high expense, including the risks of material degradation. Using a soft lithographic printing process, we can now reliably structure perovskite nanocrystals from the organic solution into light-emitting metasurfaces with high contrast on a large area. We demonstrate the 13-fold amplified directional radiation with an angle-resolved Fourier spectroscopy, which is the highest observed amplification factor for the perovskite-based metasurfaces. Our self-assembly process allows for scalable fabrication of gratings with predefined periodicities and tunable optical properties. We further show the influence of solution concentration on structural geometry. By increasing the perovskite concentration 10-fold, we can produce waveguide structures with a grating coupler in one printing process. We analyze our approach with numerical modeling, considering the physiochemical properties to obtain the desired geometry. This strategy makes the tunable radiative properties of such perovskite-based metasurfaces usable for nonlinear light-emitting devices and directional light sources.
Collapse
Affiliation(s)
- Olha Aftenieva
- Leibniz-Institut
für Polymerforschung e.V., Hohe Straße 6, 01069Dresden, Germany
| | - Julius Brunner
- Integrated
Centre for Applied Physics and Photonic Materials and Centre for Advancing
Electronics Dresden (cfaed), Technical University
of Dresden, Nöthnitzer Straße 61, 01187Dresden, Germany
| | - Mohammad Adnan
- Leibniz-Institut
für Polymerforschung e.V., Hohe Straße 6, 01069Dresden, Germany
| | - Swagato Sarkar
- Leibniz-Institut
für Polymerforschung e.V., Hohe Straße 6, 01069Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut
für Polymerforschung e.V., Hohe Straße 6, 01069Dresden, Germany
- Physical
Chemistry of Polymeric Materials, Technische
Universität Dresden, Bergstraße 66, 01069Dresden, Germany
| | - Yana Vaynzof
- Integrated
Centre for Applied Physics and Photonic Materials and Centre for Advancing
Electronics Dresden (cfaed), Technical University
of Dresden, Nöthnitzer Straße 61, 01187Dresden, Germany
- Center
for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062Dresden, Germany
| | - Tobias A. F. König
- Leibniz-Institut
für Polymerforschung e.V., Hohe Straße 6, 01069Dresden, Germany
- Center
for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062Dresden, Germany
- Faculty of
Chemistry and Food Chemistry, Technische
Universität Dresden, Bergstraße 66, 01069Dresden, Germany
| |
Collapse
|
17
|
Win AA, Chou KC, Zeitz DC, Todd C, Zhang JZ. Origin of the near 400 nm Absorption and Emission Band in the Synthesis of Cesium Lead Bromide Nanostructures: Metal Halide Molecular Clusters Rather Than Perovskite Magic-Sized Clusters. J Phys Chem Lett 2023; 14:116-121. [PMID: 36574605 DOI: 10.1021/acs.jpclett.2c03734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the synthesis of cesium lead bromide (CsPbBr3) perovskite quantum dots, with an electronic absorption and emission band around 510 nm, and perovskite magic-sized clusters (PMSCs), with an electronic absorption and emission band around 430 nm, another distinct absorption and emission around 400 nm is often observed. While many would attribute this band to small perovskite particles, here we show strong evidence that this band is a result of the formation of lead bromide molecular clusters (PbBr2 MCs) passivated with ligands, which do not contain the A component of the ABX3 perovskite structure. This evidence comes from a systematic comparative study of the reaction products with and without the A component under otherwise identical experimental conditions. The results support that the near 400 nm band originates from ligand-passivated PbBr2 MCs. This observation seems to be quite general and is significant in understanding the nature of the reaction products in the synthesis of metal halide perovskite nanostructures.
Collapse
Affiliation(s)
- Allison A Win
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Kai-Chun Chou
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - David C Zeitz
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Celia Todd
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
18
|
Gao L, Zhang Y, Gou L, Wang Q, Wang M, Zheng W, Wang Y, Yip HL, Zhang J. High efficiency pure blue perovskite quantum dot light-emitting diodes based on formamidinium manipulating carrier dynamics and electron state filling. LIGHT, SCIENCE & APPLICATIONS 2022; 11:346. [PMID: 36513629 PMCID: PMC9747997 DOI: 10.1038/s41377-022-00992-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/23/2022] [Accepted: 09/24/2022] [Indexed: 06/17/2023]
Abstract
Achieving high efficiency and stable pure blue colloidal perovskite quantum dot (QD) light-emitting diodes (LEDs) is still an enormous challenge because blue emitters typically exhibit high defect density, low photoluminescence quantum yield (PLQY) and easy phase dissociation. Herein, an organic cation composition modification strategy is used to synthesize high-performance pure blue perovskite quantum dots at room temperature. The synthesized FA-CsPb(Cl0.5Br0.5)3 QDs show a bright photoluminescence with a high PLQY (65%), which is 6 times higher than the undoped samples. In addition, the photophysical properties of the FA cation doping was deeply illustrated through carrier dynamics and first principal calculation, which show lower defects, longer lifetime, and more reasonable band gap structure than undoped emitters. Consequently, pure blue FA-CsPb(Cl0.5Br0.5)3 QDs light-emitting devices were fabricated and presented a maximum luminance of 1452 cd m-2, and an external quantum efficiency of 5.01 % with an emission at 474 nm. The excellent photoelectric properties mainly originate from the enhanced blue QDs emitter and effective charge injection and exciton radiation. Our finding underscores this easy and feasible room temperature doping approach as an alternative strategy to blue perovskite QD LED development.
Collapse
Affiliation(s)
- Long Gao
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Yilin Zhang
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Lijie Gou
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Qian Wang
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Meng Wang
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Yinghui Wang
- Femtosecond Laser laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Jiaqi Zhang
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, China.
| |
Collapse
|
19
|
Lee TY, Hsieh TH, Miao WC, James Singh K, Li Y, Tu CC, Chen FC, Lu WC, Kuo HC. High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4140. [PMID: 36500764 PMCID: PMC9736641 DOI: 10.3390/nano12234140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
In this study, we propose highly stable perovskite quantum dots (PQDs) coated with Al2O3 using atomic layer deposition (ALD) passivation technology. This passivation layer effectively protects the QDs from moisture infiltration and oxidation as well as from high temperatures and any changes in the material characteristics. They exhibit excellent wavelength stability and reliability in terms of current variation tests, long-term light aging tests, and temperature/humidity tests (60°/90%). A white-light system has been fabricated by integrating a micro-LED and red phosphor exhibiting a high data transmission rate of 1 Gbit/s. These results suggest that PeQDs treated with ALD passivation protection offer promising prospects in full-color micro-displays and high-speed visible-light communication (VLC) applications.
