1
|
Feng Y, Tang Q, Wang B, Yang Q, Zhang Y, Lei L, Li S. Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy. J Nanobiotechnology 2024; 22:737. [PMID: 39605063 PMCID: PMC11603847 DOI: 10.1186/s12951-024-03005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
The tumor microenvironment (TME) is a complex system characterized by low oxygen, low pH, high pressure, and numerous growth factors and protein hydrolases that regulate a wide range of biological behaviors in the tumor and have a profound impact on cancer progression. Immunotherapy is an innovative approach to cancer treatment that activates the immune system, resulting in the spontaneous killing of tumor cells. However, the therapeutic efficacy of these clinically approved cancer immunotherapies (e.g., immune checkpoint blocker (ICB) therapies and chimeric antigen receptor (CAR) T-cell therapies) is far from satisfactory due to the presence of immunosuppressive TMEs created in part by tumor hypoxia, acidity, high levels of reactive oxygen species (ROS), and a dense extracellular matrix (ECM). With continuous advances in materials science and drug-delivery technologies, biomaterials hold considerable potential for targeting the TME. This article reviews the advances in biomaterial-based targeting of the TME to advance our current understanding on the role of biomaterials in enhancing tumor immunity. In addition, the strategies for remodeling the TME offer enticing advantages; however, the represent a double-edged sword. In the process of reshaping the TME, the risk of tumor growth, infiltration, and distant metastasis may increase.
Collapse
Affiliation(s)
- Yekai Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Sun P, Gou H, Che X, Chen G, Feng C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem Commun (Camb) 2024; 60:10805-10821. [PMID: 39248025 DOI: 10.1039/d4cc03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
DNAzymes, a class of single-stranded catalytic DNA with good stability, high catalytic activity, and easy synthesis, functionalization and modification properties, have garnered significant interest in the realm of biosensing and bioimaging. Their integration with fluorescent dyes or chemiluminescent moieties has led to remarkable bioimaging outcomes, while DNAzyme-based biosensors have demonstrated robust sensitivity and selectivity in detecting metal ions, nucleic acids, proteins, enzyme activities, exosomes, bacteria and microorganisms. In addition, by delivering DNAzymes into tumor cells, the mRNA therein can be cleaved to regulate the expression of corresponding proteins, which has further propelled the application of DNAzymes in cancer gene therapy and synergistic therapy. This paper reviews the strategies for screening attractive DNAzymes such as SELEX and high-throughput sequencing, and briefly describes the amplification strategies of DNAzymes, which mainly include catalytic hairpin assembly (CHA), DNA walker, hybridization chain reaction (HCR), DNA origami, CRISPR-Cas12a, rolling circle amplification (RCA), and aptamers. In addition, applications of DNAzymes in bioimaging, biosensing, and cancer therapy are also highlighted. Subsequently, the possible challenges of these DNAzymes in practical applications are further pointed out, and future research directions are suggested.
Collapse
Affiliation(s)
- Pei Sun
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
3
|
Xi Y, Zhou S, Long J, Zhou L, Tang P, Qian H, Jiang J, Hu Y. Construction of polypyrrole nanoparticles with a rough surface for enhanced chemo-photothermal therapy against triple negative breast cancer. NANOSCALE ADVANCES 2024; 6:d4na00434e. [PMID: 39247870 PMCID: PMC11378020 DOI: 10.1039/d4na00434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, characterized by aggressive malignancy and a poor prognosis. Emerging nanomedicine-based combination therapy represents one of the most promising strategies for combating TNBC. Polypyrrole nanoparticles (PPY) are excellent drug delivery vehicles with outstanding photothermal performances. However, the impact of morphology on PPY's drug loading efficiency and photothermal properties remains largely unexplored. In this study, we propose that pluronic P123 can assist in the synthesis of polypyrrole nanoparticles with rough surfaces (rPPY). During the synthesis, P123 formed small micelles around the nanoparticle surface, which were later removed, resulting in small pits and cavities in rPPY. Subsequently, the rPPY was loaded with the chemotherapy drug gemcitabine (Gem@rPPY) for chemo-photothermal therapy against TNBCs. Our results demonstrate that rPPY exhibited superior photothermal performance and significantly enhanced drug loading efficiency by five times compared to smooth PPY nanoparticles. In vitro assessments confirmed Gem@rPPY's robust photothermal properties by efficiently converting light into heat. Cell culture experiments with 4T1 cells and a TNBC mice model revealed significant tumor suppression upon Gem@rPPY administration, emphasizing its efficacy in inducing apoptosis. Toxicity evaluations demonstrated minimal adverse effects both in vitro and in vivo, highlighting the biocompatibility of Gem@rPPY. Overall, this study introduces a promising combination therapy nanoplatform that underscores the importance of surface engineering to enhance therapeutic outcomes and overcome current limitations in TNBC therapy.
Collapse
Affiliation(s)
- Yuanyin Xi
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Shiqi Zhou
- Department of Plastic, Reconstructive and Cosmetic Surgery, Xinqiao Hospital, Army Medical University Chongqing 400037 China
| | - Junhui Long
- Department of Dermatology, The 958th Army Hospital of the Chinese People's Liberation Army China
| | - Linxi Zhou
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Peng Tang
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Hang Qian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Army Medical University Chongqing 400037 China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Ying Hu
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| |
Collapse
|
4
|
Yi J, Liu L, Gao W, Zeng J, Chen Y, Pang E, Lan M, Yu C. Advances and perspectives in phototherapy-based combination therapy for cancer treatment. J Mater Chem B 2024; 12:6285-6304. [PMID: 38895829 DOI: 10.1039/d4tb00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), has the advantages of spatiotemporal selectivity, non-invasiveness, and negligible drug resistance. Phototherapy has been approved for treating superficial epidermal tumors. However, its therapeutic efficacy is limited by the hypoxic tumor microenvironment and the highly expressed heat shock protein. Moreover, poor tissue penetration and focused irradiation laser region in phototherapy make treating deep tissues and metastatic tumors challenging. Combination therapy strategies, which integrate the advantages of each treatment and overcome their disadvantages, can significantly improve the therapeutic efficacy. Recently, many combination therapy strategies have been reported. Our study summarizes the strategies used for combining phototherapy with other cancer treatments such as chemotherapy, immunotherapy, sonodynamic therapy, gas therapy, starvation therapy, and chemodynamic therapy. Some research cases were selected to analyze the combination therapy effect, delivery platform feature, and synergetic anticancer mechanisms. Moreover, additional research cases are summarized in the tables. This review provides strong evidence that phototherapy-based combination strategies can enhance the anticancer effect compared with phototherapy alone. Additionally, the challenges and future perspectives associated with these combinational therapies are discussed.
