1
|
Zhang Q, Fu J, Lin H, Xuan G, Zhang W, Chen L, Wang G. Shining light on carbon dots: Toward enhanced antibacterial activity for biofilm disruption. Biotechnol J 2024; 19:e2400156. [PMID: 38804136 DOI: 10.1002/biot.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
In spite of tremendous efforts dedicated to addressing bacterial infections and biofilm formation, the post-antibiotic ear continues to witness a gap between the established materials and an easily accessible yet biocompatible antibacterial reagent. Here we show carbon dots (CDs) synthesized via a single hydrothermal process can afford promising antibacterial activity that can be further enhanced by exposure to light. By using citric acid and polyethyleneimine as the precursors, the photoluminescence CDs can be produced within a one-pot, one-step hydrothermal reaction in only 2 h. The CDs demonstrate robust antibacterial properties against both Gram-positive and Gram-negative bacteria and, notably, a considerable enhancement of antibacterial effect can be observed upon photo-irradiation. Mechanistic insights reveal that the CDs generate singlet oxygen (1O2) when exposed to light, leading to an augmented reactive oxygen species level. The approach for disruption of biofilms and inhibition of biofilm formation by using the CDs has also been established. Our findings present a potential solution to combat antibacterial resistance and offer a path to reduce dependence on traditional antibiotics.
Collapse
Affiliation(s)
- Qingsong Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianxin Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Guanhua Xuan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Weiwei Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Guoqing Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Alexiev U, Rühl E. Visualization of Nanocarriers and Drugs in Cells and Tissue. Handb Exp Pharmacol 2024; 284:153-189. [PMID: 37566121 DOI: 10.1007/164_2023_684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In this chapter, the visualization of nanocarriers and drugs in cells and tissue is reviewed. This topic is tightly connected to modern drug delivery, which relies on nanoscopic drug formulation approaches and the ability to probe nanoparticulate systems selectively in cells and tissue using advanced spectroscopic and microscopic techniques. We first give an overview of the breadth of this research field. Then, we mainly focus on topical drug delivery to the skin and discuss selected visualization techniques from spectromicroscopy, such as scanning transmission X-ray microscopy and fluorescence lifetime imaging. These techniques rely on the sensitive and quantitative detection of the topically applied drug delivery systems and active substances, either by exploiting their molecular properties or by introducing environmentally sensitive probes that facilitate their detection.
Collapse
Affiliation(s)
- Ulrike Alexiev
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| | - Eckart Rühl
- Physikalische Chemie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Zhang C, Shi C, Chang P, Bian S, Li B, Li J, Hou P. MRI Directed Magnevist Effective to Study Toxicity of Gd-Doped Mesoporous Carbon Nanoparticles in Mice Model. Int J Nanomedicine 2023; 18:6119-6136. [PMID: 37915747 PMCID: PMC10617538 DOI: 10.2147/ijn.s433213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Purpose Magnetic resonance imaging (MRI) has been a valuable and widely used examination technique in clinical diagnosis and prognostic efficacy evaluation. The introduction of MRI contrast agent (CA) improves its sensitivity obviously, particularly with the development of nano-CA, which presents higher contrast enhancement ability. However, systematical evaluation of their toxicity is still limited, hampering their further translation in clinics. Methods In this paper, to systematically evaluate the toxicity of nano-CA, Gd-doped mesoporous carbon nanoparticles (Gd-MCNs) prepared by a one-step hard template method were introduced as a model and clinically used MRI CA, Magnevist (Gd-DTPA) as control. Their in vitro blood compatibility, cellular toxicity, DNA damage, oxidative stress, inflammation response as well as in vivo toxicity and MR imaging behaviors were studied and compared. Results The experimental results showed that compared with Gd-DTPA, Gd-MCNs displayed negligible influence on the red blood cell shape, aggregation, BSA structure, macrophage morphology and mitochondrial function. Meanwhile, limited ROS and inflammatory cytokine production also illustrated the cellular compatibility of Gd-MCNs. For in vivo toxicity evaluation, Gd-MCNs presented acceptable in vivo biosafety even under 12 times injection for 12 weeks. More importantly, at the same concentration of Gd, Gd-MCNs displayed better contrast enhancement of tumor than Gd-DTPA, mainly coming from its high MRI relaxation rate which is nearly 9 times that of Gd-DTPA. Conclusion In this paper, we focus on the toxicity evaluation of MRI nano-CA, Gd-MCNs from different angles. With Gd-DTPA as control, Gd-MCNs appeared to be highly biocompatible and safe nanoparticles that possessed promising potentials for the use of MRI nano-CA. In the future, more research on the long-term genotoxicity and the fate of nanoparticles after being swallowed should be performed.