Collapse
Affiliation(s)
- Tzu-Yi Lee
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Tsau-Hua Hsieh
- Technology Development Center, InnoLux Corporation, Hsinchu 35053, Taiwan
- Institute of Communications Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wen-Chien Miao
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan
| | - Konthoujam James Singh
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yiming Li
- Institute of Communications Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chang-Ching Tu
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan
| | - Fang-Chung Chen
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wen-Chung Lu
- Executive Office, SkyTech Institute, Hsinchu 303, Taiwan
| | - Hao-Chung Kuo
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan
| |
Collapse
|
20
|
Yao J, Xu L, Wang S, Yang Z, Song J. Recent progress of single-halide perovskite nanocrystals for advanced displays. NANOSCALE 2022; 14:13990-14007. [PMID: 36125019 DOI: 10.1039/d2nr03872b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Light-emitting diodes based on lead halide perovskite nanocrystals (LHP NCs) have shown an astonishing increase in efficiency in just several years of academic research, reaching high external quantum efficiencies exceeding 20%. The extensive color-tunability and narrow emission bandwidth of LHP NCs, in particular, are of great importance in the creation of the next generation of ultra-high-definition displays, as defined by the Rec. 2020 standard recommendation. In fact, whereas the colour of LHP NCs can be easily tuned by the compositions of halogens, the ion migration in mixed-halide perovskites under the electric field will seriously affect the spectral stability and operational lifetimes of perovskite light-emitting diodes (PeLEDs). Therefore, it is essential to realize efficient colour-saturated PeLEDs based on single-halide perovskite NCs. In this review, we focus on the recent progress in LHP NC-based PeLEDs and highlight the strategy of tuning the spectral emission based on quantum confinement or cation alloying/doping in single-halide perovskite NCs. Finally, we will give an outlook on future research avenues for preparing high-efficiency pure green, red and blue PeLEDs based on single-halide perovskite NCs.
Collapse
Affiliation(s)
- Jisong Yao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | - Leimeng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | - Shalong Wang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | - Zhi Yang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | - Jizhong Song
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| |
Collapse
|
21
|
Highly Photostable Mixed‐Halide Blue CsPbBr
1.5
Cl
1.5
Perovskite Quantum Dots via Surface Treatment. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Kambe T, Yamamoto K. Development of Precisely Controlled Structures Containing Typical Metal Elements for Preparing Superatoms. CHEM LETT 2022. [DOI: 10.1246/cl.220291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tetsuya Kambe
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503
- JST-ERATO,Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503
- JST-ERATO,Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503
| |
Collapse
|
23
|
Nayak M, Nag R, Bera A, Akhtar AJ, Saha SK. Schottky analysis of formamidinium lead halide perovskite nanocrystals’ devices with enhanced stability. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Tonkaev P, Sinev IS, Rybin MV, Makarov SV, Kivshar Y. Multifunctional and Transformative Metaphotonics with Emerging Materials. Chem Rev 2022; 122:15414-15449. [PMID: 35549165 DOI: 10.1021/acs.chemrev.1c01029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Future technologies underpinning multifunctional physical and chemical systems and compact biological sensors will rely on densely packed transformative and tunable circuitry employing nanophotonics. For many years, plasmonics was considered as the only available platform for subwavelength optics, but the recently emerged field of resonant metaphotonics may provide a versatile practical platform for nanoscale science by employing resonances in high-index dielectric nanoparticles and metasurfaces. Here, we discuss the recently emerged field of metaphotonics and describe its connection to material science and chemistry. For tunabilty, metaphotonics employs a variety of the recently highlighted materials such as polymers, perovskites, transition metal dichalcogenides, and phase change materials. This allows to achieve diverse functionalities of metasystems and metasurfaces for efficient spatial and temporal control of light by employing multipolar resonances and the physics of bound states in the continuum. We anticipate expanding applications of these concepts in nanolasers, tunable metadevices, metachemistry, as well as a design of a new generation of chemical and biological ultracompact sensing devices.
Collapse
Affiliation(s)
- Pavel Tonkaev
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Ivan S Sinev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Mikhail V Rybin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia.,Ioffe Institute, Russian Academy of Science, St. Petersburg 194021, Russia
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
25
|
Fakharuddin A, Gangishetty MK, Abdi-Jalebi M, Chin SH, bin Mohd Yusoff AR, Congreve DN, Tress W, Deschler F, Vasilopoulou M, Bolink HJ. Perovskite light-emitting diodes. NATURE ELECTRONICS 2022; 5:203-216. [DOI: 10.1038/s41928-022-00745-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/02/2022] [Indexed: 09/02/2023]
|
26
|
Huang YM, James Singh K, Hsieh TH, Langpoklakpam C, Lee TY, Lin CC, Li Y, Chen FC, Chen SC, Kuo HC, He JH. Gateway towards recent developments in quantum dot-based light-emitting diodes. NANOSCALE 2022; 14:4042-4064. [PMID: 35246672 DOI: 10.1039/d1nr05288h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Quantum dots (QDs), with their excellent photoluminescence, narrow emission linewidth, and wide color coverage, provide unrivaled advantages for advanced display technologies, enabling full-color micro-LED displays. It is indeed critical to have a fundamental understanding of how QD properties affect micro-LED display performance in order to develop the most energy-efficient display device in the near future. However, to take a more detailed look at the stability issues and passivation ways of QDs is essential for accelerating the commercialization of QD-based LED technologies. Knowing about the most recent breakthroughs in QD-based LEDs can give a good indication of how they might be used in shaping the future of displays. In this review, we discuss the characteristics of QD-based LEDs for the applications of display and lighting technologies. Various approaches for synthesis and the stability improvement of QDs are addressed in detail, along with recent advancements towards QD-based LED breakthroughs. Moreover, we summarize our latest research findings in QD-based LEDs, providing valuable information about the potential of QD-based LEDs for future display technologies.