Collapse
Affiliation(s)
- Jianing Yi
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Luyao Liu
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Wenjie Gao
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Jie Zeng
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Yongzhi Chen
- Department of Hepatobiliary surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - E Pang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
5
|
Si C, Gao J, Ma X. Natural killer cell-derived exosome-based cancer therapy: from biological roles to clinical significance and implications. Mol Cancer 2024; 23:134. [PMID: 38951879 PMCID: PMC11218398 DOI: 10.1186/s12943-024-02045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
Natural killer (NK) cells are important immune cells in the organism and are the third major type of lymphocytes besides T cells and B cells, which play an important function in cancer therapy. In addition to retaining the tumor cell killing function of natural killer cells, natural killer cell-derived exosomes cells also have the characteristics of high safety, wide source, easy to preserve and transport. At the same time, natural killer cell-derived exosomes are easy to modify, and the engineered exosomes can be used in combination with a variety of current cancer therapies, which not only enhances the therapeutic efficacy, but also significantly reduces the side effects. Therefore, this review summarizes the source, isolation and modification strategies of natural killer cell-derived exosomes and the combined application of natural killer cell-derived engineered exosomes with other antitumor therapies, which is expected to accelerate the clinical translation process of natural killer cell-derived engineered exosomes in cancer therapy.
Collapse
Affiliation(s)
- Chaohua Si
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China
| | - Jianen Gao
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China.
| | - Xu Ma
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China.
| |
Collapse
|
6
|
Cui W, Zhu S, Pan X, Zhang W, Wang T. Gold(III) Porphyrin-Metal-Polyphenolic Nanocomplexes: Breaking Intracellular Redox Environment for Enhancing Mild-Temperature Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30810-30818. [PMID: 38850233 DOI: 10.1021/acsami.4c04196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Photothermal therapy (PTT) is a promising clinical antitumor strategy. However, local hyperthermia inevitably induces heat damage to adjacent normal tissues, while alternative mild-temperature therapy (MPTT, T < 45 °C) is also inefficient due to the overexpressed hyperthermia-induced heat shock proteins (HSPs) by cancer cells. Therefore, developing PTT strategies with minimizing damage to healthy tissues with improved cellular temperature sensitivity is extremely valuable for clinical application. Herein, we proposed the strategy of disrupting the intracellular redox environment via destroying the ROS-defending systems to promote MPTT. The gold(III) porphyrin-Fe3+-tannic acid nanocomplexes (AuTPP@TA-Fe NPs) were achieved via interfacial cohesion and supramolecular assembly of bioadhesive species, which could trigger the Fenton reaction to produce ·OH radicals and downregulation of reductive TrxR enzyme and mitochondrial chaperone protein Hsp60. The aggravation of oxides and the inactivation of Hsp60 provide favorable pathways for impeding the heat shock-induced self-repair mechanism of cancer cells, which strengthens AuTPP@TA-Fe NPs mediated MPTT.
Collapse
Affiliation(s)
- Weiwei Cui
- Life and Health Intelligent Research Institute, Tianjin Key Laboratory of Life and Health Detection, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Shan Zhu
- Life and Health Intelligent Research Institute, Tianjin Key Laboratory of Life and Health Detection, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiangmei Pan
- Life and Health Intelligent Research Institute, Tianjin Key Laboratory of Life and Health Detection, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wei Zhang
- Life and Health Intelligent Research Institute, Tianjin Key Laboratory of Life and Health Detection, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Tie Wang
- Life and Health Intelligent Research Institute, Tianjin Key Laboratory of Life and Health Detection, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
7
|
Hu Q, Zuo H, Hsu JC, Zeng C, Zhou T, Sun Z, Cai W, Tang Z, Chen W. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308286. [PMID: 37971203 PMCID: PMC10872442 DOI: 10.1002/adma.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Qitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Cheng Zeng
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tian Zhou
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhouyi Sun
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
8
|
An X, Zeng Y, Liu C, Liu G. Cellular-Membrane-Derived Vesicles for Cancer Immunotherapy. Pharmaceutics 2023; 16:22. [PMID: 38258033 PMCID: PMC10820497 DOI: 10.3390/pharmaceutics16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The medical community is constantly searching for new and innovative ways to treat cancer, and cellular-membrane-derived artificial vesicles are emerging as a promising avenue for cancer immunotherapy. These vesicles, which are derived from mammal and bacteria cell membranes, offer a range of benefits, including compatibility with living organisms, minimal immune response, and prolonged circulation. By modifying their surface, manipulating their genes, combining them with other substances, stimulating them externally, and even enclosing drugs within them, cellular vesicles have the potential to be a powerful tool in fighting cancer. The ability to merge drugs with diverse compositions and functionalities in a localized area is particularly exciting, as it offers a way to combine different immunotherapy treatments for maximum impact. This review contains information on the various sources of these vesicles and discusses some recent developments in cancer immunotherapy using this promising technology. While there are still obstacles to overcome, the possibilities for cellular vesicles in cancer treatment are truly exciting.
Collapse
Affiliation(s)
- Xiaoyu An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Chao Liu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
9
|
Kim S, Ahn JH, Jeong DI, Yang M, Jeong JH, Choi YE, Kim HJ, Han Y, Karmakar M, Ko HJ, Cho HJ. Alum-tuned hyaluronic acid-based hydrogel with immune checkpoint inhibition for immunophoto therapy of cancer. J Control Release 2023; 362:1-18. [PMID: 37595669 DOI: 10.1016/j.jconrel.2023.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/25/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
Alum-crosslinked hyaluronic acid-dopamine (HD) hydrogel containing indocyanine green (ICG) with anti-programmed cell death-1 (PD-1) antibody (Ab) administration was developed for immunophoto therapy of cancer. Alum modulates the rheological characteristics of hydrogel for enabling syringe injection, shear-thinning feature, and slower biodegradation. In addition, alum in HD-based hydrogel provided CD8+ T cell-mediated immune responses for cancer therapy. ICG in the hydrogel under near-infrared (NIR) light exposure may induce hyperthermia and generate singlet oxygen for selective cancer cell killing. HD/alum/ICG hydrogel injection with NIR laser irradiation elevated PD-1 level in CD8+ T cells. Administration of PD-1 Ab aiming at highly expressed PD-1 in T cells may amplify the anticancer efficacies of HD/alum/ICG hydrogel along with NIR laser. HD/alum/ICG hydrogel with NIR light may have both CD8+ T cell-linked immune responses and ICG-related photodynamic/photothermal effects. Additional injection of immune checkpoint inhibitor can ultimately suppress primary and distant tumor growth by combination with those therapeutic actions.
