1
|
Zhong W, Handschuh-Wang S, Uthappa UT, Shen J, Qiu M, Du S, Wang B. Miniature Robots for Battling Bacterial Infection. ACS NANO 2024; 18:32335-32363. [PMID: 39527542 DOI: 10.1021/acsnano.4c11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Micro/nanorobots have shown great promise for minimally invasive bacterial infection therapy. However, bacterial infections usually form biofilms inside the body by aggregation and adhesion, preventing antibiotic penetration and increasing the likelihood of recurrence. Moreover, a substantial portion of the infection happens in those hard-to-access regions, making delivery of antibiotics to infected sites or tissues difficult and exacerbating the challenge of addressing bacterial infections. Micro/nanorobots feature exceptional mobility and controllability, are able to deliver drugs to specific sites (targeted delivery), and enhance drug penetration. In particular, the emergence of bioinspired microrobot surface design strategies have provided effective alternatives for treating infections, thereby preventing the possible development of bacterial resistance. In this paper, we review the recent advances in design, mechanism, and actuation modalities of micro/nanorobots with exceptional antimicrobial features, highlighting active therapy strategies for bacterial infections and derived complications at various organs, from the laboratory bench to in vivo applications. The current challenges and future research directions in this field are summarized. Those breakthroughs in micro/nanorobots offer a huge potential for clinical translation for bacterial infection therapy.
Collapse
Affiliation(s)
- Weijie Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Kim J, Mayorga-Burrezo P, Song SJ, Mayorga-Martinez CC, Medina-Sánchez M, Pané S, Pumera M. Advanced materials for micro/nanorobotics. Chem Soc Rev 2024; 53:9190-9253. [PMID: 39139002 DOI: 10.1039/d3cs00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Autonomous micro/nanorobots capable of performing programmed missions are at the forefront of next-generation micromachinery. These small robotic systems are predominantly constructed using functional components sourced from micro- and nanoscale materials; therefore, combining them with various advanced materials represents a pivotal direction toward achieving a higher level of intelligence and multifunctionality. This review provides a comprehensive overview of advanced materials for innovative micro/nanorobotics, focusing on the five families of materials that have witnessed the most rapid advancements over the last decade: two-dimensional materials, metal-organic frameworks, semiconductors, polymers, and biological cells. Their unique physicochemical, mechanical, optical, and biological properties have been integrated into micro/nanorobots to achieve greater maneuverability, programmability, intelligence, and multifunctionality in collective behaviors. The design and fabrication methods for hybrid robotic systems are discussed based on the material categories. In addition, their promising potential for powering motion and/or (multi-)functionality is described and the fundamental principles underlying them are explained. Finally, their extensive use in a variety of applications, including environmental remediation, (bio)sensing, therapeutics, etc., and remaining challenges and perspectives for future research are discussed.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Su-Jin Song
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Mariana Medina-Sánchez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, Bilbao, 48009, Spain
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and Nano-Biosystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
3
|
Mayorga-Martinez CC, Zhang L, Pumera M. Chemical multiscale robotics for bacterial biofilm treatment. Chem Soc Rev 2024; 53:2284-2299. [PMID: 38324331 DOI: 10.1039/d3cs00564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A biofilm constitutes a bacterial community encased in a sticky matrix of extracellular polymeric substances. These intricate microbial communities adhere to various host surfaces such as hard and soft tissues as well as indwelling medical devices. These microbial aggregates form a robust matrix of extracellular polymeric substances (EPSs), leading to the majority of human infections. Such infections tend to exhibit high resistance to treatment, often progressing into chronic states. The matrix of EPS protects bacteria from a hostile environment and prevents the penetration of antibacterial agents. Modern robots at nano, micro, and millimeter scales are highly attractive candidates for biomedical applications due to their diverse functionalities, such as navigating in confined spaces and targeted multitasking. In this tutorial review, we describe key milestones in the strategies developed for the removal and eradication of biofilms using robots of different sizes and shapes. It can be seen that robots at different scales are useful and effective tools for treating bacterial biofilms, thus preventing persistent infections, the loss of costly implanted medical devices, and additional costs associated with hospitalization and therapies.
Collapse
Affiliation(s)
- Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multicale Robotics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Advanced Nanorobots & Multicale Robotics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-616 00, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
4
|
Zheng J, Huang R, Lin Z, Chen S, Yuan K. Nano/Micromotors for Cancer Diagnosis and Therapy: Innovative Designs to Improve Biocompatibility. Pharmaceutics 2023; 16:44. [PMID: 38258055 PMCID: PMC10821023 DOI: 10.3390/pharmaceutics16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such "tiny robots" show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the most critical challenge that restricts such techniques from transitioning from the laboratory to clinical applications. In this review, we emphasize the biocompatibility aspect of nano/micromotors to show the great efforts made by researchers to promote their clinical application, mainly including non-toxic fuel propulsion (inorganic catalysts, enzyme, etc.), bio-hybrid designs, ultrasound propulsion, light-triggered propulsion, magnetic propulsion, dual propulsion, and, in particular, the cooperative swarm-based strategy for increasing therapeutic effects. Future challenges in translating nano/micromotors into real applications and the potential directions for increasing biocompatibility are also described.
Collapse
Affiliation(s)
- Jiahuan Zheng
- Department of Chemistry, Shantou University Medical College, Shantou 515041, China;
| | - Rui Huang
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Zhexuan Lin
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Shaoqi Chen
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
5
|
Dutta S, Noh S, Gual RS, Chen X, Pané S, Nelson BJ, Choi H. Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications. NANO-MICRO LETTERS 2023; 16:41. [PMID: 38032424 PMCID: PMC10689718 DOI: 10.1007/s40820-023-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation. Metal-based degradable micromotor composed of magnesium (Mg), zinc (Zn), and iron (Fe) have promise due to their nontoxic fuel-free propulsion, favorable biocompatibility, and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media, efficient cargo delivery and favorable biocompatibility. A noteworthy number of degradable metal-based micromotors employ bubble propulsion, utilizing water as fuel to generate hydrogen bubbles. This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications. In addition, understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance. Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor. Here we review the design and recent advancements of metallic degradable micromotors. Furthermore, we describe the controlled degradation, efficient in vivo drug delivery, and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications. Moreover, we discuss micromotors' efficacy in detecting and destroying environmental pollutants. Finally, we address the limitations and future research directions of degradable metallic micromotors.
Collapse
Affiliation(s)
- Sourav Dutta
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Seungmin Noh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Roger Sanchis Gual
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, People's Republic of China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
6
|
Ullattil SG, Pumera M. Light-Powered Self-Adaptive Mesostructured Microrobots for Simultaneous Microplastics Trapping and Fragmentation via in situ Surface Morphing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301467. [PMID: 37309271 DOI: 10.1002/smll.202301467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Microplastics, which comprise one of the omnipresent threats to human health, are diverse in shape and composition. Their negative impacts on human and ecosystem health provide ample incentive to design and execute strategies to trap and degrade diversely structured microplastics, especially from water. This work demonstrates the fabrication of single-component TiO2 superstructured microrobots to photo-trap and photo-fragment microplastics. In a single reaction, rod-like microrobots diverse in shape and with multiple trapping sites, are fabricated to exploit the asymmetry of the microrobotic system advantageous for propulsion. The microrobots work synergistically to photo-catalytically trap and fragment microplastics in water in a coordinated fashion. Hence, a microrobotic model of "unity in diversity" is demonstrated here for the phototrapping and photofragmentation of microplastics. During light irradiation and subsequent photocatalysis, the surface morphology of microrobots transformed into porous flower-like networks that trap microplastics for subsequent degradation. This reconfigurable microrobotic technology represents a significant step forward in the efforts to degrade microplastics.