Collapse
Affiliation(s)
- Yu-Ming Huang
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
- Institute of Photonic System, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan.
| | - Konthoujam James Singh
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Tsou-Hwa Hsieh
- Technology Development Center, InnoLux Corporation, Hsinchu 35053, Taiwan
- Institute of Communications Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Catherine Langpoklakpam
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Tzu-Yi Lee
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Chien-Chung Lin
- Institute of Photonic System, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan
- Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yiming Li
- Institute of Communications Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Fang-Chung Chen
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Shih-Chen Chen
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan.
| | - Hao-Chung Kuo
- Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan.
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
27
|
Sadhu AS, Huang YM, Chen LY, Kuo HC, Lin CC. Recent Advances in Colloidal Quantum Dots or Perovskite Quantum Dots as a Luminescent Downshifting Layer Embedded on Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:985. [PMID: 35335798 PMCID: PMC8954604 DOI: 10.3390/nano12060985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023]
Abstract
The solar cell has a poor spectral response in the UV region, which affects its power conversion efficiency (PCE). The utilization of a luminescent downshifting (LDS) layer has been suggested to improve the spectral response of the photovoltaics in the short wavelength region through photoluminescence (PL) conversion and antireflection effects, which then enhance the PCE of the solar cell. Recently, colloidal quantum dots (CQDs) or perovskite quantum dots (PQDs) have been gaining prime importance as an LDS material due to their eminent optical characteristics, such as their wide absorption band, adjustable visible emission, short PL lifetime, and near-unity quantum yields. However, the instability of QDs that occurs under certain air, heat, and moisture conditions limits its commercialization. Thus, in this review, we will focus on the physical and optical characteristics of QDs. Further, we will discuss different synthesis approaches and the stability issues of QDs. Different approaches to improve the stability of QDs will be discussed in detail alongside the recent breakthroughs in QD-based solar cells for various applications and their current challenges. We expect that this review will provide an effective gateway for researchers to fabricate LDS-layer-based solar cells.
Collapse
Affiliation(s)
- Annada Sankar Sadhu
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (A.S.S.); (Y.-M.H.); (H.-C.K.)
- International Ph.D. Program in Photonics (UST), College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Ming Huang
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (A.S.S.); (Y.-M.H.); (H.-C.K.)
- Institute of Photonic System, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan;
| | - Li-Yin Chen
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (A.S.S.); (Y.-M.H.); (H.-C.K.)
| | - Hao-Chung Kuo
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (A.S.S.); (Y.-M.H.); (H.-C.K.)
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan
| | - Chien-Chung Lin
- Institute of Photonic System, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan;
- Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
28
|
Kim DW, Hyun C, Shin TJ, Jeong U. Precise Tuning of Multiple Perovskite Photoluminescence by Volume-Controlled Printing of Perovskite Precursor Solution on Cellulose Paper. ACS NANO 2022; 16:2521-2534. [PMID: 35044152 DOI: 10.1021/acsnano.1c09140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal halide perovskite nanocrystals (PeNCs) with a controlled quantum size effect have received intense interest for potential applications in optoelectronics and photonics. Here, we present a simple and innovative strategy to precisely tune the photoluminescence color of PeNCs by simply printing perovskite precursor solutions on cellulose papers. Depending on the volume of the printed precursor solutions, the PeNCs are autonomously grown into three discrete sizes, and their relative size population is controlled; accordingly, not only the number of multiple PL peaks but also their relative intensities can be precisely tuned. This autonomous size control is obtained through the efflorescence, which is advection of salt ions toward the surface of a porous medium during solvent evaporation and also through the confined crystal growth in the hierarchical structure of cellulose fibers. The infiltrated PeNCs are environmentally stable against moisture (for 3 months in air at 70% relative humidity) and strong light exposure by hydrophobic surface treatment. This study also demonstrates invisible encryption and highly secured unclonable anticounterfeiting patterns on deformable cellulose substrates and banknotes.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673 Pohang, Gyeongbuk, Republic of Korea
| | - Chohee Hyun
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, 44919 Ulsan, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, 44919 Ulsan, Republic of Korea
- Gradute School of Semiconductor Material and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, 44919 Ulsan, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673 Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
29
|
Zhang W, Zheng W, Li L, Huang P, Gong Z, Zhou Z, Sun J, Yu Y, Chen X. Dual-Band-Tunable White-Light Emission from Bi 3+ /Te 4+ Emitters in Perovskite-Derivative Cs 2 SnCl 6 Microcrystals. Angew Chem Int Ed Engl 2022; 61:e202116085. [PMID: 34981626 DOI: 10.1002/anie.202116085] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/26/2022]
Abstract
Luminescent metal halides have attracted considerable attention in next-generation solid-state lighting because of their superior optical properties and easy solution processibility. Herein, we report a new class of highly efficient and dual-band-tunable white-light emitters based on Bi3+ /Te4+ co-doped perovskite derivative Cs2 SnCl6 microcrystals. Owing to the strong electron-phonon coupling and efficient energy transfer from Bi3+ to Te4+ , the microcrystals exhibited broad dual-band white-light emission originating from the inter-configurational 3 P0,1 →1 S0 transitions of Bi3+ and Te4+ , with good stability and a high photoluminescence (PL) quantum yield of up to 68.3 %. Specifically, a remarkable transition in Bi3+ -PL lifetime from milliseconds at 10 K to microseconds at 300 K was observed, as solid evidence for the isolated Bi3+ emission. These findings provide not only new insights into the excited-state dynamics of Bi3+ and Te4+ in Cs2 SnCl6 , but also a general approach to achieve single-composition white-light emitters based on lead-free metal halides through ns2 -metal ion co-doping.
