1
|
Tang H, Chen F, Gao W, Cai X, Lin Z, Kang R, Tang D, Liu J. Cetylpyridinium chloride triggers paraptosis to suppress pancreatic tumor growth via the ERN1-MAP3K5-p38 pathway. iScience 2024; 27:110598. [PMID: 39211547 PMCID: PMC11357866 DOI: 10.1016/j.isci.2024.110598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid malignancy with low 5-year survival and limited treatment options. We conducted an unbiased screening using FDA-approved drug and demonstrated that cetylpyridinium chloride (CPC), a component commonly found in mouthwash and known for its robust bactericidal and antifungal attributes, exhibits anticancer activity against human PDAC cells. CPC inhibited PDAC cell growth and proliferation by inducing paraptosis, rather than apoptosis. Mechanistically, CPC induced paraptosis through the initiation of endoplasmic reticulum stress, leading to the accumulation of misfolded proteins. Subsequently, the endoplasmic reticulum stress to nucleus signaling 1 (ERN1)-mitogen-activated protein kinase kinase kinase 5 (MAP3K5)-p38 mitogen-activated protein kinase (MAPK) signaling pathway was activated, ultimately culminating in the induction of paraptosis. In vivo experiments, including those involving patient-derived xenografts, orthotopic models, and genetically engineered mouse models of PDAC, provided further evidence of CPC's effectiveness in suppressing the growth of pancreatic tumors.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Wanli Gao
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| |
Collapse
|
2
|
Peña-Díaz S, Olsen WP, Wang H, Otzen DE. Functional Amyloids: The Biomaterials of Tomorrow? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312823. [PMID: 38308110 DOI: 10.1002/adma.202312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Functional amyloid (FAs), particularly the bacterial proteins CsgA and FapC, have many useful properties as biomaterials: high stability, efficient, and controllable formation of a single type of amyloid, easy availability as extracellular material in bacterial biofilm and flexible engineering to introduce new properties. CsgA in particular has already demonstrated its worth in hydrogels for stable gastrointestinal colonization and regenerative tissue engineering, cell-specific drug release, water-purification filters, and different biosensors. It also holds promise as catalytic amyloid; existing weak and unspecific activity can undoubtedly be improved by targeted engineering and benefit from the repetitive display of active sites on a surface. Unfortunately, FapC remains largely unexplored and no application is described so far. Since FapC shares many common features with CsgA, this opens the window to its development as a functional scaffold. The multiple imperfect repeats in CsgA and FapC form a platform to introduce novel properties, e.g., in connecting linkers of variable lengths. While exploitation of this potential is still at an early stage, particularly for FapC, a thorough understanding of their molecular properties will pave the way for multifunctional fibrils which can contribute toward solving many different societal challenges, ranging from CO2 fixation to hydrolysis of plastic nanoparticles.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - William Pallisgaard Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, 8000, Denmark
| |
Collapse
|
3
|
Qin D, Wang M, Cheng W, Chen J, Wang F, Sun J, Ma C, Zhang Y, Zhang H, Li H, Liu K, Li J. Spidroin-mimetic Engineered Protein Fibers with High Toughness and Minimized Batch-to-batch Variations through β-sheets Co-assembly. Angew Chem Int Ed Engl 2024; 63:e202400595. [PMID: 38321642 DOI: 10.1002/anie.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Synthetic spidroin fibers have not yet attained the same level of toughness and stability as natural spider silks due to the complexity of composition and hierarchical structure. Particularly, understanding the intricate interactions between spidroin components in spider fiber is still elusive. Herein, we report modular design and preparation of spidroin-mimetic fibers composed of a conservative C-terminus spidroin module, two different natural β-sheets modules, and a non-spidroin random-coil module. The resulting fibers exhibit a toughness of ~200 MJ/m3, reaching the highest value among the reported artificial spider silks. The interactions between two components of recombinant spidroins facilitate the intermolecular co-assembly of β-sheets, thereby enhancing the mechanical strength and reducing batch-to-batch variability in the dual-component spidroin fibers. Additionally, the dual-component spidroin fibers offer potential applications in implantable or even edible devices. Therefore, our work presents a generic strategy to develop high-performance protein fibers for diverse translations in different scenarios.