Collapse
Affiliation(s)
- Sanjay Gopal Ullattil
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 404333, Taiwan
| |
Collapse
|
7
|
Wang Y, Chen J, Su G, Mei J, Li J. A Review of Single-Cell Microrobots: Classification, Driving Methods and Applications. MICROMACHINES 2023; 14:1710. [PMID: 37763873 PMCID: PMC10537272 DOI: 10.3390/mi14091710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Single-cell microrobots are new microartificial devices that use a combination of single cells and artificial devices, with the advantages of small size, easy degradation and ease of manufacture. With externally driven strategies such as light fields, sound fields and magnetic fields, microrobots are able to carry out precise micromanipulations and movements in complex microenvironments. Therefore, single-cell microrobots have received more and more attention and have been greatly developed in recent years. In this paper, we review the main classifications, control methods and recent advances in the field of single-cell microrobot applications. First, different types of robots, such as cell-based microrobots, bacteria-based microrobots, algae-based microrobots, etc., and their design strategies and fabrication processes are discussed separately. Next, three types of external field-driven technologies, optical, acoustic and magnetic, are presented and operations realized in vivo and in vitro by applying these three technologies are described. Subsequently, the results achieved by these robots in the fields of precise delivery, minimally invasive therapy are analyzed. Finally, a short summary is given and current challenges and future work on microbial-based robotics are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (Y.W.); (J.C.); (G.S.); (J.M.)
| |
Collapse
|
8
|
Sridhar V, Yildiz E, Rodríguez‐Camargo A, Lyu X, Yao L, Wrede P, Aghakhani A, Akolpoglu BM, Podjaski F, Lotsch BV, Sitti M. Designing Covalent Organic Framework-Based Light-Driven Microswimmers toward Therapeutic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301126. [PMID: 37003701 PMCID: PMC11475396 DOI: 10.1002/adma.202301126] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
While micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light-driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP-PDA-COF sub-micrometer particles and texturally nanoporous, micrometer-sized TpAzo-COF particles are described and compared as light-driven microrobots. They can be used as highly efficient visible-light-driven drug carriers in aqueous ionic and cellular media. Their absorption ranging down to red light enables phototaxis even in deeper and viscous biological media, while the organic nature of COFs ensures their biocompatibility. Their inherently porous structures with ≈2.6 and ≈3.4 nm pores, and large surface areas allow for targeted and efficient drug loading even for insoluble drugs, which can be released on demand. Additionally, indocyanine green (ICG) dye loading in the pores enables photoacoustic imaging, optical coherence tomography, and hyperthermia in operando conditions. This real-time visualization of the drug-loaded COF microswimmers enables unique insights into the action of photoactive porous drug carriers for therapeutic applications.
Collapse
Affiliation(s)
- Varun Sridhar
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Erdost Yildiz
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Andrés Rodríguez‐Camargo
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryUniversity of Stuttgart70569StuttgartGermany
| | - Xianglong Lyu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Liang Yao
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
| | - Paul Wrede
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
| | - Amirreza Aghakhani
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Birgul M. Akolpoglu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
| | - Filip Podjaski
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryImperial College LondonW12 0BZLondonUK
| | - Bettina V. Lotsch
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryUniversity of Stuttgart70569StuttgartGermany
- Cluster of Excellence e‐conversion85748Lichtenbergstrasse 4GarchingGermany
- Department of ChemistryUniversity of Munich (LMU)81377MunichGermany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
- School of Medicine and College of EngineeringKoç University34450IstanbulTurkey
| |
Collapse
|
9
|
Guo Z, Liu T, Gao W, Iffelsberger C, Kong B, Pumera M. Multi-Wavelength Light-Responsive Metal-Phenolic Network-Based Microrobots for Reactive Species Scavenging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210994. [PMID: 36591619 DOI: 10.1002/adma.202210994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Light-driven microrobots with different propulsion mechanisms have attracted great attention in microrobot synthesis and applications. However, current systems rely heavily on precious metals, using a complex synthesis process and limited working wavelength. It is therefore of great interest to fabricate microrobots that can be driven by multi-wavelength irradiation and with simple components. Here, metal-phenolic network (MPN)-based microrobots are synthesized using a sacrificial polystyrene bead template and an extra capping is added to regulate their symmetry. The hollow MPN microrobots with different layers of capping are capable of moving under both near-infrared (NIR) irradiation and ultraviolet (UV) irradiation, without fuel. The velocity of the microrobots under irradiation is altered by the thickness of the asymmetric capping and their motion could be manipulated remotely by switching the NIR or UV irradiation on and off. With light-driven mobility, the reactive oxygen and nitrogen species (RONS) scavenging activity of the microrobots is significantly increased. Therefore, this proposed microrobot system provides a synthesis strategy to develop asymmetric light-navigated microrobots for future medical treatment with tunable structure, multi-wavelength light-responsive mobility, and great RONS scavenging capacity.
Collapse
Affiliation(s)
- Ziyi Guo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Wanli Gao
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
| | - Christian Iffelsberger
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
10
|
Kim J, Mayorga-Martinez CC, Pumera M. Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption. Nat Commun 2023; 14:935. [PMID: 36804569 PMCID: PMC9939864 DOI: 10.1038/s41467-023-36650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
The recent COVID-19 pandemic has resulted in the massive discard of pandemic-related plastic wastes, causing serious ecological harm and a high societal burden. Most single-use face masks are made of synthetic plastics, thus their careless disposal poses a direct threat to wildlife as well as potential ecotoxicological effects in the form of microplastics. Here, we introduce a 1D magnetic photoactive microswarm capable of actively navigating, adhering to, and accelerating the degradation of the polypropylene microfiber of COVID-19 face masks. 1D microrobots comprise an anisotropic magnetic core (Fe3O4) and photocatalytic shell (Bi2O3/Ag), which enable wireless magnetic maneuvering and visible-light photocatalysis. The actuation of a programmed rotating magnetic field triggers a fish schooling-like 1D microswarm that allows active interfacial interactions with the microfiber network. The follow-up light illumination accelerates the disruption of the polypropylene microfiber through the photo-oxidative process as corroborated by morphological, compositional, and structural analyses. The active magnetic photocatalyst microswarm suggests an intriguing microrobotic solution to treat various plastic wastes and other environmental pollutants.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic.
- Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic.
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
11
|
Smart micro- and nanorobots for water purification. NATURE REVIEWS BIOENGINEERING 2023; 1:236-251. [PMID: 37064655 PMCID: PMC9901418 DOI: 10.1038/s44222-023-00025-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Less than 1% of Earth's freshwater reserves is accessible. Industrialization, population growth and climate change are further exacerbating clean water shortage. Current water-remediation treatments fail to remove most pollutants completely or release toxic by-products into the environment. The use of self-propelled programmable micro- and nanoscale synthetic robots is a promising alternative way to improve water monitoring and remediation by overcoming diffusion-limited reactions and promoting interactions with target pollutants, including nano- and microplastics, persistent organic pollutants, heavy metals, oils and pathogenic microorganisms. This Review introduces the evolution of passive micro- and nanomaterials through active micro- and nanomotors and into advanced intelligent micro- and nanorobots in terms of motion ability, multifunctionality, adaptive response, swarming and mutual communication. After describing removal and degradation strategies, we present the most relevant improvements in water treatment, highlighting the design aspects necessary to improve remediation efficiency for specific contaminants. Finally, open challenges and future directions are discussed for the real-world application of smart micro- and nanorobots.