Collapse
Affiliation(s)
- Wei Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Lingyun Li
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ping Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Zhongliang Gong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Ziwei Zhou
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jinyue Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
30
|
Chen C, Nie L, Huang Y, Xi S, Liu X, Zhang X, Shi T, Liao G, Liu S, Tang Z. Embedded growth of colorful CsPbX 3(X = Cl, Br, I) nanocrystals in metal-organic frameworks at Room Temperature. NANOTECHNOLOGY 2022; 33:175603. [PMID: 35026737 DOI: 10.1088/1361-6528/ac4b2d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Herein, we develop a novel strategy for preparing all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (NCs)@Zn-based metal-organic framework (MOF) composites through interfacial synthesis. The successful embedding of fluorescent perovskite NCs in Zn-MOFs is due to thein situconfined growth, which is attributed to the re-nucleation of water-triggered phase transformation from Cs4PbBr6to CsPbBr3. The controllable synthesis of mixed-halide based composites with various emission wavelength can be achieved by adding the desired amount of halide (Cl or I) salts in the re-nucleation process. More importantly, the anion exchange reaction is inhibited among various composites with different halogen atoms by being trapped in MOFs. Besides, a white light-emitting diode (WLED) is produced using a blue LED chip with the green-emitting and red-emitting composites, which has a color coordinate of (0.3291, 0.3272) and a wide color gamut. This work provides a novel route to achieving perovskite NCs growth in MOFs, which also can be extended to the other NCs embedded in frames as well.
Collapse
Affiliation(s)
- Chen Chen
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Lei Nie
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yizhe Huang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Shuang Xi
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xingyue Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Xiwen Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Guanglan Liao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Zirong Tang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| |
Collapse
|
31
|
Lian H, Li Y, Saravanakumar S, Jiang H, Li Z, Wang J, Xu L, Zhao W, Han G. Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Zhang W, Zheng W, Li L, Huang P, Gong Z, Zhou Z, Sun J, Yu Y, Chen X. Dual‐Band‐Tunable White‐Light Emission from Bi
3+
/Te
4+
Emitters in Perovskite‐Derivative Cs
2
SnCl
6
Microcrystals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Key Laboratory of Advanced Materials Technologies College of Materials Science and Engineering Fuzhou University Fuzhou Fujian 350108 China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Lingyun Li
- Key Laboratory of Advanced Materials Technologies College of Materials Science and Engineering Fuzhou University Fuzhou Fujian 350108 China
| | - Ping Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Zhongliang Gong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ziwei Zhou
- Key Laboratory of Advanced Materials Technologies College of Materials Science and Engineering Fuzhou University Fuzhou Fujian 350108 China
| | - Jinyue Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies College of Materials Science and Engineering Fuzhou University Fuzhou Fujian 350108 China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
33
|
Pitaro M, Tekelenburg EK, Shao S, Loi MA. Tin Halide Perovskites: From Fundamental Properties to Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105844. [PMID: 34626031 PMCID: PMC11469212 DOI: 10.1002/adma.202105844] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/01/2021] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites have unique optical and electrical properties, which make them an excellent class of materials for a broad spectrum of optoelectronic applications. However, it is with photovoltaic devices that this class of materials has reached the apotheosis of popularity. High power conversion efficiencies are achieved with lead-based compounds, which are toxic to the environment. Tin-based perovskites are the most promising alternative because of their bandgap close to the optimal value for photovoltaic applications, the strong optical absorption, and good charge carrier mobilities. Nevertheless, the low defect tolerance, the fast crystallization, and the oxidative instability of tin halide perovskites currently limit their efficiency. The aim of this review is to give a detailed overview of the crystallographic, photophysical, and optoelectronic properties of tin-based perovskite compounds in their multiple forms from 3D to low-dimensional structures. At the end, recent progress in tin-based perovskite solar cells are reviewed, mainly focusing on the detail of the strategies adopted to improve the device performances. For each subtopic, the current challenges and the outlook are discussed, with the aim to stimulate the community to address the most important issues in a concerted manner.
Collapse
Affiliation(s)
- Matteo Pitaro
- Photophysics and OptoElectronicsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Eelco Kinsa Tekelenburg
- Photophysics and OptoElectronicsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Shuyan Shao
- Photophysics and OptoElectronicsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Maria Antonietta Loi
- Photophysics and OptoElectronicsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
34
|
Costa WC, Salla CAM, Ely F, Bechtold IH. Highly emissive MAPbBr 3perovskite QDs by ligand-assisted reprecipitation: the antisolvent effect. NANOTECHNOLOGY 2021; 33:095702. [PMID: 34808612 DOI: 10.1088/1361-6528/ac3bf1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/22/2021] [Indexed: 05/20/2023]
Abstract
A systematic study of the synthetic procedure to improve quantum efficiency of luminescent hybrid perovskite QDs through ligand-assisted precipitation method is presented. Particularly, the influence of the dielectric constant and dipole moment of the antisolvent on the reaction time and the photophysical properties of the QDs is highlighted. After evaluating the influence of antisolvents and optimizing experimental parameters such as reaction time and Pb excess of the precursor, colloidal crystalline MAPbBr3QDs with exceptionally high absolute quantum yield up to 97.7% in solution and 69.1% in solid film were obtained. Finally, MAPbBr3QDs precipitated from anisole were processed like UV-curable nanocomposite as efficient down conversion layer resulting in very narrow green emission light-emitting diode.
Collapse
Affiliation(s)
- Wallison C Costa
- Physics Department, Universidade Federal de Santa Catarina, Brazil
| | | | - Fernando Ely
- Center for Information Technology Renato Archer-CTI, Brazil
| | - Ivan H Bechtold
- Physics Department, Universidade Federal de Santa Catarina, Brazil
| |
Collapse
|
35
|
Koryakina IG, Afonicheva PK, Arabuli KV, Evstrapov AA, Timin AS, Zyuzin MV. Microfluidic synthesis of optically responsive materials for nano- and biophotonics. Adv Colloid Interface Sci 2021; 298:102548. [PMID: 34757247 DOI: 10.1016/j.cis.2021.102548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Recently, nanomaterials demonstrating optical response under illumination, the so-called optically responsive nanoparticles (NPs), have found their broad application as optical switchers, gas adsorbents, data storage devices, and optical and biological sensors. Unique optical properties of such nanomaterials are strongly related to their chemical composition, geometrical parameters and morphology. Microfluidic approaches for NPs' synthesis allow overcoming the known critical stages in conventional synthesis of NPs due to a high rate of heat/mass transfer and precise regulation of synthesis conditions, which results in reproducible synthesis outcomes with the desired physico-chemical properties. Here, we review the recent advances in microfluidic approach for synthesis of optically responsive nanomaterials (plasmonic, photoluminescent, shape-changeable NPs), highlighting the general background of microfluidics, common considerations in the design of microfluidic chips (MFCs), and theoretical models of the NPs' formation mechanisms. Comparative analysis of microfluidic synthesis with conventional synthesis methods is provided further, along with the recent applications of optically responsive NPs in nano- and biophotonics.