Collapse
Affiliation(s)
- Dawen Qin
- School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Mengyao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Wenhao Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Jing Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 200241, Shanghai, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Huanrong Li
- School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|
4
|
Li Y, Zhang K, Ai X, Zhang Q, Jiang L, Long J, Xu H, Feng C, Zhang Y, Tang G, Chong F, Wang L, Huang B. A Biomimetic Peptide Functions as Specific Extracellular Matrix for Quiescence of Stem Cells against Intervertebral Disc Degeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300578. [PMID: 37423970 DOI: 10.1002/smll.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/03/2023] [Indexed: 07/11/2023]
Abstract
Maintaining quiescence of stem cells is a potential way to decrease cell nutrition demand for restoring the organization. Herein, a biomimetic peptide to maintain quiescence of stem cells through C-X-C motif chemokine ligand 8 (CXCL8)-C-X-C motif chemokine receptor 1 (CXCR1) pathway against intervertebral disc degeneration (IVDD) is developed. First, it is confirmed that quiescence can be induced via inhibiting phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway in nucleus pulposus stem cells (NPSCs). Meanwhile, it is well known that CXCR1, a chemokine receptor, can be targeted by CXCL8, resulting in cell proliferation via activating PI3K/Akt/mTOR pathway. Second, a biomimetic peptide (OAFF) that can bind to CXCR1 and form fibrous networks on NPSCs, mimicking extracellular matrix formation is developed. The multivalent effect and long-term binding to CXCR1 on NPSCs of OAFF fibers offer forcefully competitive inhibition with natural CXCL8, which induces NPSCs quiescence and ultimately overcomes obstacle in intradiscal injection therapy. In rat caudal disc puncture model, OAFF nanofibers still maintain at 5 weeks after operation and inhibit degeneration process of intervertebral disc in terms of histopathology and imageology. In situ fibrillogenesis of biomimetic peptide on NPSCs provides promising stem cells for intradiscal injection therapy against IVDD.
Collapse
Affiliation(s)
- Yuan Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Xuezheng Ai
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Qingshi Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Lu Jiang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Jiang Long
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Huange Xu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Yaqing Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Guoke Tang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, P. R. China
| | - Fanli Chong
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| |
Collapse
|
5
|
Xing X, Liu Y, Lin RD, Zhang Y, Wu ZL, Yu XQ, Li K, Wang N. Development of an Integrated System for Highly Selective Photoenzymatic Synthesis of Formic Acid from CO 2. CHEMSUSCHEM 2023; 16:e202201956. [PMID: 36482031 DOI: 10.1002/cssc.202201956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Herein, a Zr-based dual-ligand MOFs with pre-installed Rh complex was employed for NADH regeneration in situ and also used for immobilization of formic acid dehydrogenase (FDH) in order to realize a highly efficient CO2 fixation system. Then, based on the detailed investigations into the photochemical and electrochemical properties, it is demonstrated that the introduction of the photosensitive meso-tetra(4-carboxyphenyl) porphin (TCPP) ligands increased the catalytic active sites and improved photoelectric properties. Furthermore, the electron mediator Rh complex, anchored on the zirconium-based dual-ligand MOFs, enhanced the efficiency of electron transfer efficiency and facilitated the separation of photogenerated electrons and holes. Compared with UiO-66-NH2 , Rh-H2 TCPP-UiO-66-NH2 exhibits an optimized valence band structure and significantly improved photocatalytic activity for NAD+ reduction, resulting the synthesis of formic acid from CO2 increased from 150 μg mL-1 (UiO-66-NH2 ) to 254 μg mL-1 (Rh-H2 TCPP-UiO-66-NH2 ). Moreover, the assembled photocatalyst-enzyme coupled system also allows facile recycling of expensive electron mediator, enzyme, and photocatalyst.
Collapse
Affiliation(s)
- Xiu Xing
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, P. R. China
| | - Ru-De Lin
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Yang Zhang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Zhong-Liu Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| |
Collapse
|
6
|
Li S, Shi J, Liu S, Li W, Chen Y, Shan H, Cheng Y, Wu H, Jiang Z. Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Ma M, Wang J, Jiang H, Chen Q, Xiao Y, Yang H, Lin L. Transcranial deep-tissue phototherapy for Alzheimer's disease using low-dose X-ray-activated long-afterglow scintillators. Acta Biomater 2023; 155:635-643. [PMID: 36328129 DOI: 10.1016/j.actbio.2022.10.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-β (Aβ) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aβ oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Here, we report an Aβ targeted, low-dose X-ray-excitable long-afterglow scintillator (ScNPs@RB/Ab) for efficient deep-brain phototherapy. We demonstrate that the as-synthesized ScNPs@RB/Ab is capable of converting X-rays into visible light to activate the photosensitizers of rose bengal (RB) for Aβ oxygenation through the scalp and skull. We show that the ScNPs@RB/Ab persistently emitting visible luminescence can substantially minimize the risk of excessive X-ray exposure dosage. Importantly, peptide KLVFFAED-functionalized ScNPs@RB/Ab shows a blood-brain barrier permeability. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aβ burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects. Our study paves a new pathway to develop high-efficiency transcranial AD phototherapy. STATEMENT OF SIGNIFICANCE: Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-β (Aβ) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aβ oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Herein, we report an Aβ targeted, low-dose X-ray-excitable long-afterglow scintillators (ScNPs@RB/Ab) for efficient deep-brain phototherapy. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aβ burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects.