Collapse
|
12
|
Zheng C, Song X, Gan Q, Lin J. High-efficiency removal of organic pollutants by visible-light-driven tubular heterogeneous micromotors through a photocatalytic Fenton process. J Colloid Interface Sci 2023; 630:121-133. [DOI: 10.1016/j.jcis.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
|
13
|
Fan X, Hu Q, Zhang X, Sun L, Yang Z. Solitary and Collective Motion Behaviors of TiO2 Microrobots under the Coupling of Multiple Light Fields. MICROMACHINES 2022; 14:89. [PMID: 36677151 PMCID: PMC9862000 DOI: 10.3390/mi14010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Due to their fascinating solitary and collective behavior, photochemical microrobots have attracted extensive attention from researchers and have obtained a series of outstanding research progress in recent years. However, due to the limitation of using a single light source, the realization of reconfigurable and controllable motion behaviors of the photochemical microrobot is still facing a series of challenges. To release these restrictions, we reported a multi-light-field-coupling-based method for driving the photochemical microrobot or its swarm in a regulatable manner. Here, we first designed a control system for coupling multiple light sources to realize the programmable application of four light sources in different directions. Then a TiO2-based photochemical microrobot was prepared, with its surface electric field distribution under different lighting conditions estimated by modeling-based simulation, where the feasibility of regulating the microrobot's motion behavior via the proposed setup was verified. Furthermore, our experimental results show that under the action of the compound light fields, we can not only robustly control the motion behavior of a single TiO2 microrobot but also reconfigure its collective behaviors. For example, we realized the free switching of the single TiO2 microrobots' movement direction, and the controllable diffusion, aggregation, the locomotion and merging of TiO2 microrobot swarms. Our discovery would provide potential means to realize the leap-forward control and application of photochemical microrobots from individuals to swarms, as well as the creation of active materials and intelligent synthetic systems.
Collapse
|
14
|
Li M, Wu J, Lin D, Yang J, Jiao N, Wang Y, Liu L. A diatom-based biohybrid microrobot with a high drug-loading capacity and pH-sensitive drug release for target therapy. Acta Biomater 2022; 154:443-453. [PMID: 36243369 DOI: 10.1016/j.actbio.2022.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Targeted delivery is a promising mean for various biomedical applications, and various micro/nano robots have been created for drug delivery. Mesoporous silica has been shown to be successful as a drug delivery carrier in numerous studies. However, mesoporous silica preparation usually requires expensive and toxic chemicals, which limits its biomedical applications. Diatoms, as the naturally porous silica structure, are promising substitutes for the artificial mesoporous silica preparation. However, the current studies utilizing intact diatom frustules as drug delivery packets lack flexible and controllable locomotion. Herein, we propose a biohybrid magnetic microrobot based on Thalassiosira weissflogii frustules (TWFs) as a cargo packet for targeted drug delivery using a simple preparation method. Biohybrid microrobots are fabricated in large quantities by attaching magnetic nanoparticles (Fe3O4) to the surface of diatoms via electrostatic adsorption. Biohybrid microrobots are agile and controllable under the influence of external magnetic fields. They could be precisely controlled to follow specific trajectories or to move as swarms. The cooperation of the two motion modes of the biohybrid microrobots increased microrobots' environmental adaptability. Microrobots have a high drug-loading capacity and pH-sensitive drug release. In vitro cancer cell experiments further demonstrated the controllability of diatom microrobots for targeted drug delivery. The biohybrid microrobots reported in this paper convert natural diatoms into cargo packets for biomedical applications, which possess active and controllable properties and show huge potential for targeted anticancer therapy. STATEMENT OF SIGNIFICANCE: In this study, diatoms with good biocompatibility were used to prepare biohybrid magnetic microrobots. Compared with the current diatom-based systems for drug delivery, the microrobots prepared in this study for targeted drug delivery have more flexible motion characteristics and exhibit certain swarming behaviors. Under the same magnetic field strength, by changing the magnetic field frequency, the movement state of the diatoms can be changed to pass through the narrow channel, so that it has better environmental adaptability.
Collapse
Affiliation(s)
- Mengyue Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Wu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
15
|
Huang S, Gao Y, Lv Y, Wang Y, Cao Y, Zhao W, Zuo D, Mu H, Hua Y. Applications of Nano/Micromotors for Treatment and Diagnosis in Biological Lumens. MICROMACHINES 2022; 13:mi13101780. [PMID: 36296133 PMCID: PMC9610721 DOI: 10.3390/mi13101780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/01/2023]
Abstract
Natural biological lumens in the human body, such as blood vessels and the gastrointestinal tract, are important to the delivery of materials. Depending on the anatomic features of these biological lumens, the invention of nano/micromotors could automatically locomote targeted sites for disease treatment and diagnosis. These nano/micromotors are designed to utilize chemical, physical, or even hybrid power in self-propulsion or propulsion by external forces. In this review, the research progress of nano/micromotors is summarized with regard to treatment and diagnosis in different biological lumens. Challenges to the development of nano/micromotors more suitable for specific biological lumens are discussed, and the overlooked biological lumens are indicated for further studies.
Collapse
Affiliation(s)
- Shandeng Huang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghua Gao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yu Lv
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yun Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghao Cao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| |
Collapse
|
16
|
Feng K, Gong J, Qu J, Niu R. Dual-Mode-Driven Micromotor Based on Foam-like Carbon Nitride and Fe 3O 4 with Improved Manipulation and Photocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44271-44281. [PMID: 36150032 DOI: 10.1021/acsami.2c10590] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Micro/nanomotors have emerged as a vibrant research topic in biomedical and environmental fields due to their attractive self-propulsion as well as small-scale functionalities. However, single actuated micro/nanomotors are not adaptive in facing intricate natural and industrial environments. Herein, we propose a new dual-mode-driven micromotor based on foam-like carbon nitride (f-C3N4) with precipitated Fe3O4 nanoparticles, namely, Fe3O4/f-C3N4, powered by chemical/magnetic stimuli for rapid reduction of organic pollutants. The Fe3O4/f-C3N4 motor composed of a three-dimensional (3D) porous "foam-like" structure and precipitated Fe3O4 nanoparticles (ca. 50 nm) not only exhibits efficient photocatalytic performance under visible light but also shows versatile and programmable motion behavior under the control of external magnetic fields. The aggregation of the micromotor under an external rotating magnetic field further enhances the catalytic activity by the increased local catalyst concentration. Furthermore, the magnetic property endows the micromotor with easy recyclability. This study provides a novel dual-mode-driven micromotor for antibiotics removal with magnetic field and light-enhanced performance in industrial wastewater treatment at a low cost.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Dai B, Zhou Y, Xiao X, Chen Y, Guo J, Gao C, Xie Y, Chen J. Fluid Field Modulation in Mass Transfer for Efficient Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203057. [PMID: 35957518 PMCID: PMC9534979 DOI: 10.1002/advs.202203057] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Indexed: 05/19/2023]
Abstract
Mass transfer is an essential factor determining photocatalytic performance, which can be modulated by fluid field via manipulating the kinetic characteristics of photocatalysts and photocatalytic intermediates. Past decades have witnessed the efforts and achievements made in manipulating mass transfer based on photocatalyst structure and composition design, and thus, a critical survey that scrutinizes the recent progress in this topic is urgently necessitated. This review examines the basic principles of how mass transfer behavior impacts photocatalytic activity accompanying with the discussion on theoretical simulation calculation including fluid flow speed and pattern. Meanwhile, newly emerged viable photocatalytic micro/nanomotors with self-thermophoresis, self-diffusiophoresis, and bubble-propulsion mechanisms as well as magnet-actuated photocatalytic artificial cilia for facilitating mass transfer will be covered. Furthermore, their applications in photocatalytic hydrogen evolution, carbon dioxide reduction, organic pollution degradation, bacteria disinfection and so forth are scrutinized. Finally, a brief summary and future outlook are presented, providing a viable guideline to those working in photocatalysis, mass transfer, and other related fields.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Yihao Zhou
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Xiao Xiao
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Yukai Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Materials Science and EngineeringNanjing Tech UniversityNanjing210009China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Jun Chen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
| |
Collapse
|
18
|
Liu M, Jiang J, Tan H, Chen B, Ou J, Wang H, Sun J, Liu L, Wang F, Gao J, Liu C, Peng F, Liu Y, Tu Y. Light-driven Au-ZnO nanorod motors for enhanced photocatalytic degradation of tetracycline. NANOSCALE 2022; 14:12804-12813. [PMID: 36018319 DOI: 10.1039/d2nr02441a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The abuse of antibiotics in human medicine and animal husbandry leads to the enrichment of antibiotic residues in aquatic environments, which has been a major problem of environmental pollution over the past decades. Therefore, it is urgent to develop a highly efficient approach to remove antibiotics from aquatic environments. Inspired by the motion characteristics of semiconductor-based micro-/nanomotors, a light-driven Au-ZnO nanomotor system based on vertically aligned ZnO arrays is successfully developed for the enhanced photocatalytic degradation of tetracycline (TC). Under UV light (λ = 365 nm) illumination, these Au-ZnO nanomotors exhibit a high speed in deionized water and TC solution. Due to their efficient motion capability and Au-enhanced charge separation, these light-driven Au-ZnO nanomotors removed almost all TC (40 mg L-1) within 30 min and displayed stable photocatalytic activity for four cycles without any apparent deactivation. The as-developed motor-based strategy for enhanced antibiotic degradation has excellent potential in environmental governance.