Collapse
|
36
|
Liang S, Zhang M, Biesold GM, Choi W, He Y, Li Z, Shen D, Lin Z. Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005888. [PMID: 34096108 DOI: 10.1002/adma.202005888] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/18/2021] [Indexed: 05/27/2023]
Abstract
Metal halide perovskite nanocrystals (PNCs) have recently garnered tremendous research interest due to their unique optoelectronic properties and promising applications in photovoltaics and optoelectronics. Metal halide PNCs can be combined with polymers to create nanocomposites that carry an array of advantageous characteristics. The polymer matrix can bestow stability, stretchability, and solution-processability while the PNCs maintain their size-, shape- and composition-dependent optoelectronic properties. As such, these nanocomposites possess great promise for next-generation displays, lighting, sensing, biomedical technologies, and energy conversion. The recent advances in metal halide PNC/polymer nanocomposites are summarized here. First, a variety of synthetic strategies for crafting PNC/polymer nanocomposites are discussed. Second, their array of intriguing properties is examined. Third, the broad range of applications of PNC/polymer nanocomposites is highlighted, including light-emitting diodes (LEDs), lasers, and scintillators. Finally, an outlook on future research directions and challenges in this rapidly evolving field are presented.
Collapse
Affiliation(s)
- Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mingyue Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Woosung Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yanjie He
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zili Li
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dingfeng Shen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
37
|
Mustafa SM, Barzinjy AA, Hamad AH, Hamad SM. Biosynthesis of quantum dots and their usage in solar cells: insight from the novel researches. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00359-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Chaudhary B, Kshetri YK, Kim HS, Lee SW, Kim TH. Current status on synthesis, properties and applications of CsPbX 3(X = Cl, Br, I) perovskite quantum dots/nanocrystals. NANOTECHNOLOGY 2021; 32:502007. [PMID: 34500445 DOI: 10.1088/1361-6528/ac2537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The quantum confinement effect and interesting optical properties of cesium lead halide (CsPbX3; X = Cl, Br, I) perovskite quantum dots (QDs) and nanocrystals (NCs) have given a new horizon to lighting and photonic applications. Given the exponential rate at which scientific results on CsPbX3NCs are published in the last few years, it can be expected that the research in CsPbX3NCs will further receive increasing scientific interests in the near future and possibly lead to great commercial opportunities to realize these materials based practical applications. With the rapid progress in the single-photon emitting CsPbX3QDs and NCs, practical applications of the quantum technologies such as single-photon emitting light-emitting diode, quantum lasers, quantum computing might soon be possible. But to reach at cutting edge of stable perovskite QDs/NCs, the study of fundamental insight and theoretical aspects of crystal design is yet insufficient. Even more, it has aroused many unanswered questions related to the stability, optical and electronic properties of the CsPbX3QDs. Aim of the present review is to illustrate didactically a precise study of recent progress in the synthesis, properties and applications of CsPbX3QDs and NCs. Critical issues that currently restrict the applicability of these QDs will be identified and advanced methodologies currently in the developing queue, to overcome the roadblock, will be presented. And finally, the prospects for future directions will be provided.
Collapse
Affiliation(s)
- Bina Chaudhary
- Department of Fusion Science and Technology, Sun Moon University, Chungnam, 31460, Republic of Korea
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Yuwaraj K Kshetri
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Hak-Soo Kim
- Department of Environment and Chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Soo Wohn Lee
- Department of Environment and Chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Tae-Ho Kim
- Department of Fusion Science and Technology, Sun Moon University, Chungnam, 31460, Republic of Korea
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| |
Collapse
|
39
|
Li H, Wines D, Chen B, Yumigeta K, Sayyad YM, Kopaszek J, Yang S, Ataca C, Sargent EH, Tongay S. Abnormal Phase Transition and Band Renormalization of Guanidinium-Based Organic-Inorganic Hybrid Perovskite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44964-44971. [PMID: 34519195 DOI: 10.1021/acsami.1c14521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-dimensional organic-inorganic hybrid perovskites have attracted much interest owing to their superior solar conversion performance, environmental stability, and excitonic properties compared to their three-dimensional (3D) counterparts. Among reduced-dimensional perovskites, guanidinium-based perovskites crystallize in layered one-dimensional (1D) and two-dimensional (2D). Here, our studies demonstrate how the dimensionality of the hybrid perovskite influences the chemical and physical properties under different pressures (i.e., bond distance, angle, vdW distance). Comprehensive studies show that 1D GuaPbI3 does not undergo a phase transition even up to high pressures (∼13 GPa) and its band gap monotonically reduces with pressure. In contrast, 2D Gua2PbI4 exhibits an early phase transition at 5.5 GPa and its band gap follow nonmonotonic pressure response associated with phase transition as well as other bond angle changes. Computational simulations reveal that the phase transition is related to the structural deformation and rotation of PbI6 octahedra in 2D Gua2PbI4 owing to a larger degree of freedom of deformation. The soft lattice allows them to uptake large pressures, which renders structural phase transitions possible. Overall the results offer the first insights into how layered perovskites with different dimensionality respond to structural changes driven by pressure.