Collapse
Affiliation(s)
- Mengmeng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi Xiao
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 637457, Singapore.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China.
| |
Collapse
|
8
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
9
|
Chen T, Wang Y, Xie J, Qu X, Liu C. Lysozyme Amyloid Fibril-Integrated PEG Injectable Hydrogel Adhesive with Improved Antiswelling and Antibacterial Capabilities. Biomacromolecules 2022; 23:1376-1391. [PMID: 35195006 DOI: 10.1021/acs.biomac.1c01597] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels with inherent antibacterial activities have been attracting increasing attention, particularly for biomedical applications. Biology provides a range of materials and mechanisms to meet diverse requirements for bacterial combating. Lysozyme after fibrillation (LZMF) has a much superior antibacterial ability than globular native lysozyme due to its decreased positive charges and increased hydrophobic β-sheet component. Here, we propose to design a poly(ethylene glycol) (PEG) cross-linked LZMF composite antibacterial hydrogel by utilizing the nucleophilic substitution reaction between LZMF and N-hydroxysuccinimide end groups on four-arm PEG-NHS. The generated PEG-LZMF hydrogel is bacteria-resistant both in vitro and in vivo as expected and has good biocompatibility. Moreover, the volume expansion of PEG can be significantly inhibited due to the presence of hydrophobic lysozyme amyloid fibrils. In addition, the relatively fast cross-linking reaction can make PEG-LZMF both injectable and shape-compatible. The simultaneous reaction with tissue-exposed -NH2 or -SH also confers a tissue-adhesive ability. We envision that this hydrophobic lysozyme amyloid fibril-integrated PEG composite hydrogel can effectively adhere/protect open wounds and internal incisions and suppress pathogen infection through a biomimetic antibacterial mechanism. Considering the simple fabrication process, this multifunctional PEG-LZMF antibacterial hydrogel is promising for clinical transformation.
Collapse
Affiliation(s)
- Tianhao Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiahui Xie
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Sun Y, Shi J, Wang Z, Wang H, Zhang S, Wu Y, Wang H, Li S, Jiang Z. Thylakoid Membrane-Inspired Capsules with Fortified Cofactor Shuttling for Enzyme-Photocoupled Catalysis. J Am Chem Soc 2022; 144:4168-4177. [PMID: 35107007 DOI: 10.1021/jacs.1c12790] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzyme-photocoupled catalytic systems (EPCSs), combining the natural enzyme with a library of semiconductor photocatalysts, may break the constraint of natural evolution, realizing sustainable solar-to-chemical conversion and non-natural reactivity of the enzyme. The overall efficiency of EPCSs strongly relies on the shuttling of energy-carrying molecules, e.g., NAD+/NADH cofactor, between active centers of enzyme and photocatalyst. However, few efforts have been devoted to NAD+/NADH shuttling. Herein, we propose a strategy of constructing a thylakoid membrane-inspired capsule (TMC) with fortified and tunable NAD+/NADH shuttling to boost the enzyme-photocoupled catalytic process. The apparent shuttling number (ASN) of NAD+/NADH for TMC could reach 17.1, ∼8 times as high as that of non-integrated EPCS. Accordingly, our TMC exhibits a turnover frequency (TOF) of 38 000 ± 365 h-1 with a solar-to-chemical efficiency (STC) of 0.69 ± 0.12%, ∼6 times higher than that of non-integrated EPCS.
Collapse
Affiliation(s)
- Yiying Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhuo Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Han Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shaohua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Yizhou Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Hongjian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shihao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
11
|
Lin H, Liu Y, Yang C, Zhao G, Song J, Zhang T, Huang X. Microfluidic artificial photosynthetic system for continuous NADH regeneration and l-glutamate synthesis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00466f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Artificial photosynthesis coenzyme regeneration and photoenzymatic synthesis of l-glutamate by glutamate dehydrogenase.