Collapse
Affiliation(s)
- Meihuan Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jiamiao Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Haixin Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Juanfeng Ou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jia Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lu Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Junbin Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chang Liu
- Sport Science College, Beijing Sport University, Beijing 100091, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yun Liu
- School of Pharmacy, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China.
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
19
|
Abstract
Micro-/nanorobots (MNRs) can be autonomously propelled on demand in complex biological environments and thus may bring revolutionary changes to biomedicines. Fluorescence has been widely used in real-time imaging, chemo-/biosensing, and photo-(chemo-) therapy. The integration of MNRs with fluorescence generates fluorescent MNRs with unique advantages of optical trackability, on-the-fly environmental sensitivity, and targeting chemo-/photon-induced cytotoxicity. This review provides an up-to-date overview of fluorescent MNRs. After the highlighted elucidation about MNRs of various propulsion mechanisms and the introductory information on fluorescence with emphasis on the fluorescent mechanisms and materials, we systematically illustrate the design and preparation strategies to integrate MNRs with fluorescent substances and their biomedical applications in imaging-guided drug delivery, intelligent on-the-fly sensing and photo-(chemo-) therapy. In the end, we summarize the main challenges and provide an outlook on the future directions of fluorescent MNRs. This work is expected to attract and inspire researchers from different communities to advance the creation and practical application of fluorescent MNRs on a broad horizon.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
20
|
Villa K, Sopha H, Zelenka J, Motola M, Dekanovsky L, Beketova DC, Macak JM, Ruml T, Pumera M. Enzyme-Photocatalyst Tandem Microrobot Powered by Urea for Escherichia coli Biofilm Eradication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106612. [PMID: 35122470 DOI: 10.1002/smll.202106612] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Urinary-based infections affect millions of people worldwide. Such bacterial infections are mainly caused by Escherichia coli (E. coli) biofilm formation in the bladder and/or urinary catheters. Herein, the authors present a hybrid enzyme/photocatalytic microrobot, based on urease-immobilized TiO2 /CdS nanotube bundles, that can swim in urea as a biocompatible fuel and respond to visible light. Upon illumination for 2 h, these microrobots are able to remove almost 90% of bacterial biofilm, due to the generation of reactive radicals, while bare TiO2 /CdS photocatalysts (non-motile) or urease-coated microrobots in the dark do not show any toxic effect. These results indicate a synergistic effect between the self-propulsion provided by the enzyme and the photocatalytic activity induced under light stimuli. This work provides a photo-biocatalytic approach for the design of efficient light-driven microrobots with promising applications in microbiology and biomedicine.
Collapse
Affiliation(s)
- Katherine Villa
- Center for Advanced Functional Nanorobots Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Hanna Sopha
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Martin Motola
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
| | - Lukas Dekanovsky
- Center for Advanced Functional Nanorobots Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Darya Chylii Beketova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
| | - Jan M Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
21
|
Wang J, Soto F, Ma P, Ahmed R, Yang H, Chen S, Wang J, Liu C, Akin D, Fu K, Cao X, Chen P, Hsu EC, Soh HT, Stoyanova T, Wu JC, Demirci U. Acoustic Fabrication of Living Cardiomyocyte-based Hybrid Biorobots. ACS NANO 2022; 16:10219-10230. [PMID: 35671037 DOI: 10.1021/acsnano.2c01908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organized assemblies of cells have demonstrated promise as bioinspired actuators and devices; still, the fabrication of such "biorobots" has predominantly relied on passive assembly methods that reduce design capabilities. To address this, we have developed a strategy for the rapid formation of functional biorobots composed of live cardiomyocytes. We employ tunable acoustic fields to facilitate the efficient aggregation of millions of cells into high-density macroscopic architectures with directed cell orientation and enhanced cell-cell interaction. These biorobots can perform actuation functions both through naturally occurring contraction-relaxation cycles and through external control with chemical and electrical stimuli. We demonstrate that these biorobots can be used to achieve controlled actuation of a soft skeleton and pumping of microparticles. The biocompatible acoustic assembly strategy described here should prove generally useful for cellular manipulation in the context of tissue engineering, soft robotics, and other applications.
Collapse
Affiliation(s)
- Jie Wang
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Fernando Soto
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Peng Ma
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Rajib Ahmed
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Sihan Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Jibo Wang
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Demir Akin
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Kaiyu Fu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Pu Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - En-Chi Hsu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Hyongsok Tom Soh
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Utkan Demirci
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| |
Collapse
|
22
|
Pacheco M, Mayorga-Martinez CC, Escarpa A, Pumera M. Micellar Polymer Magnetic Microrobots as Efficient Nerve Agent Microcleaners. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26128-26134. [PMID: 35612487 DOI: 10.1021/acsami.2c02926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Micro-/nanorobot technology has developed rapidly in recent years due to their great potential to perform multiple tasks. Here, we develop magnetic microrobots prepared as polycaprolactone/Fe3O4 microspheres covered by micellar polyethyleneimine and use them to efficiently remove a nerve agent from contaminated water. The magnetic polymeric microrobots presented in this work removed around 60% of the nerve agent from water samples in a short time. The attractive performance of these magnetic microrobots offers a very promising approach to large-scale water treatment for environmental remediation.
Collapse
Affiliation(s)
- Marta Pacheco
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares 28802, Madrid, Spain
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Alberto Escarpa
- Chemical Research Institute "Andres M. del Río", University of Alcalá, Alcalá de Henares 28802, Madrid, Spain
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung, Taiwan
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
23
|
Song X, Tao Y, Liu J, Lin J, Dai P, Wang Q, Li W, Chen W, Zheng C. Photocatalytic-induced bubble-propelled isotropic g-C 3N 4-coated carbon microsphere micromotors for dynamic removal of organic pollutants. RSC Adv 2022; 12:13116-13126. [PMID: 35497017 PMCID: PMC9053031 DOI: 10.1039/d2ra01577c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
An isotropic bubble-propelled graphitic carbon nitride coated carbon microsphere (g-C3N4@CMS) micromotor that displays efficient self-propulsion powered by visible light irradiation and offers effective dynamic removal of organic pollutants for environmental applications is described. Its morphology, structure, and composition were systematically characterized, confirming the successful coating of g-C3N4 on the CMS surface and a core-shell structure. The photocatalytic-induced bubble propulsion of g-C3N4@CMS micromotors essentially stems from the asymmetrical photocatalytic redox reactions of g-C3N4 on the symmetrical surface of micromotors under visible light illumination. The stacking effect of g-C3N4 on the CMS surface results in a microporous structure that provides a highly reactive photocatalytic layer, which also leads to effective bubble evolution and propulsion at remarkable speeds of over 167.97 μm s-1 under 250 mW cm-2 visible light in the presence of 30% H2O2 fuel. The velocity can be easily and effectively adjusted by H2O2 fuel and the intensity of visible light. Furthermore, the motion state can be reversibly and wirelessly controlled by "switching on/off" light. Such coupling of the high photocatalytic activity of the porous g-C3N4 shell with the rapid movement of these light-driven micromotors, along with the corresponding fluid dynamics and mixing, result in greatly accelerated organic pollutant degradation. The adsorption kinetics have also been investigated and shown to follow pseudo-second-order kinetics. The strategy proposed here would inspire the designing of light-driven symmetrical micromotors because of the low cost, single component, and simple structure as well as facile and large-scale fabrication, which make them suitable for practical applications.