Collapse
Affiliation(s)
- Sungyun Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Da In Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mingyu Yang
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Hyeon Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yeoung Eun Choi
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun Jin Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Youngjoo Han
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mrinmoy Karmakar
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
10
|
Zheng Y, Lai Z, Wang B, Wei Z, Zeng Y, Zhuang Q, Liu X, Lin K. Natural killer cells modified with a Gpc3 aptamer enhance adoptive immunotherapy for hepatocellular carcinoma. Discov Oncol 2023; 14:164. [PMID: 37665421 PMCID: PMC10477160 DOI: 10.1007/s12672-023-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Natural killer cells can attack cancer cells without prior sensitization, but their clinical benefit is limited owing to their poor selectivity that is caused by the lack of specific receptors to target tumor cells. In this study, we aimed to endow NK cells with the ability to specifically target glypican-3+ tumor cells without producing cell damage or genetic alterations, and further evaluated their therapeutic efficiency. METHODS NK cells were modified with a Gpc3 DNA aptamer on the cell surface via metabolic glycoengineering to endow NK cells with specific targeting ability. Then, the G-NK cells were evaluated for their specific targeting properties, cytotoxicity and secretion of cytokines in vitro. Finally, we investigated the therapeutic efficiency of G-NK cells against glypican-3+ tumor cells in vivo. RESULTS Compared with NK cells modified with a random aptamer mutation and unmodified NK cells, G-NK cells induced significant apoptosis/necrosis of GPC3+ tumor cells and secreted cytokines to preserve the intense cytotoxic activities. Moreover, G-NK cells significantly suppressed tumor growth in HepG2 tumor-bearing mice due to the enhanced enrichment of G-NK cells at the tumor site. CONCLUSIONS The proposed strategy endows NK cells with a tumor-specific targeting ability to enhance adoptive therapeutic efficiency in GPC3+ hepatocellular carcinoma.
Collapse
Affiliation(s)
- Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Zisen Lai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Bing Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Yongyi Zeng
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China.
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, People's Republic of China.
| | - Kecan Lin
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, People's Republic of China.
| |
Collapse
|
11
|
Jangid AK, Kim S, Kim K. Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics. Biomater Res 2023; 27:59. [PMID: 37344853 DOI: 10.1186/s40824-023-00404-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Immune cell-based therapies are a rapidly emerging class of new medicines that directly treat and prevent targeted cancer. However multiple biological barriers impede the activity of live immune cells, and therefore necessitate the use of surface-modified immune cells for cancer prevention. Synthetic and/or natural biomaterials represent the leading approach for immune cell surface modulation. Different types of biomaterials can be applied to cell surface membranes through hydrophobic insertion, layer-by-layer attachment, and covalent conjugations to acquire surface modification in mammalian cells. These biomaterials generate reciprocity to enable cell-cell interactions. In this review, we highlight the different biomaterials (lipidic and polymeric)-based advanced applications for cell-surface modulation, a few cell recognition moieties, and how their interplay in cell-cell interaction. We discuss the cancer-killing efficacy of NK cells, followed by their surface engineering for cancer treatment. Ultimately, this review connects biomaterials and biologically active NK cells that play key roles in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
12
|
Zhang K, Qi C, Cai K. Manganese-Based Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205409. [PMID: 36121368 DOI: 10.1002/adma.202205409] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/26/2022] [Indexed: 05/12/2023]
Abstract
As an essential micronutrient, manganese (Mn) participates in various physiological processes and plays important roles in host immune system, hematopoiesis, endocrine function, and oxidative stress regulation. Mn-based nanoparticles are considered to be biocompatible and show versatile applications in nanomedicine, in particular utilized in tumor immunotherapy in the following ways: 1) acting as a biocompatible nanocarrier to deliver immunotherapeutic agents for tumor immunotherapy; 2) serving as an adjuvant to regulate tumor immune microenvironment and enhance immunotherapy; 3) activating host's immune system through the cGAS-STING pathway to trigger tumor immunotherapy; 4) real-time monitoring tumor immunotherapy effect by magnetic resonance imaging (MRI) since Mn2+ ions are ideal MRI contrast agent which can significantly enhance the T1 -weighted MRI signal after binding to proteins. This comprehensive review focuses on the most recent progress of Mn-based nanoplatforms in tumor immunotherapy. The characteristics of Mn are first discussed to guide the design of Mn-based multifunctional nanoplatforms. Then the biomedical applications of Mn-based nanoplatforms, including immunotherapy alone, immunotherapy-involved multimodal synergistic therapy, and imaging-guided immunotherapy are discussed in detail. Finally, the challenges and future developments of Mn-based tumor immunotherapy are highlighted.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chao Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
13
|
Zhang D, Jiang C, Zheng X, Lin Z, Zhuang Q, Xie H, Liang Y, Xu Y, Cui L, Liu X, Zeng Y. Normalization of Tumor Vessels by Lenvatinib-Based Metallo-Nanodrugs Alleviates Hypoxia and Enhances Calreticulin-Mediated Immune Responses in Orthotopic HCC and Organoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207786. [PMID: 37052507 DOI: 10.1002/smll.202207786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Immunocheckpoint inhibitors combined with Lenvatinib is the first line treatment for hepatocellular carcinoma (HCC), but their potency is hampered by the low response rate and adverse events. Herein, a targeted therapeutic strategy through the coassembly of Lenvatinib, Adriamycin, Fe3+ ion, and a natural polyphenol (metallo-nanodrugs) is presented by coordination effect for potentiating tumor vascular normalization and systematic chemo-immunotherapy to effectively inhibit the progression of HCC in both orthotopic model and patients-derived organoids. In mice with orthotopic HCC, the obtained metallo-nanodrugs efficiently increase the drug accumulation in orthotopic tumors and can respond to acidic tumor environment. The promotion of tumor vascular normalization by metallo-nanodrugs is observed, which enhances the infiltrating T lymphocytes in tumor, and reinforces the calreticulin-mediated antitumor immunity through alleviating hypoxia, reducing regulatory T cells, and down-regulating PDL1 expression of tumors. The excellent therapeutic efficiency with complete remission of orthotopic tumors (3/6) and long-term survival of mice (4/6, 42 days) are also achieved. Furthermore, the excellent therapeutic effect of metallo-nanodrugs is also validated in 5 patient-derived organoids, and hence can provide a marvelous systemic chemo-immunotherapy strategy for enhancing HCC treatment.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Chenwei Jiang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Zhiwen Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Huanzhang Xie