Collapse
Affiliation(s)
- Chun Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| | - Changzhou Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Pengzhao Chang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Shuang Bian
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| | - Bangbang Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| | - Pingfu Hou
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| |
Collapse
|
4
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
5
|
QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins. Nat Commun 2022; 13:5501. [PMID: 36127376 PMCID: PMC9489792 DOI: 10.1038/s41467-022-33084-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Rhodopsins had long been considered non-fluorescent until a peculiar voltage-sensitive fluorescence was reported for archaerhodopsin-3 (Arch3) derivatives. These proteins named QuasArs have been used for imaging membrane voltage changes in cell cultures and small animals. However due to the low fluorescence intensity, these constructs require use of much higher light intensity than other optogenetic tools. To develop the next generation of sensors, it is indispensable to first understand the molecular basis of the fluorescence and its modulation by the membrane voltage. Based on spectroscopic studies of fluorescent Arch3 derivatives, we propose a unique photo-reaction scheme with extended excited-state lifetimes and inefficient photoisomerization. Molecular dynamics simulations of Arch3, of the Arch3 fluorescent derivative Archon1, and of several its mutants have revealed different voltage-dependent changes of the hydrogen-bonding networks including the protonated retinal Schiff-base and adjacent residues. Experimental observations suggest that under negative voltage, these changes modulate retinal Schiff base deprotonation and promote a decrease in the populations of fluorescent species. Finally, we identified molecular constraints that further improve fluorescence quantum yield and voltage sensitivity. The authors present an in-depth investigation of excited state dynamics and molecular mechanism of the voltage sensing in microbial rhodopsins. Using a combination of spectroscopic investigations and molecular dynamics simulations, the study proposes the voltage-modulated deprotonation of the chromophore as the key event in the voltage sensing. Thus, molecular constraints that may further improve the fluorescence quantum yield and the voltage sensitivity are presented.
Collapse
|
6
|
Wu S, Yan Y, Hou H, Huang Z, Li D, Zhang X, Xiao Y. Polarity-Sensitive and Membrane-Specific Probe Quantitatively Monitoring Ferroptosis through Fluorescence Lifetime Imaging. Anal Chem 2022; 94:11238-11247. [PMID: 35926123 DOI: 10.1021/acs.analchem.2c01737] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a new form of regulated cell death, ferroptosis is closely related to various diseases. To interpret this biological behavior and monitor related pathological processes, it is necessary to develop appropriate detection strategies and tools. Considering that ferroptosis is featured with remarkable lipid peroxidation of various cell membranes, it is logical to detect membranes' structural and environmental changes for the direct assessment of ferroptosis. For this sake, we designed novel polarity-sensitive fluorescent probes Mem-C1C18 and Mem-C18C18, which have superior plasma membrane anchorage, high brightness, and sensitive responses to environmental polarity by changing their fluorescence lifetimes. Mem-C1C18 with much less tendency to aggregate than Mem-C18C18 outperformed the latter in high resolution fluorescence labeling of artificial vesicle membranes and plasma membranes of live cells. Thus, Mem-C1C18 was selected to monitor plasma membranes damaged along ferroptosis process for the first time, in combination with the technique of fluorescence lifetime imaging (FLIM). After treating HeLa cells with Erastin, a typical ferroptosis inducer, the mean fluorescence lifetime of Mem-C1C18 displayed a considerable increase from 3.00 to 4.93 ns, with a 64% increase (corresponding to the polarity parameter Δf increased from 0.213 to 0.232). Therefore, our idea to utilize a probe to quantitate the changes in polarity of plasma membranes proves to be an effective method in the evaluation of the ferroptosis process.