Collapse
Affiliation(s)
- Han Li
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Daniel Wines
- Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Bin Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Kentaro Yumigeta
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Yasir Mohammed Sayyad
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Jan Kopaszek
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Sui Yang
- Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Can Ataca
- Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Sefaattin Tongay
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
40
|
Sekerbayev K, Mussabek G, Shabdan Y, Taurbayev Y. Ligand Assisted Control of Photoluminescence in Organometal Perovskite Nanocrystals. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2021. [DOI: 10.18321/ectj1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Organometal perovskite nanocrystals have shown remarkable properties not only in photovoltaics, but also in light-emitting devices. In this work colloidal nanocrystals of organometal perovskite CH3NH3PbBr3 (MAPBr) with effective visible photoluminescence were synthesized by the ligand assisted reprecipitation method. The studies were carried out by photoluminescence spectroscopy and optical transmission spectroscopy. Analysis of the photoluminescence and transmission spectra showed that by changing the concentration of the ligands oleylamine and octylamine, it is possible to control the size of nanocrystals and the photoluminescence wavelength due to the quantum confinement effect. It was shown that the increase in ligands concentration in MAPBr perovskite nanocrystals (NCs) solutions decreases the width of the peak which indicates a better quality of the obtained nanocrystals. An increase in the band gap indicates a decrease in the size of the nanocrystals. Replacing the ligands in the colloidal perovskite NCs solutions leads to shift of the photoluminescence peak from 456 to 535 nm.
Collapse
|
41
|
Getachew G, Huang WW, Chou TH, Rasal AS, Chang JY. Brightly luminescent (NH 4) xCs 1-xPbBr 3 quantum dots for in vitro imaging and efficient photothermal ablation therapy. J Colloid Interface Sci 2021; 605:500-512. [PMID: 34343730 DOI: 10.1016/j.jcis.2021.07.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Herein, we report for the first time a facile strategy for the highly efficient (NH4)xCs1-xPbBr3 quantum dots (QDs). By modulating the amount of ammonium, (NH4)xCs1-xPbBr3 QDs with different photoluminescence (PL) quantum yields (QY) were synthesized. The results of X-ray diffraction and X-ray photoelectron spectroscopy showed that the crystal structure of (NH4)xCs1-xPbBr3 was altered by incorporation of NH4+ cations into the CsPbBr3 lattice. The (NH4)xCs1-xPbBr3 QDs showed enhanced PL QY, higher photostability, and long-term storage stability compared to CsPbBr3 QDs. Furthermore, (NH4)xCs1-xPbBr3 QDs could be conjugated with a photothermal dye (IR780) via a one-pot reaction using poly(styrene-co-maleic anhydride) and IR780-MPTS. To the best of our knowledge, the present work is the first attempt integrating perovskite QDs and phototherapeutic molecules into one system (abbreviated as PQD-IR780), demonstrating good water dispersibility and high photothermal conversion efficiency of 57.85%. In vitro experiments performed to examine subcellular uptake showed high fluorescence brightness was observed in HeLa, B16F1, and HepG2 cancer cells cultured with PQD-IR780. The results indicate that the internalization mechanism for uptaking of PQD-IR780 inside HeLa cells is energy-dependent and caveolin-mediated endocytosis. The in vitro cell viability assays and photothermal therapy revealed that PQD-IR780 showed good biocompatibility and can induce hyperthermia upon laser irradiation.
Collapse
Affiliation(s)
- Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Wan-Wen Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Tzung-Han Chou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, Republic of China
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China; Taiwan Building Technology Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China.
| |
Collapse
|
42
|
Wu CS, Wu SC, Yang BT, Wu ZY, Chou YH, Chen P, Hsu HC. Hemispherical Cesium Lead Bromide Perovskite Single-Mode Microlasers with High-Quality Factors and Strong Purcell Enhancement. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13556-13564. [PMID: 33689258 DOI: 10.1021/acsami.0c21738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We realized a single-mode laser with an ultra-high quality factor in individual cesium lead bromide (CsPbBr3) perovskite micro-hemispheres fabricated by chemical vapor deposition. A series of lasing property analysis based on cavity size was reported under this material system. Due to good optical confinement capability of the whispering gallery resonant cavity and high optical gain of CsPbBr3 perovskite micro-hemispheres, single-mode lasing behavior was achieved with an ultra-high quality factor as large as 11,460 at room temperature. To study in detail the physical effects between lasing threshold and cavity, a set of cavity size dependence photoluminescence analyses were performed. We found that the lasing threshold increases while the cavity size decreases. Time-resolved PL analysis was conducted to confirm the relation between cavity size and lasing threshold. The larger cavity stands for longer PL lifetime and indicates easier-to-achieve carrier population inversion. Strong Purcell enhancement could be further investigated by the spontaneous emission coupling factor β and internal quantum efficiency as a function of cavity size. A high β-factor of 0.37 could be obtained from a 2.2 μm diameter hemisphere microcavity and a high Purcell factor of 14 in a 1.9 μm diameter hemisphere microcavity showing strong Purcell enhancement effect in our system.
Collapse
Affiliation(s)
- Chun-Sheng Wu
- Department of Photonics, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Sheng-Chan Wu
- Department of Photonics, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Bo-Ting Yang
- Department of Photonics, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Zong Yu Wu
- Department of Photonics, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Yu Hsun Chou
- Department of Photonics, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Peter Chen
- Department of Photonics, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Hsu-Cheng Hsu
- Department of Photonics, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| |
Collapse
|
43
|
Li Z, Sun F, Zheng Z, Chen J, Davydov AV, Deng S, Zhang H, Chen H, Liu F. High-Quality All-Inorganic Perovskite CsPbBr 3 Microsheet Crystals as Low-Loss Subwavelength Exciton-Polariton Waveguides. NANO LETTERS 2021; 21:1822-1830. [PMID: 33560855 DOI: 10.1021/acs.nanolett.0c04908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostructured all-inorganic metal halide perovskites have attracted considerable attention due to their outstanding photonic and optoelectronic properties. Particularly, they can exhibit room-temperature exciton-polaritons (EPs) capable of confining electromagnetic fields down to the subwavelength scale, enabling efficient light harvesting and guiding. However, a real-space nanoimaging study of the EPs in perovskite crystals is still absent. Additionally, few studies focused on the ambient-pressure and reliable fabrication of large-area CsPbBr3 microsheets. Here, CsPbBr3 orthorhombic microsheet single crystals were successfully synthesized under ambient pressure. Their EPs were examined using a real-space nanoimaging technique, which reveal EP waveguide modes spanning the visible to near-infrared spectral region. The EPs exhibit a sufficient long propagation length of over 16 μm and a very low propagation loss of less than 0.072 dB·μm-1. These results demonstrate the potential applications of CsPbBr3 microsheets as subwavelength waveguides in integrated optics.