- Fujian Key Laboratory of Functional Marine Sensing Materials, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, P. R. China
| | - Yuzhi Liang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Yu Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Linsheng Cui
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| |
Collapse
|
14
|
Fan H, Guo Z. Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Jiang J, Huang Y, Zeng Z, Zhao C. Harnessing Engineered Immune Cells and Bacteria as Drug Carriers for Cancer Immunotherapy. ACS NANO 2023; 17:843-884. [PMID: 36598956 DOI: 10.1021/acsnano.2c07607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunotherapy continues to be in the spotlight of oncology therapy research in the past few years and has been proven to be a promising option to modulate one's innate and adaptive immune systems for cancer treatment. However, the poor delivery efficiency of immune agents, potential off-target toxicity, and nonimmunogenic tumors significantly limit its effectiveness and extensive application. Recently, emerging biomaterial-based drug carriers, including but not limited to immune cells and bacteria, are expected to be potential candidates to break the dilemma of immunotherapy, with their excellent natures of intrinsic tumor tropism and immunomodulatory activity. More than that, the tiny vesicles and physiological components derived from them have similar functions with their source cells due to the inheritance of various surface signal molecules and proteins. Herein, we presented representative examples about the latest advances of biomaterial-based delivery systems employed in cancer immunotherapy, including immune cells, bacteria, and their derivatives. Simultaneously, opportunities and challenges of immune cells and bacteria-based carriers are discussed to provide reference for their future application in cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
16
|
Maeda H, Takada K, Fukui N, Nagashima S, Nishihara H. Conductive coordination nanosheets: Sailing to electronics, energy storage, and catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Buffet-style Cu(II) for enhance disulfiram-based cancer therapy. J Colloid Interface Sci 2022; 624:734-746. [PMID: 35696791 DOI: 10.1016/j.jcis.2022.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 01/26/2023]
Abstract
Studies have shown that disulfiram (DSF) can combine with Cu2+ to form bis(N, N-diethyldithiocarbamate) copper(II) complex (CuET) as antitumor drugs. However, there is insufficient endogenous Cu2+ dose to eradicate cancer cells selectively. Inspired by the buffet, we use Cu2+ doped hollow zeolitic imidazolate framework nanoparticles (HZIFCu) as the carrier and equipped with DSF and indocyanine green (ICG) and targeted by folic acid (FA) (D&I@HZIFCu-FA) to enhance DSF-based cancer therapy. D&I@HZIFCu-FA could effectively supply Cu2+ by a buffet-style, assisting the "DSF-to-CuET" transformation in the tumor. Additionally, self-supply Cu2+ could convert H2O2 into ·OH by triggering a Fenton-like reaction for chemo-dynamic therapy, and ICG achieves photothermal therapy for tumors under laser irradiation. This work provides a buffet-style for Cu2+ to make DSF a strong candidate for cancer treatment by combining chemotherapy, chemo-dynamic therapy, and photothermal therapy and inspires more research about its applications in tumor therapy.
Collapse
|
18
|
Huang M, Xu C, Yang S, Zhang Z, Wei Z, Wu M, Xue F. Vehicle-Free Nanotheranostic Self-Assembled from Clinically Approved Dyes for Cancer Fluorescence Imaging and Photothermal/Photodynamic Combinational Therapy. Pharmaceutics 2022; 14:1074. [PMID: 35631661 PMCID: PMC9145484 DOI: 10.3390/pharmaceutics14051074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/01/2023] Open
Abstract
Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT) has attracted growing attention as a noninvasive option for cancer treatment. At present, researchers have developed various "all-in-one" nanoplatforms for cancer imaging and PTT/PDT combinational therapy. However, the complex structure, tedious preparation procedures, overuse of extra carriers and severe side effects hinder their biomedical applications. In this work, we reported a nanoplatform (designated as ICG-MB) self-assembly from two different FDA-approved dyes of indocyanine green (ICG) and methylene blue (MB) without any additional excipients for cancer fluorescence imaging and combinational PTT/PDT. ICG-MB was found to exhibit good dispersion in the aqueous phase and improve the photostability and cellular uptake of free ICG and MB, thus exhibiting enhanced photothermal conversion and singlet oxygen (1O2) generation abilities to robustly ablate cancer cells under 808 nm and 670 nm laser irradiation. After intravenous injection, ICG-MB effectively accumulated at tumor sites with a near-infrared (NIR) fluorescence signal, which helped to delineate the targeted area for NIR laser-triggered phototoxicity. As a consequence, ICG-MB displayed a combinational PTT/PDT effect to potently inhibit tumor growth without causing any system toxicities in vivo. In conclusion, this minimalist, effective and biocompatible nanotheranostic would provide a promising candidate for cancer phototherapy based on current available dyes in clinic.
Collapse
Affiliation(s)
- Mingbin Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China; (M.H.); (C.X.); (Z.Z.)
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Chao Xu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China; (M.H.); (C.X.); (Z.Z.)
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Sen Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China;
| | - Ziqian Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China; (M.H.); (C.X.); (Z.Z.)
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China;
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China;
| | - Fangqin Xue
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China; (M.H.); (C.X.); (Z.Z.)
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
19
|
Zhang T, Yang Y, Huang L, Liu Y, Chong G, Yin W, Dong H, Li Y, Li Y. Biomimetic and Materials-Potentiated Cell Engineering for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14040734. [PMID: 35456568 PMCID: PMC9024915 DOI: 10.3390/pharmaceutics14040734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
In cancer immunotherapy, immune cells are the main force for tumor eradication. However, they appear to be dysfunctional due to the taming of the tumor immunosuppressive microenvironment. Recently, many materials-engineered strategies are proposed to enhance the anti-tumor effect of immune cells. These strategies either utilize biomimetic materials, as building blocks to construct inanimate entities whose functions are similar to natural living cells, or engineer immune cells with functional materials, to potentiate their anti-tumor effects. In this review, we will summarize these advanced strategies in different cell types, as well as discussing the prospects of this field.