Collapse
Affiliation(s)
- Shuyao Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yu Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Haoran Hou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Dingxuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Analysis of Nanomaterials on Biological and Environmental Systems and New Analytical Methods for Improved Detection. Int J Mol Sci 2022; 23:ijms23116331. [PMID: 35683010 PMCID: PMC9181213 DOI: 10.3390/ijms23116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
The advancing field of nanoscience has produced lower mass, smaller size, and expanded chemical composition nanoparticles over recent years. These new nanoparticles have challenged traditional analytical methods of qualification and quantification. Such advancements in nanoparticles and nanomaterials have captured the attention of toxicologists with concerns regarding the environment and human health impacts. Given that nanoparticles are only limited by size (1–100 nm), their chemical and physical characteristics can drastically change and thus alter their overall nanotoxicity in unpredictable ways. A significant limitation to the development of nanomaterials is that traditional regulatory and scientific methods used to assess the biological and environmental toxicity of chemicals do not generally apply to the assessment of nanomaterials. Significant research effort has been initiated, but much more is still needed to develop new and improved analytical measurement methods for detecting and quantitating nanomaterials in biological and environmental systems.
Collapse
|
8
|
Pearl WG, Perevedentseva EV, Karmenyan AV, Khanadeev VA, Wu SY, Ma YR, Khlebtsov NG, Cheng CL. Multifunctional plasmonic gold nanostars for cancer diagnostic and therapeutic applications. JOURNAL OF BIOPHOTONICS 2022; 15:e202100264. [PMID: 34784104 DOI: 10.1002/jbio.202100264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Gold nanostar (AuNSt) has gained great attention in bioimaging and cancer therapy due to their tunable surface plasmon resonance across the visible-near infrared range. Photothermal treatment and imaging capabilities including fluorescence lifetime imaging at two-photon excitation (TP-FLIM) and dark-field microscopic imaging are considered in this work. Two types of AuNSts having plasmon absorption peaks centred at 600 and 750 nm wavelength were synthesized and studied. Both NSts exhibited low cytotoxicity on A549 human lung carcinoma cells. A strong emission at two-photon excitation was observed for both NSts, well-distinguishable from lifetimes of bio-object autofluorescence. High efficiency in raising the temperature in the NSts environment with the irradiation of near infrared, AuNSts triggered photothermal effect. The decreased cell viability of A549 observed via MTT test and the cell membrane damaging was demonstrated with trypan blue staining. These results suggest AuNSts can be agents with tunable plasmonic properties for imaging and photothermal therapy.
Collapse
Affiliation(s)
- Wrenit Gem Pearl
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Elena V Perevedentseva
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
- P. N. Lebedev Physics Institute of Russian Academy of Sciences, Moscow, Russia
| | | | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov State Vavilov Agrarian University, Saratov, Russia
| | - Sheng-Yun Wu
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Yuan-Ron Ma
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov State University, Saratov, Russia
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
9
|
Acute exposure to gold nanoparticles aggravates lipopolysaccharide-induced liver injury by amplifying apoptosis via ROS-mediated macrophage-hepatocyte crosstalk. J Nanobiotechnology 2022; 20:37. [PMID: 35057820 PMCID: PMC8772144 DOI: 10.1186/s12951-021-01203-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background Gold nanoparticles (AuNPs) are increasingly utilized in industrial and biomedical fields, thereby demanding a more comprehensive knowledge about their safety. Current toxicological studies mainly focus on the unfavorable biological impact governed by the physicochemical properties of AuNPs, yet the consequences of their interplay with other bioactive compounds in biological systems are poorly understood. Results In this study, AuNPs with a size of 10 nm, the most favorable size for interaction with host cells, were given alone or in combination with bacterial lipopolysaccharide (LPS) in mice or cultured hepatic cells. The results demonstrated that co exposure to AuNPs and LPS exacerbated fatal acute liver injury (ALI) in mice, although AuNPs are apparently non-toxic when administered alone. AuNPs do not enhance systemic or hepatic inflammation but synergize with LPS to upregulate hepatic apoptosis by augmenting macrophage-hepatocyte crosstalk. Mechanistically, AuNPs and LPS coordinate to upregulate NADPH oxidase 2 (NOX2)-dependent reactive oxygen species (ROS) generation and activate the intrinsic apoptotic pathway in hepatic macrophages. Extracellular ROS generation from macrophages is then augmented, thereby inducing calcium-dependent ROS generation and promoting apoptosis in hepatocytes. Furthermore, AuNPs and LPS upregulate scavenger receptor A expression in macrophages and thus increase AuNP uptake to mediate further apoptosis induction. Conclusions This study reveals a profound impact of AuNPs in aggravating the hepatotoxic effect of LPS by amplifying ROS-dependent crosstalk in hepatic macrophages and hepatocytes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01203-w.