Collapse
Affiliation(s)
- Huichao Lin
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Yang Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Chonghui Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Gaozhen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Jiaao Song
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Taiyi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| |
Collapse
|
12
|
Zhang Z, Yuan Q, Li M, Bao B, Tang Y. A Ratiometric Fluorescent Conjugated Oligomer for Amyloid β Recognition, Aggregation Inhibition, and Detoxification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104581. [PMID: 34708516 DOI: 10.1002/smll.202104581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The sensitive recognition and effective inhibition of toxic amyloid β protein (Aβ) aggregates play a critical role in early diagnosis and treatment of neurodegenerative diseases. In this work, a new conjugated oligo(fluorene-co-phenylene) (OFP) modified with 1,8-naphthalimide (NA) derivative OFP-NA-NO2 is designed and synthesized as a ratiometric fluorescence probe for sensing Aβ, inhibiting the assembly of Aβ, and detoxicating the cytotoxicity of Aβ aggregates. In the presence of Aβ, the active ester group on the side chain of OFP-NA-NO2 can covalently react with the amino group on Aβ, effectively inhibiting the formation of Aβ aggregates and degrading the preformed fibrils. In this case, the fluorescence intensity ratio of NA to OFP (INA /IOFP ) increases greatly. The detection limit is calculated to be 89.9 nM, presenting the most sensitive ratiometric recognition of Aβ. Interestingly, OFP-NA-NO2 can dramatically recover the cell viability of PC-12 and restore the Aβ-clearing ability of microglia. Therefore, this ratiometric probe exhibits the targeted recognition of Aβ, effective inhibition of Aβ aggregates, and detox effect, which is potential for early diagnosis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
13
|
Ma M, Liu Z, Gao N, Dong K, Pi Z, Kang L, Du X, Ren J, Qu X. Near-infrared target enhanced peripheral clearance of amyloid-β in Alzheimer's disease model. Biomaterials 2021; 276:121065. [PMID: 34391018 DOI: 10.1016/j.biomaterials.2021.121065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/16/2021] [Accepted: 08/07/2021] [Indexed: 12/29/2022]
Abstract
Clearance of peripheral amyloid-β (Aβ) has been demonstrated particularly promising for overcoming the blood-brain barrier (BBB) hurdle to remove brain-derived Aβ associated with Alzheimer's disease (AD). However, currently used therapeutic agents targeting peripheral Aβ cannot simultaneously achieve plasma Aβ enrichment and enhanced clearance, which may result in poor bioavailability and rather low efficacy. Moreover, most of therapeutic agents usually promote the unfavorable aggregation of Aβ. Herein, we construct a near-infrared (NIR) regulated surface-transformable and target peptide-guided upconversion platform (UCNP/ONA-P/K), serving as a safe and effective way for Aβ clearance. Taking advantage of extended blood circulation, high selectivity toward Aβ, and surface-transformable property, such UCNP/ONA-P/K can address the challenges of peripheral Aβ clearance by a combination of enhancing the enrichment of plasma Aβ, preventing the unfavorable aggregation of Aβ and simultaneously facilitating the hepatic clearance of the captured Aβ. After verified by a series of systematic toxicity evaluation, cell uptake, deep tissue penetration, and hemolytic experiments, in vivo studies demonstrate that UCNP/ONA-P/K can efficiently decrease brain Aβ burden and reverse memory deficits in 3xTg-AD mice. Overall, this NIR multi-functional design provides a new biocompatible and efficient way for Aβ removal, which will promote the application of peripheral clearance of Aβ for AD treatment.
Collapse
Affiliation(s)
- Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Science and Technology of China, Hefei, Anhui, 230029, PR China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Science and Technology of China, Hefei, Anhui, 230029, PR China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Zifeng Pi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Lihua Kang
- Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, 130061, PR China.