Collapse
Affiliation(s)
- Tingting Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Yushan Yang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Li Huang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Ying Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Gaowei Chong
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Weimin Yin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (H.D.); (Y.L.); Tel.: +86-021-659-819-52 (H.D. & Y.L.)
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
- Correspondence: (H.D.); (Y.L.); Tel.: +86-021-659-819-52 (H.D. & Y.L.)
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| |
Collapse
|
20
|
Sun Z, Chen J, Chen G, Zhang C, Li C. Recent advances of engineered and artificial drug delivery system towards solid tumor based on immune cells. Biomed Mater 2022; 17. [PMID: 35042206 DOI: 10.1088/1748-605x/ac4c8b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
Precise drug delivery in cancer treatment is a long-standing concern of modern medicine. Compared with traditional molecular medicines and nano-medicines, emerging cell-based biomimetic delivery strategies display numerous merits, including successive biological functions, innate biocompatibility and superior security since they originate from living organisms, providing a very promising approach. Among them, immune cells receive increasing attention because of their inherent ability in tumor resistance, pathogen elimination, and other significant physiological functions. Herein, we investigated the recent advances on immune cell-based high efficient delivery and therapeutic strategies in solid tumor treatment, mainly focus on T cells, NK cells and macrophages, which have been used as drug cargos directly or provided membrane/exosomes as nanoscale drug delivery systems. We also discuss the further potential applications and perspective of this innovative strategy, as well as the predictable challenges in forward exploration in this emerging area.
Collapse
Affiliation(s)
- Zhuqing Sun
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, CHINA
| | - Jingtong Chen
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, CHINA
| | - Guangcun Chen
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, Jiangsu, 215123, CHINA
| | - Can Zhang
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, CHINA
| | - Chunyan Li
- Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, Jiangsu, 215123, CHINA
| |
Collapse
|
21
|
Wang K, Wang C, Jiang H, Zhang Y, Lin W, Mo J, Jin C. Combination of Ablation and Immunotherapy for Hepatocellular Carcinoma: Where We Are and Where to Go. Front Immunol 2022; 12:792781. [PMID: 34975896 PMCID: PMC8714655 DOI: 10.3389/fimmu.2021.792781] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and is increasing in incidence. Local ablative therapy plays a leading role in HCC treatment. Radiofrequency (RFA) is one of the first-line therapies for early local ablation. Other local ablation techniques (e.g., microwave ablation, cryoablation, irreversible electroporation, phototherapy.) have been extensively explored in clinical trials or cell/animal studies but have not yet been established as a standard treatment or applied clinically. On the one hand, single treatment may not meet the needs. On the other hand, ablative therapy can stimulate local and systemic immune effects. The combination strategy of immunotherapy and ablation is reasonable. In this review, we briefly summarized the current status and progress of ablation and immunotherapy for HCC. The immune effects of local ablation and the strategies of combination therapy, especially synergistic strategies based on biomedical materials, were discussed. This review is hoped to provide references for future researches on ablative immunotherapy to arrive to a promising new era of HCC treatment.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yaqiong Zhang
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weidong Lin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
22
|
Zhao L, Zhang X, Wang X, Guan X, Zhang W, Ma J. Recent advances in selective photothermal therapy of tumor. J Nanobiotechnology 2021; 19:335. [PMID: 34689765 PMCID: PMC8543909 DOI: 10.1186/s12951-021-01080-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Photothermal therapy (PTT), which converts light energy to heat energy, has become a new research hotspot in cancer treatment. Although researchers have investigated various ways to improve the efficiency of tumor heat ablation to treat cancer, PTT may cause severe damage to normal tissue due to the systemic distribution of photothermal agents (PTAs) in the body and inaccurate laser exposure during treatment. To further improve the survival rate of cancer patients and reduce possible side effects on other parts of the body, it is still necessary to explore PTAs with high selectivity and precise treatment. In this review, we summarized strategies to improve the treatment selectivity of PTT, such as increasing the accumulation of PTAs at tumor sites and endowing PTAs with a self-regulating photothermal conversion function. The views and challenges of selective PTT were discussed, especially the prospects and challenges of their clinical applications. ![]()
Collapse
Affiliation(s)
- Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Xu Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiaoxia Wang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, Shandong, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, China
| | - Weifeng Zhang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China. .,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, Shandong, China. .,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, China.
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China. .,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, Shandong, China. .,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
23
|
Xu M, Xue B, Wang Y, Wang D, Gao D, Yang S, Zhao Q, Zhou C, Ruan S, Yuan Z. Temperature-Feedback Nanoplatform for NIR-II Penta-Modal Imaging-Guided Synergistic Photothermal Therapy and CAR-NK Immunotherapy of Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101397. [PMID: 34159726 DOI: 10.1002/smll.202101397] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, to visually acquire all-round structural and functional information of lung cancer while performing synergistic photothermal therapy (PTT) and tumor-targeting immunotherapy, a theranostic nanoplatform that introduced upconversion nanoparticles (UCNPs) and IR-1048 dye into the lipid-aptamer nanostructrure (UCILA) is constructed. Interestingly, the IR-1048 dye grafted into the lipid bilayer can serve as the theranostic agent for photoacoustic imaging, optical coherence tomography angiography, photothermal imaging, and PTT in the second near infrared (NIR-II) window. In addition, loaded in the inner part of UCILA, UCNPs possess the superior luminescence property and high X-ray attenuation coefficient, which can act as contrast agents for computed tomography (CT) and thermo-sensitive up-conversion luminescence (UCL) imaging, enabling real-time tracking of metabolic activity of tumor and temperature-feedback PTT. Furthermore, under the complementary guidance of penta-modal imaging and an accurate monitoring of in situ temperature change during PTT, UCILA exhibits its excellent capability for ablating the lung tumor with minimal side effects. Meanwhile, synergistic CAR-NK immunotherapy is carried out specifically to eradicate any possible residual tumor cells after PTT. Therefore, the UCILA nanoplatform is demonstrated as a multifunctional theranostic agent for both penta-modal imaging and temperature-feedback PTT while conducting targeting immunotherapy of lung cancer.