Collapse
|
10
|
Yang Z, Fu X, Ma D, Wang Y, Peng L, Shi J, Sun J, Gan X, Deng Y, Yang W. Growth Factor-Decorated Ti 3 C 2 MXene/MoS 2 2D Bio-Heterojunctions with Quad-Channel Photonic Disinfection for Effective Regeneration of Bacteria-Invaded Cutaneous Tissue. SMALL 2021; 17:e2103993. [PMID: 34713567 DOI: 10.1002/smll.202103993] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Phototherapy has recently emerged as a competent alternative for combating bacterial infection without antibiotic-resistance risk. However, owing to the bacterial endogenous antioxidative glutathione (GSH), the exogenous reactive oxygen species (ROS) generated by phototherapy can hardly behave desired antibacterial effect. To address the daunting issue, a quad-channel synergistic antibacterial nano-platform of Ti3 C2 MXene/MoS2 (MM) 2D bio-heterojunctions (2D bio-HJs) are devised and fabricated, which possess photothermal, photodynamic, peroxidase-like (POD-like), and glutathione oxidase-like properties. Under near-infrared (NIR) laser exposure, the 2D bio-HJs both yield localized heating and raise extracellular ROS level, leading to bacterial inactivation. Synchronously, Mo4+ ions can easily invade into ruptured bacterial membrane, arouse intracellular ROS, and deplete intracellular GSH. Squeezed between the "ROS hurricane" from both internal and external sides, the bacteria are hugely slaughtered. After being further loaded with fibroblast growth factor-21 (FGF21), the 2D bio-HJs exhibit benign cytocompatibility and boost cell migration in vitro. Notably, the in vivo evaluations employing a mouse-infected wound model demonstrate the excellent photonic disinfection towards bacterial infection and accelerated wound healing. Overall, this work provides a powerful nano-platform for the effective regeneration of bacteria-invaded cutaneous tissue using 2D bio-HJs.
Collapse
Affiliation(s)
- Zhaopu Yang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinliang Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Daichuan Ma
- Analytical & Testing Center, Sichuan University, Chengdu, 610065, China
| | - Yulin Wang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Liming Peng
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiacheng Shi
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiyu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Weizhong Yang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
Huynh GT, Kesarwani V, Walker JA, Frith JE, Meagher L, Corrie SR. Review: Nanomaterials for Reactive Oxygen Species Detection and Monitoring in Biological Environments. Front Chem 2021; 9:728717. [PMID: 34568279 PMCID: PMC8461210 DOI: 10.3389/fchem.2021.728717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) and dissolved oxygen play key roles across many biological processes, and fluorescent stains and dyes are the primary tools used to quantify these species in vitro. However, spatio-temporal monitoring of ROS and dissolved oxygen in biological systems are challenging due to issues including poor photostability, lack of reversibility, and rapid off-site diffusion. In particular, ROS monitoring is hindered by the short lifetime of ROS molecules and their low abundance. The combination of nanomaterials and fluorescent detection has led to new opportunities for development of imaging probes, sensors, and theranostic products, because the scaffolds lead to improved optical properties, tuneable interactions with cells and media, and ratiometric sensing robust to environmental drift. In this review, we aim to critically assess and highlight recent development in nanosensors and nanomaterials used for the detection of oxygen and ROS in biological systems, and their future potential use as diagnosis tools.
Collapse
Affiliation(s)
- Gabriel T. Huynh
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Vidhishri Kesarwani
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Julia A. Walker
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Jessica E. Frith
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
- Department of Material Science and Engineering, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Material Science and Engineering, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| | - Simon R. Corrie
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Dong P, Stellmacher J, Bouchet LM, Nieke M, Kumar A, Osorio‐Blanco ER, Nagel G, Lohan SB, Teutloff C, Patzelt A, Schäfer‐Korting M, Calderón M, Meinke MC, Alexiev U. A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pin Dong
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Freie Universität Berlin Institute of Pharmacy Berlin Germany
| | - Johannes Stellmacher
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| | - Lydia M. Bouchet
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | - Marius Nieke
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
- Humboldt-Universität zu Berlin Institute of Biology Berlin Germany
| | - Amit Kumar
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | | | - Gregor Nagel
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | - Silke B. Lohan
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Christian Teutloff
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | | | - Marcelo Calderón
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
- POLYMAT Faculty of Chemistry University of the Basque Country UPV/EHU 20018 Donostia-San Sebastián Spain
- IKERBASQUE Basque Foundation for Science 48013 Bilbao Spain
| | - Martina C. Meinke
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ulrike Alexiev
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| |
Collapse
|
13
|
Dong P, Stellmacher J, Bouchet LM, Nieke M, Kumar A, Osorio‐Blanco ER, Nagel G, Lohan SB, Teutloff C, Patzelt A, Schäfer‐Korting M, Calderón M, Meinke MC, Alexiev U. A Dual Fluorescence-Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM-EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:14938-14944. [PMID: 33544452 PMCID: PMC8251738 DOI: 10.1002/anie.202012852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/27/2021] [Indexed: 12/30/2022]
Abstract
Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching. Here, we solved this problem and present the molecular design of a dual label (DL) compound comprising a highly fluorescent dye together with an EPR spin probe, which also renders the fluorescence lifetime to be concentration sensitive. The DL can easily be coupled to the biomolecule of choice, enabling in vivo and in vitro applications. This novel approach paves the way for elegant studies ranging from fundamental biological investigations to preclinical drug research, as shown in proof-of-principle penetration experiments in human skin ex vivo.