Collapse
Affiliation(s)
- Xiaoyi Song
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Yulian Tao
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Jialiang Liu
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Jian Lin
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Pingqiang Dai
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Qianting Wang
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Wei Li
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
- Institute of Materials Surface Technology, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Wenzhe Chen
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| | - Chan Zheng
- School of Materials Science and Engineering, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
- Institute of Materials Surface Technology, Fujian University of Technology 3 Xueyuan Road Fuzhou 350108 PR China
| |
Collapse
|
24
|
Basharat M, Shah ZH, Ikram M, Ghellab SE, Hassan QU, Ilyas T, Lei L, Lin G, Gao Y. Inorganic-Organic Hybrid Copolymeric Colloids as Multicolor Emission, Fuel-Free, UV- and Visible-Light-Actuated Micropumps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107621. [PMID: 35142080 DOI: 10.1002/smll.202107621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Light-actuated micromachines are of enormous interest due to their ability to harvest light for triggering catalytic reactions to acquire free energy for mechanical work. This work presents an inorganic-organic hybrid copolymeric poly(cyclotriphosphazene-co-barbituric acid) colloid, which displays multiwavelength excited emission and catalytic activities, exploiting the unique structural, chemical, and optical features of inorganic heterocyclic ring hexachlorocyclotriphosphazene and organic co-monomer barbituric acid. Specifically, this work reveals particle-resolved unusual multicolor emission under excitation with the same or different wavelengths of light using fluorescence microscopy. The result is rationalized by density functional theory studies. In this work, the authors find that emission is coincident with fluorometric measurements, and the photocatalytic properties are anticipated from the overall band structure. This work also demonstrates the use of these colloids as micropumps, which can be remotely activated by UV, blue, and green lights under fuel-free conditions, and ascribe the behavior to ionic diffusiophoresis arising from light-triggered generation of H+ and other charged species. This work offers a new class of polymeric colloids with multiple-wavelength excited emission and catalytic activities, which is expected to open new opportunities in the design of fuel-free, photo-actuated micromachines and active systems.
Collapse
Affiliation(s)
- Majid Basharat
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zameer Hussain Shah
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
| | - Muhammad Ikram
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Salah Eddine Ghellab
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qadeer-Ul Hassan
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tayiba Ilyas
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lijie Lei
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guanhua Lin
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
| |
Collapse
|
25
|
Sridhar V, Podjaski F, Alapan Y, Kröger J, Grunenberg L, Kishore V, Lotsch BV, Sitti M. Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. Sci Robot 2022; 7:eabm1421. [PMID: 35044799 DOI: 10.1126/scirobotics.abm1421] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We propose two-dimensional poly(heptazine imide) (PHI) carbon nitride microparticles as light-driven microswimmers in various ionic and biological media. Their high-speed (15 to 23 micrometer per second; 9.5 ± 5.4 body lengths per second) swimming in multicomponent ionic solutions with concentrations up to 5 M and without dedicated fuels is demonstrated, overcoming one of the bottlenecks of previous light-driven microswimmers. Such high ion tolerance is attributed to a favorable interplay between the particle's textural and structural nanoporosity and optoionic properties, facilitating ionic interactions in solutions with high salinity. Biocompatibility of these microswimmers is validated by cell viability tests with three different cell lines and primary cells. The nanopores of the swimmers are loaded with a model cancer drug, doxorubicin (DOX), resulting in a high (185%) loading efficiency without passive release. Controlled drug release is reported under different pH conditions and can be triggered on-demand by illumination. Light-triggered, boosted release of DOX and its active degradation products are demonstrated under oxygen-poor conditions using the intrinsic, environmentally sensitive and light-induced charge storage properties of PHI, which could enable future theranostic applications in oxygen-deprived tumor regions. These organic PHI microswimmers simultaneously address the current light-driven microswimmer challenges of high ion tolerance, fuel-free high-speed propulsion in biological media, biocompatibility, and controlled on-demand cargo release toward their biomedical, environmental, and other potential applications.
Collapse
Affiliation(s)
- Varun Sridhar
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Filip Podjaski
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Yunus Alapan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Julia Kröger
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany.,Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Lars Grunenberg
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany.,Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Vimal Kishore
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.,Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Bettina V Lotsch
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany.,Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,Cluster of Excellence e-conversion, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.,Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland.,School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
26
|
Abstract
Inspired by the increasing desire to mimic the perfection of nature, micro- and nanorobots are triggering increasing interest among the scientific community. The development of such tiny machines that can autonomously perform specific and various tasks at a small scale has reached a high-level of complexity over the last 15 years although the transition from hard to soft self-propelled architectures has had the most profound impact. The use of organic components, such as polymers, is of particular interest to fulfill the lack of biocompatibility and biodegradability of inorganic-based microrobots. Additionally, the combination of self-powered micro- and nanorobots with some macromolecules' ability to be deformed and respond to external stimuli is an important topic. This review aims to critically assess the fundamental aspects of smart machines composed of polymers, examine recent advances in the combined systems at the micro- and nanoscale, and discuss the specific contribution of several polymer families. This review elucidates the role of smart polymers in the expanding field of intelligent micromachines.
Collapse
Affiliation(s)
- Martina Ussia
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic.
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic. .,Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, South Korea.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
27
|
Abstract
Living things in nature have evolved with unique morphologies, structures, materials, behaviors, and functions to survive in complex natural environments. Nature has inspired the design ideas, preparation methods, and applications of versatile micro/nanomotors. This review summarizes diverse nature-inspired micro/nanomotors, which can be divided into five groups: (i) natural morphology-inspired micro/nanomotors, whose shapes are designed to imitate the morphologies of plants, animals, and objects in nature. (ii) Natural structure-inspired micro/nanomotors, which use structures from plants, red blood cells, and platelet cells as components of micro/nanomotors, or directly use sperm cells and microorganisms as the engines of micro/nanomotors. (iii) Natural behavior-inspired micro/nanomotors, which are proposed to mimic natural behaviors such as motion behavior, swarm behavior, and communication behavior between individuals. (iv) Micro/nanomotors inspired by both natural morphology and behavior. Nature makes it possible for synthetic micro/nanomotors to possess interesting morphologies, novel preparation methods, new propulsion modes, innovative functions, and broad applications. The nature-inspired micro/nanomotors could provide a promising platform for various practical fields.