Collapse
Affiliation(s)
- Mengze Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Bin Xue
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
- Center for Advanced Material Diagnostic Technology, Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Yue Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Dan Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Duyang Gao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Shuo Yang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Qi Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Cangtao Zhou
- Center for Advanced Material Diagnostic Technology, Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Shuangchen Ruan
- Center for Advanced Material Diagnostic Technology, Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
24
|
Liang JL, Luo GF, Chen WH, Zhang XZ. Recent Advances in Engineered Materials for Immunotherapy-Involved Combination Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007630. [PMID: 34050564 DOI: 10.1002/adma.202007630] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Immunotherapy that can activate immunity or enhance the immunogenicity of tumors has emerged as one of the most effective methods for cancer therapy. Nevertheless, single-mode immunotherapy is still confronted with several critical challenges, such as the low immune response, the low tumor infiltration, and the complex immunosuppression tumor microenvironment. Recently, the combination of immunotherapy with other therapeutic modalities has emerged as a powerful strategy to augment the therapeutic outcome in fighting against cancer. In this review, recent research advances of the combination of immunotherapy with chemotherapy, phototherapy, radiotherapy, sonodynamic therapy, metabolic therapy, and microwave thermotherapy are summarized. Critical challenges and future research direction of immunotherapy-based cancer therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
25
|
Zheng Y, Zhang C, Lai Z, Zeng Y, Li J, Zhang D, Liu X. Redirecting natural killer cells to potentiate adoptive immunotherapy in solid tumors through stabilized Y-type bispecific aptamer. NANOSCALE 2021; 13:11279-11288. [PMID: 34156057 DOI: 10.1039/d1nr00836f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Modulating interactions between immune effector cells and tumor cells in vivo using a bispecific aptamer (Ap) is a promising strategy for cancer immunotherapy. However, it remains a technical challenge owing to the complex and dynamic internal environment accompanied by severe degradation. Herein, by using a Y-shaped DNA scaffold, a bispecific and stabilized Y-type Ap is designed to redirect natural killer (NK) cells to enhance adoptive immunotherapy of hepatocellular carcinoma (HCC) solid tumors. Y-type Ap is constituted by the HCC-specific Ap TLS11a linked with the CD16-specific Ap through a Y-shaped DNA scaffold. Owing to the rigid structure, Y-type Ap shows high stability in 10% serum for over 72 h and resistance to denaturation by 8 M urea. Additionally, the Y-type Ap exhibits more potent avidity to bind with NK cells and tumor cells both in vitro and in vivo, resulting in higher cytokine secretion and excellent antitumor efficiency. Collectively, this study offers a translational platform for constructing stable bispecific Ap, offering considerable potential to enhance adoptive immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | | | | | | | | | | | | |
Collapse
|
26
|
Jahromi LP, Shahbazi M, Maleki A, Azadi A, Santos HA. Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002499. [PMID: 33898169 PMCID: PMC8061401 DOI: 10.1002/advs.202002499] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Indexed: 05/16/2023]
Abstract
Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell-based microrobots for hard-to-treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface-engineered immune cells, immunocytes' cell membranes, leukocyte-derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on-demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Present address:
Helmholtz Institute for Pharmaceutical Research SaarlandHelmholtz Centre for Infection ResearchBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
| | - Mohammad‐Ali Shahbazi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Department of PharmaceuticsSchool of PharmacyShiraz University of Medical SciencesShiraz71468‐64685Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
27
|
Xi Y, Xie X, Peng Y, Liu P, Ding J, Zhou W. DNAzyme-adsorbed polydopamine@MnO 2 core-shell nanocomposites for enhanced photothermal therapy via the self-activated suppression of heat shock protein 70. NANOSCALE 2021; 13:5125-5135. [PMID: 33651054 DOI: 10.1039/d0nr08845e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal therapy (PTT) is a promising tumor treatment modality, but its efficacy is strictly hindered by abnormally upregulated heat shock proteins (HSPs) in tumor cells under heat stress. Herein, we developed a flower-like MnO2-coated polydopamine (PDA@MnO2) core-shell nanoplatform with the surface adsorption of HSP70-silencing DNAzyme (DZ) for enhanced PPT. The PDA core acted as a robust photothermal agent, and also as a reductant to allow the surface growth of MnO2via an in situ reduction of KMnO4. The MnO2 shell enabled a rapid and efficient adsorption of DZ, and more importantly, acted as a metal reservoir to release Mn2+ in response to intracellular stimuli for the in situ activation of DZ, which addressed the key limitation of DZ for biological applications, i.e., metal-dependent activity. As a result, HSP70 was remarkably suppressed for improved PTT efficacy upon laser irradiation, which was explicitly demonstrated both in vitro and in vivo. Upon intravenous injection, the nanosystem could effectively accumulate in the tumor, and impose potent PTT for complete tumor elimination via inducing tumor cell apoptosis, but without any noticeable toxicity. This work provides a promising nanosystem for enhanced PTT via silencing resistance-related genes, and offers ideas for the design of self-activated gene therapy platforms using DZ.
Collapse
Affiliation(s)
- Yang Xi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Xin Xie
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Ying Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Peng Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China. and Academician Workstation, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
28
|
Lv Y, Li F, Wang S, Lu G, Bao W, Wang Y, Tian Z, Wei W, Ma G. Near-infrared light-triggered platelet arsenal for combined photothermal-immunotherapy against cancer. SCIENCE ADVANCES 2021; 7:eabd7614. [PMID: 33771861 PMCID: PMC7997510 DOI: 10.1126/sciadv.abd7614] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
To address long-standing issues with tumor penetration and targeting among cancer therapeutics, we developed an anticancer platelet-based biomimetic formulation (N+R@PLTs), integrating photothermal nanoparticles (N) and immunostimulator (R) into platelets (PLTs). Exploiting the aggregative properties of platelets and high photothermal capacity, N+R@PLTs functioned as an arsenal by targeting defective tumor vascular endothelial cells, accumulating in a positive feedback aggregation cascade at sites of acute vascular damage induced by N-generated local hyperthermia, and subsequently secreting nanosized proplatelets (nPLTs) to transport active components to deep tumor tissue. The immunostimulator augmented the immunogenicity of antigens released from ablated tumors, inducing a stronger immunological response to attack residual, metastatic, and recurrent tumors. Following activation by low-power near-infrared light irradiation, the photothermal and immunological components synergistically provide exceptionally high therapeutic efficacy across nine murine models that mimicked a range of clinical requirements, and, most notably, a sophisticated model based on humanized mouse and patient-derived tumor xenograft.