Collapse
Affiliation(s)
- Pin Dong
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Freie Universität BerlinInstitute of PharmacyBerlinGermany
| | - Johannes Stellmacher
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| | - Lydia M. Bouchet
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | - Marius Nieke
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
- Humboldt-Universität zu BerlinInstitute of BiologyBerlinGermany
| | - Amit Kumar
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | | | - Gregor Nagel
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | - Silke B. Lohan
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Christian Teutloff
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | | | - Marcelo Calderón
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
- POLYMATFaculty of ChemistryUniversity of the Basque CountryUPV/EHU20018Donostia-San SebastiánSpain
- IKERBASQUEBasque Foundation for Science48013BilbaoSpain
| | - Martina C. Meinke
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Ulrike Alexiev
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| |
Collapse
|
14
|
Imaging Biomarkers for Monitoring the Inflammatory Redox Landscape in the Brain. Antioxidants (Basel) 2021; 10:antiox10040528. [PMID: 33800685 PMCID: PMC8065574 DOI: 10.3390/antiox10040528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation is one key process in driving cellular redox homeostasis toward oxidative stress, which perpetuates inflammation. In the brain, this interplay results in a vicious cycle of cell death, the loss of neurons, and leakage of the blood–brain barrier. Hence, the neuroinflammatory response fuels the development of acute and chronic inflammatory diseases. Interrogation of the interplay between inflammation, oxidative stress, and cell death in neurological tissue in vivo is very challenging. The complexity of the underlying biological process and the fragility of the brain limit our understanding of the cause and the adequate diagnostics of neuroinflammatory diseases. In recent years, advancements in the development of molecular imaging agents addressed this limitation and enabled imaging of biomarkers of neuroinflammation in the brain. Notable redox biomarkers for imaging with positron emission tomography (PET) tracers are the 18 kDa translocator protein (TSPO) and monoamine oxygenase B (MAO–B). These findings and achievements offer the opportunity for novel diagnostic applications and therapeutic strategies. This review summarizes experimental as well as established pharmaceutical and biotechnological tools for imaging the inflammatory redox landscape in the brain, and provides a glimpse into future applications.
Collapse
|
15
|
Influence of Oxidative Stress on Time-Resolved Oxygen Detection by [Ru(Phen) 3] 2+ In Vivo and In Vitro. Molecules 2021; 26:molecules26020485. [PMID: 33477558 PMCID: PMC7831141 DOI: 10.3390/molecules26020485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
Detection of tissue and cell oxygenation is of high importance in fundamental biological and in many medical applications, particularly for monitoring dysfunction in the early stages of cancer. Measurements of the luminescence lifetimes of molecular probes offer a very promising and non-invasive approach to estimate tissue and cell oxygenation in vivo and in vitro. We optimized the evaluation of oxygen detection in vivo by [Ru(Phen)3]2+ in the chicken embryo chorioallantoic membrane model. Its luminescence lifetimes measured in the CAM were analyzed through hierarchical clustering. The detection of the tissue oxygenation at the oxidative stress conditions is still challenging. We applied simultaneous time-resolved recording of the mitochondrial probe MitoTrackerTM OrangeCMTMRos fluorescence and [Ru(Phen)3]2+ phosphorescence imaging in the intact cell without affecting the sensitivities of these molecular probes. [Ru(Phen)3]2+ was demonstrated to be suitable for in vitro detection of oxygen under various stress factors that mimic oxidative stress: other molecular sensors, H2O2, and curcumin-mediated photodynamic therapy in glioma cancer cells. Low phototoxicities of the molecular probes were finally observed. Our study offers a high potential for the application and generalization of tissue oxygenation as an innovative approach based on the similarities between interdependent biological influences. It is particularly suitable for therapeutic approaches targeting metabolic alterations as well as oxygen, glucose, or lipid deprivation.