Collapse
Affiliation(s)
- Xiaocong Chang
- Key Laboratory of Micro-systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, China
| | - Yiwen Feng
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Bin Guo
- Key Laboratory of Micro-systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
| | - Dekai Zhou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
28
|
Norikane Y, Hayashino M, Ohnuma M, Abe K, Kikkawa Y, Saito K, Manabe K, Miyake K, Nakano M, Takada N. Photo-Induced Crawling Motion of Azobenzene Crystals on Modified Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14177-14185. [PMID: 34808058 DOI: 10.1021/acs.langmuir.1c02494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photo-induced crawling motion of a crystal of 3,3'-dimethylazobenzene (DMAB) on gold surfaces having different surface properties and various patterns was studied. DMAB crystals crawl continuously when exposed to UV and visible lights simultaneously from different directions. On a gold surface functionalized by a thiol having a hydroxyl group at the terminal (16-hydroxy-1-hexadecanethiol (HOC16SH)), the crystals crawled with a relatively high velocity (ca. 4 μm min-1), and they changed the crystal shape while keeping a distinct crystal face. On a gold surface functionalized by a thiol having an alkyl chain terminal (1-hexadecanethiol (C16SH)), the crawling was observed with a slower velocity (ca. 1.5 μm min-1). However, the shape of the crystals became a droplet-like shape soon after the irradiation started, and the shape persisted during the motion. Light intensity dependence of the crawling velocity of the droplet-like crystal on this surface showed that UV light has stronger dependence for the motion than the visible light. On a substrate with a stripe pattern of alternating C16SH-modified gold and hexadecyltrimethylsilane (HDTMS)-modified glass, crystals crawled only on the surface of the C16SH-modified gold, which may be due to the wettability hysteresis at the surface. On a substrate with a stripe pattern of HOC16SH-modified gold and HDTMS-modified glass, crystals were attracted to the gold side. On a gold substrate with a periodic pattern of different height (ca. 50 nm) but having a uniform treatment with C16SH, crystals crawled up and down the steps without significant disturbance at the boundary of the step. Therefore, wettability of the surface has a greater impact on controlling the motion of the crystal than the surface structure. The present results not only unveil the crawling behavior on various surfaces but also offer a guide to controlling the motion toward applications for novel carriage vehicles to transport molecules/objects on a surface.
Collapse
Affiliation(s)
- Yasuo Norikane
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Masaru Hayashino
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Mio Ohnuma
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Koji Abe
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Yoshihiro Kikkawa
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Koichiro Saito
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kengo Manabe
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Koji Miyake
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8564, Japan
| | - Miki Nakano
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8564, Japan
| | - Naoki Takada
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8564, Japan
| |
Collapse
|
29
|
Lu X, Wei Y, Ou H, Zhao C, Shi L, Liu W. Universal Control for Micromotor Swarms with a Hybrid Sonoelectrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104516. [PMID: 34608753 DOI: 10.1002/smll.202104516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Enabled by active motion of microrobots, conventional biological detection and chemical analyses limited by passive diffusion can be significantly enhanced with fast testing speed and unique sensitiveness. However, controlled release and precise enrichment of microrobot swarms are still difficult to accomplish and thus prohibit them away from practical applications. Here, an efficient and versatile strategy utilizing a needle-shaped hybrid sonoelectrode to disperse and aggregate distinct micromotors is presented, remarkably accelerating mass transfer and enhancing the signal intensity. Hydrogen bubbles generated at the tip of charged electrode can oscillate as actuated by the acoustic field, creating intensified vortexes to disperse micromotors spontaneously. Via removing the attached bubble, the sonoelectrode serving as solid needle isolator is capable of collecting micromotors in a large scale with acoustic streaming in the working reservoir at higher ultrasound frequency. Numerical calculation reveals the streaming profiles with/without microbubbles, and manipulations on classic spherical and tubular micromotor models confirm that the acoustic-powered prototype device is effective for controlling different swarming behaviors in microfluidic channels. Overall, the proposed hybrid sonoelectrode offers a universal and rapid strategy to tailor micromotor swarm behaviors, advancing intelligent microrobots to be featured with active enrichment and compatible for next-generation sensitive portable detection microsystems.
Collapse
Affiliation(s)
- Xiaolong Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Ying Wei
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Huan Ou
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Cong Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Lukai Shi
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Wenjuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| |
Collapse
|
30
|
Choi H, Yi J, Cho SH, Hahn SK. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials 2021; 279:121201. [PMID: 34715638 DOI: 10.1016/j.biomaterials.2021.121201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
Self-propelling micro- and nano-motors (MNMs) are emerging as a multifunctional platform for smart healthcare applications such as biosensing, bioimaging, and targeted drug delivery with high tissue penetration, stirring effect, and rapid drug transport. MNMs can be propelled and/or guided by chemical substances or external stimuli including ultrasound, magnetic field, and light. In addition, enzymatically powered MNMs and biohybrid micromotors have been developed using the biological components in the body. In this review, we describe emerging MNMs focusing on their smart propulsion systems, and diagnostic and therapeutic applications. Finally, we highlight several MNMs for in vivo applications and discuss the future perspectives of MNMs on their current limitations and possibilities toward further clinical applications.
Collapse
Affiliation(s)
- Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jeeyoon Yi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seong Hwi Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
31
|
Urso M, Iffelsberger C, Mayorga-Martinez CC, Pumera M. Nickel Sulfide Microrockets as Self-Propelled Energy Storage Devices to Power Electronic Circuits "On-Demand". SMALL METHODS 2021; 5:e2100511. [PMID: 34927946 DOI: 10.1002/smtd.202100511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Indexed: 06/14/2023]
Abstract
Miniaturized energy storage devices are essential to power the growing number and variety of microelectronic technologies. Here, a concept of self-propelled microscale energy storage elements that can move, reach, and power electronic circuits is reported. Microrockets consisting of a nickel sulfide (NiS) outer layer and a Pt inner layer are prepared by template-assisted electrodeposition, and designed to store energy through NiS-mediated redox reactions and propel via the Pt-catalyzed decomposition of H2 O2 fuel. Scanning electrochemical microscopy allows visualizing and studying the energy storage ability of a single microrocket, revealing its pseudocapacitive nature. This proves the great potential of such technique in the field of micro/nanomotors. On-demand delivery of energy storage units to electronic circuits has been demonstrated by releasing microrockets on an interdigitated array electrode as an example of electronic circuit. Owing to their self-propulsion ability, they reach the active area of the electrode and, in principle, power its functions. These autonomously moving energy storage devices will be employed for next-generation electronics to store and deliver energy in previously inaccessible locations.
Collapse
Affiliation(s)
- Mario Urso
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Christian Iffelsberger
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, 166 28, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, 166 28, Czech Republic
- Center for Nanorobotics and Machine Intelligence, Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, CZ-613 00, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seodaemun-Gu, Seoul, 03722, South Korea
| |
Collapse
|
32
|
Duan S, Xu P, Wang W. Better fuels for photocatalytic micromotors: a case study of triethanolamine. Chem Commun (Camb) 2021; 57:9902-9905. [PMID: 34494625 DOI: 10.1039/d1cc03857e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Efficient fuels are critical for designing photocatalytic micromotors with high performance. We discover that 0.5 mM of triethanolamine can power TiO2-Pt motors at 35 μm s-1 without producing bubbles, a significant improvement over conventional fuels such as water, H2O2 or hydroquinone. The effectiveness of hole scavengers such as triethanolamine can be generalized to other photocatalytic micromotors containing a heterojunction with an n-type (but not a p-type) semiconductor.
Collapse
Affiliation(s)
- Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Pengzhao Xu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
33
|
Norikane Y, Hayashino M, Ohnuma M, Abe K, Kikkawa Y, Saito K, Manabe K, Miyake K, Nakano M, Takada N. Effect of Surface Properties on the Photo-Induced Crawling Motion of Azobenzene Crystals on Glass Surfaces. Front Chem 2021; 9:684767. [PMID: 34422758 PMCID: PMC8374144 DOI: 10.3389/fchem.2021.684767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Photo-induced crawling motion of a crystal of 3,3′-dimethylazobenzene (DMAB) on a glass substrate having different surface properties was studied. When exposed to UV and visible lights simultaneously from different directions, crystals crawl continuously on a glass surface. On a hydrophilic surface, the crystals crawled faster than those on other surfaces but crystals showed spreading while they moved. On hydrophobic surfaces, on the other hand, the crystals showed little shape change and slower crawling motion. The contact angles of the liquid phase of DMAB on surface-modified glass substrates showed positive correlation with the water contact angles. The interaction of melted azobenzene with glass surfaces plays an important role for the crawling motion. We proposed models to explain the asymmetric condition that leads to the directional motion. Specifically by considering the penetration length of UV and visible light sources, it was successfully shown that the depth of light penetration is different at the position of a crystal. This creates a nonequilibrium condition where melting and crystallization are predominant in the same crystal.