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, 130061, PR China.
| |
Collapse
|
14
|
Sun Y, Li W, Wang Z, Shi J, Jiang Z. General framework for enzyme-photo-coupled catalytic system toward carbon dioxide conversion. Curr Opin Biotechnol 2021; 73:67-73. [PMID: 34333444 DOI: 10.1016/j.copbio.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
High emission of carbon dioxide (CO2) has aroused global concern due to the 'greenhouse effect'. The conversion of CO2 to valuable chemicals/materials is an indispensable route toward 'carbon neutrality'. Enzyme-photo-coupled catalytic systems (EPCCSs), integrating synthetic library of semiconductor photocatalyst and natural database of enzyme, have emerged as a green and powerful platform toward CO2 conversion. Herein, we discuss the recent progress in design and application of EPCCSs for CO2 conversion from the perspective of pathway engineering, reaction engineering and system engineering. We firstly summarize the explored pathways of EPCCSs for converting CO2 to C1 and C2+ products. Secondly, we discuss the matching of kinetics between photocatalytic and enzymatic reactions in EPCCSs. Thirdly, we unveil the complex interplay between photocatalytic and enzymatic modules, and further demonstrate the strategy of compartmentalization to eliminate the negative interactions. Lastly, we conclude with the perspective on the opportunities and challenges of EPCCSs for CO2 conversion.
Collapse
Affiliation(s)
- Yiying Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Wenping Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Zhuo Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, PR China.
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, PR China.
| |
Collapse
|
15
|
Yang N, Tian Y, Zhang M, Peng X, Li F, Li J, Li Y, Fan B, Wang F, Song H. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnol Adv 2021; 54:107808. [PMID: 34324993 DOI: 10.1016/j.biotechadv.2021.107808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022]
Abstract
Enzymes catalyse target reactions under mild conditions with high efficiency, as well as excellent regional-, stereo-, and enantiomeric selectivity. Photocatalysis utilises sustainable and environment-friendly light power to realise efficient chemical conversion. By combining the interdisciplinary advantages of photo- and enzymatic catalysis, the photocatalyst-enzyme hybrid systems have proceeded various light-driven biotransformation with high efficiency under environmentally benign conditions, thus, attracting unparalleled focus during the last decades. It has also been regarded as a promising pathway towards green chemistry utilising ubiquitous solar energy. This systematic review gives insight into this research field by classifying the existing photocatalyst-enzyme hybrid systems into three sections based on different hybridizing modes between photo- and enzymatic catalysis. Furthermore, existing challenges and proposed strategies are discussed within this context. The first system summarised is the cofactor-mediated hybrid system, in which natural/artificial cofactors act as reducing equivalents that connect photocatalysts with enzymes for light-driven enzymatic biotransformation. Second, the direct contact-based photocatalyst-enzyme hybrid systems are described, including two different kinds of electron exchange sites on the enzyme molecules. Third, some cases where photocatalysts and enzymes are integrated into a reaction cascade with specific intermediates will be discussed in the following chapter. Finally, we provide perspective concerning the future of this field.
Collapse
Affiliation(s)
- Nan Yang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yao Tian
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Mai Zhang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiting Peng
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Feng Li
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| | - Hao Song
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
16
|
Kumar V, Sinha N, Thakur AK. Necessity of regulatory guidelines for the development of amyloid based biomaterials. Biomater Sci 2021; 9:4410-4422. [PMID: 34018497 DOI: 10.1039/d1bm00059d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amyloid diseases are caused due to protein homeostasis failure where incorrectly folded proteins/peptides form cross-β-sheet rich amyloid fibrillar structures. Besides proteins/peptides, small metabolite assemblies also exhibit amyloid-like features. These structures are linked to several human and animal diseases. In addition, non-toxic amyloids with diverse physiological roles are characterized as a new functional class. This finding, along with the unique properties of amyloid like stability and mechanical strength, led to a surge in the development of amyloid-based biomaterials. However, the usage of these materials by humans and animals may pose a health risk such as the development of amyloid diseases and toxicity. This is possible because amyloid-based biomaterials and their fragments may assist seeding and cross-seeding mechanisms of amyloid formation in the body. This review summarizes the potential uses of amyloids as biomaterials, the concerns regarding their usage, and a prescribed workflow to initiate a regulatory approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nabodita Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| |
Collapse
|
17
|
Kuk SK, Jang J, Kim J, Lee Y, Kim YS, Koo B, Lee YW, Ko JW, Shin B, Lee JK, Park CB. CO 2 -Reductive, Copper Oxide-Based Photobiocathode for Z-Scheme Semi-Artificial Leaf Structure. CHEMSUSCHEM 2020; 13:2940-2944. [PMID: 32180371 DOI: 10.1002/cssc.202000459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Green plants convert sunlight into high-energy chemicals by coupling solar-driven water oxidation in the Z-scheme and CO2 fixation in the Calvin cycle. In this study, formate dehydrogenase from Clostridium ljungdahlii (ClFDH) is interfaced with a TiO2 -coated CuFeO2 and CuO mixed (ClFDH-TiO2 |CFO) electrode. In this biohybrid photocathode, the TiO2 layer enhances the photoelectrochemical (PEC) stability of the labile CFO photocathode and facilitates the transfer of photoexcited electrons from the CFO to ClFDH. Furthermore, inspired by the natural photosynthetic scheme, the photobiocathode is combined with a water-oxidizing, FeOOH-coated BiVO4 (FeOOH|BiVO4 ) photoanode to assemble a wireless Z-scheme biocatalytic PEC device as a semi-artificial leaf. The leaf-like structure effects a bias-free biocatalytic CO2 -to-formate conversion under visible light. Its rate of formate production is 2.45 times faster than that without ClFDH. This work is the first example of a wireless solar-driven semi-biological PEC system for CO2 reduction that uses water as an electron feedstock.