Collapse
|
16
|
Graceffa V. Therapeutic Potential of Reactive Oxygen Species: State of the Art and Recent Advances. SLAS Technol 2020; 26:140-158. [PMID: 33345675 DOI: 10.1177/2472630320977450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the last decade, several studies have proven that when at low concentration reactive oxygen species (ROS) show an adaptive beneficial effect and posited the idea that they can be utilized as inexpensive and convenient inducers of tissue regeneration. On the other hand, the recent discovery that cancer cells are more sensitive to oxidative damage paved the way for their use in the selective killing of tumor cells, and sensors to monitor ROS production during cancer treatment are under extensive investigation. Nevertheless, although ROS-activated signaling pathways are well established, less is known about the mechanisms underlying the switch from an anabolic to a cytotoxic response. Furthermore, a high variability in biological response is observed between different modalities of administration, cell types, donor ages, eventual concomitant diseases, and external microenvironment. On the other hand, available preclinical studies are scarce, whereas the quest for the most suitable systems for in vivo delivery is still elusive. Furthermore, new strategies to control the temporal pattern of ROS release need to be developed, if considering their tumorigenic potential. This review initially discusses ROS mechanisms of action and their potential application in stem cell biology, tissue engineering, and cancer therapy. It then outlines the state of art of ROS-based drugs and identifies challenges faced in translating ROS research into clinical practice.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Bellanode, Sligo, Ireland.,Department of Life Sciences, Institute of Technology Sligo, Bellanode, Sligo, Ireland
| |
Collapse
|
17
|
Abstract
Nanoparticles from natural and anthropogenic sources are abundant in the environment, thus human exposure to nanoparticles is inevitable. Due to this constant exposure, it is critically important to understand the potential acute and chronic adverse effects that nanoparticles may cause to humans. In this review, we explore and highlight the current state of nanotoxicology research with a focus on mechanistic understanding of nanoparticle toxicity at organ, tissue, cell, and biomolecular levels. We discuss nanotoxicity mechanisms, including generation of reactive oxygen species, nanoparticle disintegration, modulation of cell signaling pathways, protein corona formation, and poly(ethylene glycol)-mediated immunogenicity. We conclude with a perspective on potential approaches to advance current understanding of nanoparticle toxicity. Such improved understanding may lead to mitigation strategies that could enable safe application of nanoparticles in humans. Advances in nanotoxicity research will ultimately inform efforts to establish standardized regulatory frameworks with the goal of fully exploiting the potential of nanotechnology while minimizing harm to humans.
Collapse
Affiliation(s)
- Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Evan M Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA; .,Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma 73019, USA.,Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
18
|
Brodwolf R, Volz-Rakebrand P, Stellmacher J, Wolff C, Unbehauen M, Haag R, Schäfer-Korting M, Zoschke C, Alexiev U. Faster, sharper, more precise: Automated Cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue. Theranostics 2020; 10:6322-6336. [PMID: 32483455 PMCID: PMC7255044 DOI: 10.7150/thno.42581] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Fluorescence microscopy is widely used for high content screening in 2D cell cultures and 3D models. In particular, 3D tissue models are gaining major relevance in modern drug development. Enabling direct multiparametric evaluation of complex samples, fluorescence lifetime imaging (FLIM) adds a further level to intensity imaging by the sensitivity of the fluorescence lifetime to the microenvironment. However, the use of FLIM is limited amongst others by the acquisition of sufficient photon numbers without phototoxic effects in live cells. Herein, we developed a new cluster-based analysis method to enhance insight, and significantly speed up analysis and measurement time for the accurate translation of fluorescence lifetime information into pharmacological pathways. Methods: We applied a fluorescently-labeled dendritic core-multishell nanocarrier and its cargo Bodipy as molecules of interest (MOI) to human cells and reconstructed human tissue. Following the sensitivity and specificity assessment of the fitting-free Cluster-FLIM analysis of data in silico and in vitro, we evaluated the dynamics of cellular molecule uptake and intracellular interactions. For 3D live tissue investigations, we applied multiphoton (mp) FLIM. Owing to Cluster-FLIM's statistics-based fitting-free analysis, we utilized this approach for automatization. Results: To discriminate the fluorescence lifetime signatures of 5 different fluorescence species in a single color channel, the Cluster-FLIM method requires only 170, respectively, 90 counts per pixel to obtain 95% sensitivity (hit rate) and 95% specificity (correct rejection rate). Cluster-FLIM revealed cellular interactions of MOIs, representing their spatiotemporal intracellular fate. In a setting of an automated workflow, the assessment of lysosomal trapping of the MOI revealed relevant differences between normal and tumor cells, as well as between 2D and 3D models. Conclusion: The automated Cluster-FLIM tool is fitting-free, providing images with enhanced information, contrast, and spatial resolution at short exposure times and low fluorophore concentrations. Thereby, Cluster-FLIM increases the applicability of FLIM in high content analysis of target molecules in drug development and beyond.