Collapse
Affiliation(s)
- Yanlin Lv
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weier Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yugang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P. R. China
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Wang M, Hou Z, Liu S, Liang S, Ding B, Zhao Y, Chang M, Han G, Kheraif AAA, Lin J. A Multifunctional Nanovaccine based on L-Arginine-Loaded Black Mesoporous Titania: Ultrasound-Triggered Synergistic Cancer Sonodynamic Therapy/Gas Therapy/Immunotherapy with Remarkably Enhanced Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005728. [PMID: 33470521 DOI: 10.1002/smll.202005728] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
In order to achieve better antitumor therapeutic efficacy and inhibit tumor metastasis, a multifunctional nanovaccine based on L-arginine (LA)-loaded black mesoporous titania (BMT) is fabricated. In this system, LA is utilized as the exogenous NO supplementation for gas therapy, and BMT is served as acoustic sensitizer for sonodynamic therapy. The ultrasound (US) as the exogenous stimulus can simultaneously trigger BMT and LA to produce singlet oxygen (1 O2 ) and NO gas at tumor sites, respectively. Interestingly, 1 O2 from US-excited BMT can promote the oxidation of LA to produce more NO. The high concentration of 1 O2 and NO in cancer cell can cause intracellular strong oxidative stress level and DNA double-strand breaks to induce cancer cell apoptosis ultimately. The US-triggered BMT@LA "nanovaccine" combining with immune checkpoint inhibitor PD-L1 antibody (αPD-L1) can induce strong antitumor immune response thus effectively killing primary tumors and further inhibiting metastatic tumors. Hence, BMT@LA-based "nanovaccine" combining with αPD-L1 checkpoint blockade treatment can realize synergetic sonodynamic/gas/immunotherapy with enhanced antitumor therapeutic effects.
Collapse
Affiliation(s)
- Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yajie Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
30
|
Fan Z, Liu H, Xue Y, Lin J, Fu Y, Xia Z, Pan D, Zhang J, Qiao K, Zhang Z, Liao Y. Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy. Bioact Mater 2021; 6:312-325. [PMID: 32954050 PMCID: PMC7475520 DOI: 10.1016/j.bioactmat.2020.08.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Zhijin Fan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Yaohua Xue
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jingyan Lin
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Yu Fu
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Zhaohua Xia
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Dongming Pan
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kun Qiao
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Zhenzhen Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| |
Collapse
|
31
|
Lin X, Wang X, Li J, Cai L, Liao F, Wu M, Zheng D, Zeng Y, Zhang Z, Liu X, Wang J, Yao C. Localized NIR-II photo-immunotherapy through the combination of photothermal ablation and in situ generated interleukin-12 cytokine for efficiently eliminating primary and abscopal tumors. NANOSCALE 2021; 13:1745-1758. [PMID: 33432957 DOI: 10.1039/d0nr06182d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, photothermal therapy (PTT) in the second near-infrared (NIR-II) biowindow has emerged as a promising treatment modality; however, its therapeutic outcomes are still limited by heterogeneous heat distribution and insufficient control of metastatic lesions. Tremendous efforts have been made to overcome the PTT's shortcomings by combining PTT with immunotherapy, but unfortunately current strategies still suffer from low response rates, primary/acquired resistance or severe immune-related adverse events. Herein, a novel photothermal agent and gene co-delivery nanoparticle (CSP), with CuS inside the SiO2 pore channels and PDMAEMA polycation on the outside of SiO2 surface, is explored for tumor localized NIR-II PTT and in situ immunotherapy through local generation of IL-12 cytokine. The resulting CSP integrated with the plasmid encoding IL-12 gene (CSP@IL-12) exhibited good gene transfection efficiency, outstanding NIR-II PTT effect and excellent therapeutic outcomes both in vitro and in vivo. Meanwhile, such an in situ joint therapy modality could significantly induce systemic immune responses including promoting DC maturation, CD8+ T cell proliferation and infiltration to efficiently eliminate possible metastatic lesions through abscopal effects. Hence, this creative combinational strategy of NIR-II PTT and IL-12 cytokine therapy might provide a more efficient, controllable and safer alternative strategy for future photo-immunotherapy.
Collapse
Affiliation(s)
- Xinyi Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang R, Ding Z, Jiang BP, Luo Z, Chen T, Guo Z, Ji SC, Liang H, Shen XC. Artificial Metalloprotein Nanoanalogues: In Situ Catalytic Production of Oxygen to Enhance Photoimmunotherapeutic Inhibition of Primary and Abscopal Tumor Growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004345. [PMID: 33089606 DOI: 10.1002/smll.202004345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Photoimmunotherapy (PIT) has shown enormous potential in not only eliminating primary tumors, but also inhibiting abscopal tumor growth. However, the efficacy of PIT is greatly limited by tumor hypoxia, which causes the attenuation of phototherapeutic efficacy and is a feature of the immunosuppressive tumor microenvironment (TME). In this study, one type of brand-new artificial metalloprotein nanoanalogues is developed via reasonable integration of a "phototherapy-enzymatic" RuO2 and a model antigen, ovalbumin (OVA) for enhanced PIT of cancers, namely, RuO2 -hybridized OVA nanoanalogues (RuO2 @OVA NAs). The RuO2 @OVA NAs exhibit remarkable photothermal/photodynamic capabilities under the near-infrared light irradiation. More importantly, the photoacoustic imaging and immunofluorescence staining confirm that RuO2 @OVA NAs can remarkably alleviate hypoxia via in situ catalysis of hydrogen peroxide overexpressed in the TME to produce oxygen (O2 ). This ushers a prospect of concurrently enhancing photodynamic therapy and reversing the immunosuppressive TME. Also, OVA, as a supplement to the immune stimulation induced by phototherapy, can activate immune responses. Finally, further combination with the cytotoxic T-lymphocyte-associated protein 4 checkpoint blockade is reported to effectively eliminate the primary tumor and inhibit distant tumor growth via the abscopal effect of antitumor immune responses, prolonging the survival.