Collapse
Affiliation(s)
- Yasuo Norikane
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
| | - Masaru Hayashino
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
| | - Mio Ohnuma
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Koji Abe
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshihiro Kikkawa
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Koichiro Saito
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kengo Manabe
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Koji Miyake
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Miki Nakano
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naoki Takada
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
34
|
Ying Y, Plutnar J, Pumera M. Six-Degree-of-Freedom Steerable Visible-Light-Driven Microsubmarines Using Water as a Fuel: Application for Explosives Decontamination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100294. [PMID: 33945209 DOI: 10.1002/smll.202100294] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Micro/nanomotors are capable of a wide variety of tasks related, i.e., to biomedical or environmental applications. Light-driven semiconductor-based micromotors are especially appealing, as they can split surrounding water via light irradiation, and therefore, they can move infinitely. However, their motion is typically limited to in-plane motion with four degrees of freedom (4DoF) or even pseudo-1D motion with 2DoF. Herein, magnetically steerable tubular TiO2 /Fe3 O4 /CdS micromotors, termed microsubmarines, with 6DoF motion, based on a fuel-free design where surrounding water acts as fuel upon visible light irradiation, are presented, with an average velocity of 7.9 µm s-1 . Besides, the generation of radicals via such water splitting aids the photocatalytic chemicals degradation with the potential to use solar radiation. A light-induced self-electrophoretic mechanism is responsible for the self-propulsion and can be used to predict the motion direction based on the structure and composition. Finally, the TiO2 /Fe3 O4 /CdS microsubmarines are tested in a proof-of-concept application of high-energy explosive, e.g., picric acid, photocatalytic degradation, with the best performance owing to the versatility of 6DoF motion, the surface coating with amorphous TiO2 layer, and UV light. The results can help optimize light-active micromotor design for potential national security and environmental application, hydrogen evolution, and target cargo delivery.
Collapse
Affiliation(s)
- Yulong Ying
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, Prague, 16628, Czech Republic
| | - Jan Plutnar
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, Prague, 16628, Czech Republic
| | - Martin Pumera
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, Prague, 16628, Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ, Brno, 61300, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
35
|
Affiliation(s)
- Shimin Yu
- Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| | - Yang Cai
- School of Materials Science and Engineering Heilongjiang University of Science and Technology Harbin China
| | - Zhiguang Wu
- Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| | - Qiang He
- Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| |
Collapse
|
36
|
Soto F, Wang J, Deshmukh S, Demirci U. Reversible Design of Dynamic Assemblies at Small Scales. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 3:2000193. [PMID: 35663639 PMCID: PMC9165726 DOI: 10.1002/aisy.202000193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 05/08/2023]
Abstract
Emerging bottom-up fabrication methods have enabled the assembly of synthetic colloids, microrobots, living cells, and organoids to create intricate structures with unique properties that transcend their individual components. This review provides an access point to the latest developments in externally driven assembly of synthetic and biological components. In particular, we emphasize reversibility, which enables the fabrication of multiscale systems that would not be possible under traditional techniques. Magnetic, acoustic, optical, and electric fields are the most promising methods for controlling the reversible assembly of biological and synthetic subunits since they can reprogram their assembly by switching on/off the external field or shaping these fields. We feature capabilities to dynamically actuate the assembly configuration by modulating the properties of the external stimuli, including frequency and amplitude. We describe the design principles which enable the assembly of reconfigurable structures. Finally, we foresee that the high degree of control capabilities offered by externally driven assembly will enable broad access to increasingly robust design principles towards building advanced dynamic intelligent systems.
Collapse
Affiliation(s)
- Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| | - Shreya Deshmukh
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
- Department of Bioengineering, School of Engineering, School of Medicine, Stanford University, Stanford, California, 94305-4125, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| |
Collapse
|
37
|
Lemineur JF, Ciocci P, Noël JM, Ge H, Combellas C, Kanoufi F. Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction. ACS NANO 2021; 15:2643-2653. [PMID: 33523639 DOI: 10.1021/acsnano.0c07674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While numerous efforts have been made toward the design of sustainable and efficient nanocatalysts of the hydrogen evolution reaction, there is a need for the operando observation and quantification of the formation of gas nanobubbles (NBs) involved in this electrochemical reaction. It is achieved herein through interference reflection microscopy coupled to electrochemistry and optical modeling. In addition to analyzing the geometry and growth rate of individual NBs at single nanocatalysts, the toolbox offered by superlocalization and quantitative label-free optical microscopy allows analyzing the geometry (contact angle and footprint with surface) of individual NBs and their growth rate. It turns out that, after a few seconds, NBs are steadily growing while they are fully covering the Pt nanoparticles that allowed their nucleation and their pinning on the electrode surface. It then raises relevant questions related to gas evolution catalysts, such as, for example, does the evaluation of NB growth at the single nanocatalyst really reflect its electrochemical activity?
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Hongxin Ge
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | | | | |
Collapse
|
38
|
Somasundar A, Sen A. Chemically Propelled Nano and Micromotors in the Body: Quo Vadis? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007102. [PMID: 33432722 DOI: 10.1002/smll.202007102] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Indexed: 05/26/2023]
Abstract
The active delivery of drugs to disease sites in response to specific biomarkers is a holy grail in theranostics. If successful, it would greatly diminish the therapeutic dosage and reduce collateral cytotoxicity. In this context, the development of nano and micromotors that are able to harvest local energy to move directionally is an important breakthrough. However, serious hurdles remain before such active systems can be employed in vivo in therapeutic applications. Such motors and their energy sources must be safe and biocompatible, they should be able to move through complex body fluids, and have the ability to reach specific cellular targets. Given the complexity in the design and deployment of nano and micromotors, it is also critically important to show that they are significantly superior to inactive "smart" nanoparticles in theranostics. Furthermore, receiving regulatory approval requires the ability to scale-up the production of nano and micromotors with uniformity in structure, function, and activity. In this essay, the limitations of the current nano and micromotors and the issues that need to be resolved before such motors are likely to find theranostic applications are discussed.
Collapse
Affiliation(s)
- Ambika Somasundar
- Departments of Chemistry and Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ayusman Sen
- Departments of Chemistry and Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
39
|
Wang Q, Zhang L. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS NANO 2021; 15:149-174. [PMID: 33417764 DOI: 10.1021/acsnano.0c07753] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Untethered micro/nanorobots have been widely investigated owing to their potential in performing various tasks in different environments. The significant progress in this emerging interdisciplinary field has benefited from the distinctive features of those tiny active agents, such as wireless actuation, navigation under feedback control, and targeted delivery of small-scale objects. In recent studies, collective behaviors of these tiny machines have received tremendous attention because swarming agents can enhance the delivery capability and adaptability in complex environments and the contrast of medical imaging, thus benefiting the imaging-guided navigation and delivery. In this review, we summarize the recent research efforts on investigating collective behaviors of external power-driven micro/nanorobots, including the fundamental understanding of swarm formation, navigation, and pattern transformation. The fundamental understanding of swarming tiny machines provides the foundation for targeted delivery. We also summarize the swarm localization using different imaging techniques, including the imaging-guided delivery in biological environments. By highlighting the critical steps from understanding the fundamental interactions during swarm control to swarm localization and imaging-guided delivery applications, we envision that the microrobotic swarm provides a promising tool for delivering agents in an active, controlled manner.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| |
Collapse
|
40
|
Vikrant K, Kim KH. Metal–organic framework micromotors: perspectives for environmental applications. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01124c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metal–organic framework micromotors possessing a self-propulsion system have been proposed as a new generation of advanced materials for various environmental applications.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| |
Collapse
|
41
|
Yang Q, Gao Y, Xu L, Hong W, She Y, Yang G. Enzyme-driven micro/nanomotors: Recent advances and biomedical applications. Int J Biol Macromol 2020; 167:457-469. [PMID: 33278445 DOI: 10.1016/j.ijbiomac.2020.11.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Micro/nanomotors (MNMs), both self-propelled actuators and external fields-promoted machines, have joined forces in the past decade to accomplish versatile tasks such as precise detection and targeted cargo delivery with adequate propulsion and desirable locomotion. Amongst, enzyme-driven MNMs have been able to differentiate themselves from others owing to their distinct characteristics, such as absence of chemical fuel, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. In the present review, we aim to highlight and summarize recent advances in enzyme-driven MNMs, particularly to provide an in-depth discussion focusing on the enzyme linking approaches onto those MNMs and motion control strategies of such MNMs with advantages and limitations thereof. Conclusions and future perspectives are also provided in brief.