Collapse
Affiliation(s)
- Zijuan Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengsheng Sun
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zebo Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Albert V Davydov
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Huairuo Zhang
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Theiss Research, Inc., La Jolla, California 92037, United States
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
44
|
Kim Y, Liu H, Liu Y, Jin B, Zhang H, Tian W, Im C. Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-1931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Li X, Gao X, Zhang X, Shen X, Lu M, Wu J, Shi Z, Colvin VL, Hu J, Bai X, Yu WW, Zhang Y. Lead-Free Halide Perovskites for Light Emission: Recent Advances and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003334. [PMID: 33643803 PMCID: PMC7887601 DOI: 10.1002/advs.202003334] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Indexed: 05/14/2023]
Abstract
Lead-based halide perovskites have received great attention in light-emitting applications due to their excellent properties, including high photoluminescence quantum yield (PLQY), tunable emission wavelength, and facile solution preparation. In spite of excellent characteristics, the presence of toxic element lead directly obstructs their further commercial development. Hence, exploiting lead-free halide perovskite materials with superior properties is urgent and necessary. In this review, the deep-seated reasons that benefit light emission for halide perovskites, which help to develop lead-free halide perovskites with excellent performance, are first emphasized. Recent advances in lead-free halide perovskite materials (single crystals, thin films, and nanocrystals with different dimensionalities) from synthesis, crystal structures, optical and optoelectronic properties to applications are then systematically summarized. In particular, phosphor-converted LEDs and electroluminescent LEDs using lead-free halide perovskites are fully examined. Ultimately, based on current development of lead-free halide perovskites, the future directions of lead-free halide perovskites in terms of materials and light-emitting devices are discussed.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Xupeng Gao
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Xiangtong Zhang
- Key Laboratory for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Centre for High‐Efficiency Display and Lighting TechnologySchool of Materials and EngineeringCollaborative Innovation Centre of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475000China
| | - Xinyu Shen
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Jinlei Wu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of EducationDepartment of Physics and EngineeringZhengzhou UniversityZhengzhou450052China
| | | | - Junhua Hu
- State Centre for International Cooperation on Designer Low‐carbon & Environmental MaterialsSchool of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - William W. Yu
- Department of Chemistry and PhysicsLouisiana State UniversityShreveportLA71115USA
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| |
Collapse
|
46
|
Bao Z, Chiu HD, Wang W, Su Q, Yamada T, Chang YC, Chen S, Kanemitsu Y, Chung RJ, Liu RS. Highly Luminescent CsPbBr 3@Cs 4PbBr 6 Nanocrystals and Their Application in Electroluminescent Emitters. J Phys Chem Lett 2020; 11:10196-10202. [PMID: 33205976 DOI: 10.1021/acs.jpclett.0c03142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zero-dimensional perovskite nanocrystals (NCs) are becoming the most attractive material due to their excellent optical performance and better stability compared with high-dimensional perovskite. However, their application in electroluminescent (EL) emitters for high-quality displays is still limited. In this work, we successfully achieved CsPbBr3@Cs4PbBr6 NCs around 13.9 ± 0.2 nm by using the hot-injection method. Additional SnBr2 was mixed in the PbBr2 precursor to provide extra Br- ions and reduce the excessive amount of Pb2+ ions to promote the formation of CsPbBr3@Cs4PbBr6. Time resolution photoluminescence analysis indicated that the green emission of our CsPbBr3@Cs4PbBr6 NCs originated from the embedded CsPbBr3 NCs, which corresponds to our previous research. The Cs4PbBr6 crystals passivated the surface of CsPbBr3 NCs, resulting in the absence of trions for the high photoluminescence quantum yield. The as-synthesized CsPbBr3@Cs4PbBr6 NCs were used to fabricate quantum dot light-emitting diode (QLED) devices with the highest current efficiency of 4.89 cd/A. This is the best performance of the CsPbBr3@Cs4PbBr6-system QLED device, which reveals the great potential of CsPbBr3@Cs4PbBr6 NCs and will inspire further study of zero-dimensional perovskite composite NCs for EL emitters.
Collapse
Affiliation(s)
- Zhen Bao
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Di Chiu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Weigao Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang Su
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Takumi Yamada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yu-Chun Chang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shuming Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
47
|
Lindenthal L, Ruh T, Rameshan R, Summerer H, Nenning A, Herzig C, Löffler S, Limbeck A, Opitz AK, Blaha P, Rameshan C. Ca-doped rare earth perovskite materials for tailored exsolution of metal nanoparticles. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:1055-1070. [PMID: 33289717 DOI: 10.1107/s2052520620013475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Perovskite-type oxide materials (nominal composition ABO3) are a very versatile class of materials, and their properties are tuneable by varying and doping A- and B-site cations. When the B-site contains easily reducible cations (e.g. Fe, Co or Ni), these can exsolve under reducing conditions and form metallic nanoparticles on the surface. This process is very interesting as a novel route for the preparation of catalysts, since oxide surfaces decorated with finely dispersed catalytically active (often metallic) nanoparticles are a key requirement for excellent catalyst performance. Five doped perovskites, namely, La0.9Ca0.1FeO3-δ, La0.6Ca0.4FeO3-δ, Nd0.9Ca0.1FeO3-δ, Nd0.6Ca0.4FeO3-δ and Nd0.6Ca0.4Fe0.9Co0.1O3-δ, have been synthesized and characterized by experimental and theoretical methods with respect to their crystal structures, electronic properties, morphology and exsolution behaviour. All are capable of exsolving Fe and/or Co. Special emphasis has been placed on the influence of the A-site elemental composition on structure and exsolution capability. Using Nd instead of La increased structural distortions and, at the same time, hindered exsolution. Increasing the amount of Ca doping also increased distortions and additionally changed the Fe oxidation states, resulting in exsolution being shifted to higher temperatures as well. Using the easily reducible element Co as the B-site dopant significantly facilitated the exsolution process and led to much smaller and homogeneously distributed exsolved particles. Therefore, the Co-doped perovskite is a promising material for applications in catalysis, even more so as Co is catalytically a highly active element. The results show that fine-tuning of the perovskite composition will allow tailored exsolution of nanoparticles, which can be used for highly sophisticated catalyst design.