Collapse
|
19
|
Wolf A, Wonneberg J, Balke J, Alexiev U. Electronation-dependent structural change at the proton exit side of cytochrome c oxidase as revealed by site-directed fluorescence labeling. FEBS J 2019; 287:1232-1246. [PMID: 31597007 DOI: 10.1111/febs.15084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 10/04/2019] [Indexed: 02/05/2023]
Abstract
Cytochrome c oxidase (CcO), the terminal enzyme of the respiratory chain of mitochondria and many aerobic prokaryotes that function as a redox-coupled proton pump, catalyzes the reduction of molecular oxygen to water. As part of the respiratory chain, CcO contributes to the proton motive force driving ATP synthesis. While many aspects of the enzyme's catalytic mechanisms have been established, a clear picture of the proton exit pathway(s) remains elusive. Here, we aim to gain insight into the molecular mechanisms of CcO through the development of a new homologous mutagenesis/expression system in Paracoccus denitrificans, which allows mutagenesis of CcO subunits 1, 2, and 3. Our system provides true single thiol-reactive CcO variants in a three-subunit base variant with unique labeling sites for the covalent attachment of reporter groups sensitive to nanoenvironmental factors like protonation, polarity, and hydration. To this end, we exchanged six residues on both membrane sides of CcO for cysteines. We show redox-dependent wetting changes at the proton uptake channel and increased polarity at the proton exit side of CcO upon electronation. We suggest an electronation-dependent conformational change to play a role in proton exit from CcO.
Collapse
Affiliation(s)
- Alexander Wolf
- Institute of Experimental Physics, Freie Universität Berlin, Germany
| | - Juliane Wonneberg
- Institute of Experimental Physics, Freie Universität Berlin, Germany
| | - Jens Balke
- Institute of Experimental Physics, Freie Universität Berlin, Germany
| | - Ulrike Alexiev
- Institute of Experimental Physics, Freie Universität Berlin, Germany
| |
Collapse
|
20
|
Huang YC, Lei KF, Liaw JW, Tsai SW. The influence of laser intensity activated plasmonic gold nanoparticle-generated photothermal effects on cellular morphology and viability: a real-time, long-term tracking and monitoring system. Photochem Photobiol Sci 2019; 18:1419-1429. [PMID: 30946422 DOI: 10.1039/c9pp00054b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, a microfluidic apparatus embedded with microstructures was designed and aligned with a laser and dark-field microscope for real-time, long-term observation of photothermal effects on cells. Gold nanorods (AuNRs, 10 ppm) were incubated with MG-63 human osteosarcoma cells for 3 h. Then, the cells were exposed to a continuous-wave laser at a wavelength of 830 nm for 10, 20, and 30 min at 5, 9, 14, 24, and 32 W cm-2. Subsequent changes in morphology were observed. Under different conditions, cell membrane blebbing occurred at different times, indicating that actin filaments were destroyed in large quantities and apoptosis was induced. In suitable conditions, we first induced slight cell injury by causing cytoskeletal fractures with a high-energy laser; then, the cells were irradiated with a low-energy laser at 0.3 W cm-2. We found that among cells treated with the high-energy laser, cells treated additionally with a low-energy laser showed extended viability compared with cells that did not receive the additional treatment.
Collapse
Affiliation(s)
- Yu-Chieh Huang
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taiwan.
| | | | | | | |
Collapse
|