Collapse
Affiliation(s)
- Rongtao Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhaoyang Ding
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zilan Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Ting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhengxi Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shi-Chen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
33
|
Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer 2020; 11:6902-6915. [PMID: 33123281 PMCID: PMC7592013 DOI: 10.7150/jca.49532] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023] Open
Abstract
Traditional anticancer therapies can cause serious side effects in clinical treatment due to their nonspecific of tumor cells. Aptamers, also termed as 'chemical antibodies', are short DNA or RNA oligonucleotides selected from the synthetic large random single-strand oligonucleotide library by systematic evolution of ligands by exponential enrichment (SELEX) to bind to lots of different targets, such as proteins or nucleic acid structures. Aptamers have good affinities and high specificity with target molecules, thus may be able to act as drugs themselves to directly inhibit the proliferation of tumor cells, or own great potentialities in the targeted drug delivery systems which can be used in tumor diagnosis and target specific tumor cells, thereby minimizing the toxicity to normal cells. Here we review the unique properties of aptamer represents a great opportunity when applied to the rapidly developing fields of biotechnology and discuss the recent developments in the use of aptamers as powerful tools for analytic, diagnostic and therapeutic applications for cancer.
Collapse
Affiliation(s)
- Jing Han
- Department of Reproductive Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Liang Gao
- Department of Dermatology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Jinsheng Wang
- Department of Pathology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| |
Collapse
|
34
|
Li X, Yang F, Zhou W, Yuan R, Xiang Y. Targeted and direct intracellular delivery of native DNAzymes enables highly specific gene silencing. Chem Sci 2020; 11:8966-8972. [PMID: 34123151 PMCID: PMC8163450 DOI: 10.1039/d0sc03974h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
DNAzymes exhibit high potential as gene silencing agents for therapeutic applications. Such purposes, however, are significantly challenged by the targeted and successful delivery of unmodified DNAzymes into cells with minimal side effects. Here, we set out to formulate and demonstrate a new stimuli-responsive and constrained aptamer/DNAzyme (Apt/Dz) catenane nanostructure for highly specific gene silencing. The rational design of the Apt/Dz catenane nanostructure with the respective integration of the aptamer sequence and the completely closed catenane format enables both the targeted capability and significantly improved nuclease resistance, facilitating the stable and targeted delivery of unmodified Dz into cancer cells. Moreover, the Dz enzymatic activity in the constrained structure can only be conditionally regulated by the specific intracellular mRNA sequences to silence the target gene with highly reduced side effects. Results show that the Apt/Dz catenane nanostructure can effectively inhibit the expression of the target gene and the proliferation of cancer cells with high specificity.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Wenjiao Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
35
|
Zhang D, Zheng Y, Lin Z, Liu X, Li J, Yang H, Tan W. Equipping Natural Killer Cells with Specific Targeting and Checkpoint Blocking Aptamers for Enhanced Adoptive Immunotherapy in Solid Tumors. Angew Chem Int Ed Engl 2020; 59:12022-12028. [PMID: 32246555 DOI: 10.1002/anie.202002145] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/21/2020] [Indexed: 12/16/2022]
Abstract
Herein, we propose an aptamer-equipping strategy to generate specific, universal and permeable (SUPER) NK cells for enhanced immunotherapy in solid tumors. NK cells were chemically equipped with TLS11a aptamer targeting HepG2 cells and PDL1-specific aptamer without genetic alteration. The dual aptamer-equipped NK cells exhibited high specificity to tumor cells, resulting in higher cytokine secretion and apoptosis/necrosis compared to parental or single aptamer-equipped NK cells. Interestingly, dual aptamer-equipped NK cells induced remarkable upregulation of PDL1 expression in HepG2 cells, enhancing checkpoint blockade. Furthermore, in vivo intravital imaging demonstrated high infiltration of aptamer-equipped NK cells into deep tumor region, leading to enhanced therapeutic efficacy in solid tumors. This work offers a straightforward chemical strategy to equip NK cells with aptamers, holding considerable potential for enhanced adoptive immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Da Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Ziguo Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
36
|
Zhang D, Zheng Y, Lin Z, Liu X, Li J, Yang H, Tan W. Equipping Natural Killer Cells with Specific Targeting and Checkpoint Blocking Aptamers for Enhanced Adoptive Immunotherapy in Solid Tumors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Da Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
| | - Ziguo Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
- Institute of Cancer and Basic Medicine (ICBM) Chinese Academy of Sciences The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine (ICBM) Chinese Academy of Sciences The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| |
Collapse
|
37
|
Lin K, Lin Z, Li Y, Zheng Y, Zhang D. Ultrasound-induced reactive oxygen species generation and mitochondria-specific damage by sonodynamic agent/metal ion-doped mesoporous silica. RSC Adv 2019; 9:39924-39931. [PMID: 35541381 PMCID: PMC9076214 DOI: 10.1039/c9ra08142a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Designing tumor microenvironment (TME)-specific active nanoparticles with minimum side effects for synergistic cancer therapy has become a hot topic in the recent decades. Aiming at further enhancing the therapeutic efficacy, an in situ-induced mitochondrial dysfunction is a very promising strategy. To achieve these goals, a nano-sono-chemodynamic agent denoted as TPP-Cu@HMS, which integrated hematoporphyrin monomethyl ether (HMME), mPEG-NHS, triphenylphosphonium (TPP)-decorated mesoporous silica (MS) and coordinatively bound Cu2+ ions for mitochondria-specific sonodynamic-chemodynamic therapy (SDT-CDT) of cancer, was designed. Upon the ultrasound (US) treatment, TPP-Cu@HMS can specifically target mitochondria and in situ generate 1O2 against cancer cells. Specifically, to overcome the short lifespan of 1O2, the released Cu2+ ions from TPP-Cu@HMS could act as a Fenton-like agent to convert endogenous H2O2 to ·OH in the acidic environment of cancer cells, disrupt the mitochondrial membrane potential and lead to mitochondrial disintegration, which could systematically enhance the therapeutic efficiency of SDT. Therefore, we highlight the current strategy as a promising prospect for cancer therapy.
Collapse
Affiliation(s)
- Kecan Lin
- The First Affiliated Hospital of Fujian Medical University Fuzhou 350025 P. R. China
| | - Ziguo Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- The Liver Center of Fujian Province, Fujian Medical University Fuzhou 350025 P. R. China
| | - Yujie Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou 510000 P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- The Liver Center of Fujian Province, Fujian Medical University Fuzhou 350025 P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- The Liver Center of Fujian Province, Fujian Medical University Fuzhou 350025 P. R. China
| |
Collapse
|