Collapse
Affiliation(s)
- Lorenz Lindenthal
- Institute of Materials Chemistry, TU Wien, Getreidmarkt 9/165, Vienna 1060, Austria
| | - Thomas Ruh
- Institute of Materials Chemistry, TU Wien, Getreidmarkt 9/165, Vienna 1060, Austria
| | - Raffael Rameshan
- Institute of Materials Chemistry, TU Wien, Getreidmarkt 9/165, Vienna 1060, Austria
| | - Harald Summerer
- Institute of Materials Chemistry, TU Wien, Getreidmarkt 9/165, Vienna 1060, Austria
| | - Andreas Nenning
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidmarkt 9/164, Vienna 1060, Austria
| | - Christopher Herzig
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidmarkt 9/164, Vienna 1060, Austria
| | - Stefan Löffler
- USTEM, TU Wien, Wiedner Hauptstraße 8-10/E057-02, Vienna 1060, Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidmarkt 9/164, Vienna 1060, Austria
| | - Alexander Karl Opitz
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidmarkt 9/164, Vienna 1060, Austria
| | - Peter Blaha
- Institute of Materials Chemistry, TU Wien, Getreidmarkt 9/165, Vienna 1060, Austria
| | - Christoph Rameshan
- Institute of Materials Chemistry, TU Wien, Getreidmarkt 9/165, Vienna 1060, Austria
| |
Collapse
|
48
|
Zhang W, Wei J, Gong Z, Huang P, Xu J, Li R, Yu S, Cheng X, Zheng W, Chen X. Unveiling the Excited-State Dynamics of Mn 2+ in 0D Cs 4PbCl 6 Perovskite Nanocrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002210. [PMID: 33240767 PMCID: PMC7675042 DOI: 10.1002/advs.202002210] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Indexed: 05/03/2023]
Abstract
Doping is an effective strategy for tailoring the optical properties of 0D Cs4PbX6 (X = Cl, Br, and I) perovskite nanocrystals (NCs) and expanding their applications. Herein, a unique approach is reported for the controlled synthesis of pure-phase Mn2+-doped Cs4PbCl6 perovskite NCs and the excited-state dynamics of Mn2+ is unveiled through temperature-dependent steady-state and transient photoluminescence (PL) spectroscopy. Because of the spatially confined 0D structure of Cs4PbCl6 perovskite, the NCs exhibit drastically different PL properties of Mn2+ in comparison with their 3D CsPbCl3 analogues, including significantly improved PL quantum yield in solid form (25.8%), unusually long PL lifetime (26.2 ms), large exciton binding energy, strong electron-phonon coupling strength, and an anomalous temperature evolution of Mn2+-PL decay from a dominant slow decay (in tens of ms scale) at 300 K to a fast decay (in 1 ms scale) at 10 K. These findings provide fundamental insights into the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 NCs, thus laying a foundation for future design of 0D perovskite NCs through metal ion doping toward versatile applications.
Collapse
Affiliation(s)
- Wen Zhang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouFujian350002China
- College of ScienceNorth University of ChinaTaiyuanShanxi030051China
| | - Jiaojiao Wei
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouFujian350002China
| | - Zhongliang Gong
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouFujian350002China
| | - Ping Huang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouFujian350002China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| | - Jin Xu
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouFujian350002China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouFujian350002China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| | - Shaohua Yu
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouFujian350002China
| | - Xingwen Cheng
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouFujian350002China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouFujian350002China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouFujian350002China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| |
Collapse
|
49
|
Zhang A, Lv Q. Organic‐Inorganic Hybrid Perovskite Nanomaterials: Synthesis and Application. ChemistrySelect 2020. [DOI: 10.1002/slct.202003659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Anni Zhang
- School of Science Beijing Jiaotong University Beijing 100044 China
| | - Qianrui Lv
- School of Science Beijing Jiaotong University Beijing 100044 China
| |
Collapse
|
50
|
Kumar P, Patel M, Park C, Han H, Jeong B, Kang H, Patel R, Koh WG, Park C. Highly luminescent biocompatible CsPbBr 3@SiO 2 core-shell nanoprobes for bioimaging and drug delivery. J Mater Chem B 2020; 8:10337-10345. [PMID: 33078175 DOI: 10.1039/d0tb01833c] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The encapsulation of lead halide perovskite nanocrystals (PNCs) with an inert protective layer against moisture and the environment is a promising approach to overcome hinderances for their practical use in optoelectronic and biomedical applications. Herein, a facile method for synthesizing highly luminescent and biocompatible CsPbBr3@SiO2 core-shell PNCs with a controlled SiO2 thickness, which are suitable for both cell imaging and drug delivery, is reported. The synthesized CsPbBr3@SiO2 core-shell PNCs exhibit bright green emission at 518 nm upon excitation of 374 nm. Interestingly, a significant increase in the photoluminescence intensity is observed with an increase in the SiO2 shell thickness, which varies with the increasing reaction time. Cytotoxicity results indicate that the CsPbBr3@SiO2 core-shell PNCs are nontoxic, making them suitable for in vitro cell imaging using HeLa cells. Furthermore, doxorubicin physically adsorbed on the surface of CsPbBr3@SiO2 core-shell PNCs is efficiently released in cells when the drug-loaded perovskite nanoprobes are injected in the cells, indicating that these core-shell nanoparticles can be used for drug loading and delivery. The results of this study suggest that the CsPbBr3@SiO2 core-shell PNCs can pave the way for new biomedical applications and processes.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| | - Madhumita Patel
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Chanho Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| | - Beomjin Jeong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| | - Hansol Kang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| |
Collapse
|