Collapse
Affiliation(s)
- Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Jinha Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Youngjun Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 143-701, Republic of Korea
| | - Young Sin Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 143-701, Republic of Korea
| | - Bonhyeong Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Yang Woo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Jong Wan Ko
- Korea Institute of Industrial Technology (KITECH), 55 Jongga-ro, Ulsan, 44413, Republic of Korea
| | - Byungha Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 143-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
18
|
Wang D, Lee SH, Kim J, Park CB. "Waste to Wealth": Lignin as a Renewable Building Block for Energy Harvesting/Storage and Environmental Remediation. CHEMSUSCHEM 2020; 13:2807-2827. [PMID: 32180357 DOI: 10.1002/cssc.202000394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 05/13/2023]
Abstract
Lignin is the second most earth-abundant biopolymer having aromatic unit structures, but it has received less attention than other natural biomaterials. Recent advances in the development of lignin-based materials, such as mesoporous carbon, flexible thin films, and fiber matrix, have found their way into applications to photovoltaic devices, energy-storage systems, mechanical energy harvesters, and catalytic components. In this Review, we summarize and suggest another dimension of lignin valorization as a building block for the synthesis of functional materials in the fields of energy and environmental applications. We cover lignin-based materials in the photovoltaic and artificial photosynthesis for solar energy conversion applications. The most recent technological evolution in lignin-based triboelectric nanogenerators is summarized from its fundamental properties to practical implementations. Lignin-derived catalysts for solar-to-heat conversion and oxygen reduction are discussed. For energy-storage applications, we describe the utilization of lignin-based materials in lithium-ion rechargeable batteries and supercapacitors (e.g., electrodes, binders, and separators). We also summarize the use of lignin-based materials as heavy-metal adsorbents for environmental remediation. This Review paves the way to future potentials and opportunities of lignin as a renewable material for energy and environmental applications.
Collapse
Affiliation(s)
- Ding Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Korea
| |
Collapse
|
19
|
Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00656] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Valentina Jurkaš
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - F. Feyza Özgen
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Hanna C. Büchsenschütz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
20
|
Otrin L, Kleineberg C, Caire da Silva L, Landfester K, Ivanov I, Wang M, Bednarz C, Sundmacher K, Vidaković-Koch T. Artificial Organelles for Energy Regeneration. ACTA ACUST UNITED AC 2019; 3:e1800323. [PMID: 32648709 DOI: 10.1002/adbi.201800323] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/11/2019] [Indexed: 01/03/2023]
Abstract
One of the critical steps in sustaining life-mimicking processes in synthetic cells is energy, i.e., adenosine triphosphate (ATP) regeneration. Previous studies have shown that the simple addition of ATP or ATP regeneration systems, which do not regenerate ATP directly from ADP and Pi , have no or only limited success due to accumulation of ATP hydrolysis products. In general, ATP regeneration can be achieved by converting light or chemical energy into ATP, which may also involve redox transformations of cofactors. The present contribution provides an overview of the existing ATP regeneration strategies and the related nicotinamide adenine dinucleotide (NAD+ ) redox cycling, with a focus on compartmentalized systems. Special attention is being paid to those approaches where so-called artificial organelles are developed. They comprise a semipermeable membrane functionalized by biological or man-made components and employ external energy in the form of light or nutrients in order to generate a transmembrane proton gradient, which is further utilized for ATP synthesis.
Collapse
Affiliation(s)
- Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ivan Ivanov
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Minhui Wang
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| |
Collapse
|