Collapse
Affiliation(s)
- Qingliang Yang
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Gao
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lei Xu
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiyong Hong
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Taizhou Municipal Hospital of Zhejiang Province, Taizhou 318000, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
42
|
|
43
|
Wang T, Zheng M, Wang L, Ji L, Wang S. Crucial role of an aerophobic substrate in bubble-propelled nanomotor aggregation. NANOTECHNOLOGY 2020; 31:355504. [PMID: 32403095 DOI: 10.1088/1361-6528/ab92c6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A bubble-propelled autonomous micro/nanomotor (MNM) is a device driven by a catalytic reaction that involves a solid-liquid-gas interface, which in turn is a key factor in achieving effective propulsion. Generally, modifying the liquid phase by adding surfactants can improve propulsion, but it has several disadvantages. It is reported that the rapid separation of bubbles will accelerate the movement of MNMs. Our focus is on methods to drive the motor efficiently by controlling the wettability of the solid phase, accelerating bubble separation without compromising the activity of the catalyst. In this study, different from most of the previous studies on moving MNMs, a static Pt loaded TiO2 nanowire aggregation was utilized as a nanomotor aggregation to investigate the wettability of the solid phase on bubble release. In comparison to an underwater aerophilic solid phase, in which bubbles are strongly held on the surface, the nanomotor's aggregation showed good aerophobicity. In particular, after UV illumination for 30 s, the nanomotor's aggregation became superaerophobic, which significantly promoted the release of O2 bubbles. The results of this study reveal how to modify the detachment behaviour of bubbles by controlling the aerophobic behaviour of solid surfaces of autonomous MNMs in an aqueous medium.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Sachs J, Kottapalli SN, Fischer P, Botin D, Palberg T. Characterization of active matter in dense suspensions with heterodyne laser Doppler velocimetry. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04693-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractWe present a novel approach for characterizing the properties and performance of active matter in dilute suspension as well as in crowded environments. We use Super-Heterodyne Laser-Doppler-Velocimetry (SH-LDV) to study large ensembles of catalytically active Janus particles moving under UV illumination. SH-LDV facilitates a model-free determination of the swimming speed and direction, with excellent ensemble averaging. In addition, we obtain information on the distribution of the catalytic activity. Moreover, SH-LDV operates away from walls and permits a facile correction for multiple scattering contributions. It thus allows for studies of concentrated suspensions of swimmers or of systems where swimmers propel actively in an environment crowded by passive particles. We demonstrate the versatility and the scope of the method with a few selected examples. We anticipate that SH-LDV complements established methods and paves the way for systematic measurements at previously inaccessible boundary conditions.
Collapse
|
45
|
Hu M, Ge X, Chen X, Mao W, Qian X, Yuan WE. Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics 2020; 12:E665. [PMID: 32679772 PMCID: PMC7407549 DOI: 10.3390/pharmaceutics12070665] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Micro/nanorobot, as a research field, has attracted interest in recent years. It has great potential in medical treatment, as it can be applied in targeted drug delivery, surgical operation, disease diagnosis, etc. Differently from traditional drug delivery, which relies on blood circulation to reach the target, the designed micro/nanorobots can move autonomously, which makes it possible to deliver drugs to the hard-to-reach areas. Micro/nanorobots were driven by exogenous power (magnetic fields, light energy, acoustic fields, electric fields, etc.) or endogenous power (chemical reaction energy). Cell-based micro/nanorobots and DNA origami without autonomous movement ability were also introduced in this article. Although micro/nanorobots have excellent prospects, the current research is mainly based on in vitro experiments; in vivo research is still in its infancy. Further biological experiments are required to verify in vivo drug delivery effects of micro/nanorobots. This paper mainly discusses the research status, challenges, and future development of micro/nanorobots.
Collapse
Affiliation(s)
- Mengyi Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Xuan Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Wenwei Mao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Xiuping Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| |
Collapse
|
46
|
Gentile K, Maiti S, Brink A, Rallabandi B, Stone HA, Sen A. Silver-Based Self-Powered pH-Sensitive Pump and Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7948-7955. [PMID: 32536169 DOI: 10.1021/acs.langmuir.0c01240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nonmechanical nano/microscale pumps that provide precise control over flow rate without the aid of an external power source and that are capable of turning on in response to specific analytes in solution are needed for the next generation of smart micro- and nanoscale devices. Herein, a self-powered chemically driven silver micropump is reported that is based on the two-step catalytic decomposition of hydrogen peroxide, H2O2. The pumping direction and speed can be controlled by modulating the solution pH, and modeling and theory allow for the kinetics of the reaction steps to be connected to the fluid velocity. In addition, by changing the pH dynamically using glucose oxidase (GOx)-catalyzed oxidation of glucose to gluconic acid, the direction of fluid pumping can be altered in situ, allowing for the design of a glucose sensor. This work underscores the versatility of catalytic pumps and their ability to function as sensors.
Collapse
Affiliation(s)
- Kayla Gentile
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Subhabrata Maiti
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Allison Brink
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bhargav Rallabandi
- Department of Mechanical Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Howard A Stone
- Department of Mechanical Engineering and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ayusman Sen
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
47
|
Zhou C, Gao C, Lin Z, Wang D, Li Y, Yuan Y, Zhu B, He Q. Autonomous Motion of Bubble-Powered Carbonaceous Nanoflask Motors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7039-7045. [PMID: 31927899 DOI: 10.1021/acs.langmuir.9b03398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a carbonaceous nanomotor with a characteristic flask-like hollow structure that can autonomously move under the propulsion of oxygen bubbles. The carbonaceous nanoflask (CNF) motor was fabricated by encapsulating platinum nanoparticles (Pt NPs) into the hollow cavity of the CNF. The internally encapsulated Pt NPs act as catalysts to decompose hydrogen peroxide (H2O2) fuel into oxygen bubbles. The generated oxygen bubbles recoil the motion of the CNF motors. Besides, the velocity of CNF motors can be controlled by adjusting the concentration of the H2O2 solution. The motion velocity increases with the increase of H2O2 concentration, up to 109.25 μm s-1 at 10% H2O2. This study provides important implications for understanding the motion behaviors of nanomotors with an internal cavity, and the self-propelled CNF motors as smart carrier systems have potential applications in the future.
Collapse
Affiliation(s)
- Chang Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Daolin Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Yue Li
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Ye Yuan
- Chemistry and Chemical Engineering College, Inner Mongolia University, College Road 235, Hohhot 010021, China
| | - Baohua Zhu
- Chemistry and Chemical Engineering College, Inner Mongolia University, College Road 235, Hohhot 010021, China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| |
Collapse
|
48
|
Lv H, Xing Y, Du X, Xu T, Zhang X. Construction of dendritic Janus nanomotors with H 2O 2 and NIR light dual-propulsion via a Pickering emulsion. SOFT MATTER 2020; 16:4961-4968. [PMID: 32432292 DOI: 10.1039/d0sm00552e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Artificial micro/nanomotors with a dual-propulsion property have attracted considerable attention recently due to their attractive performances in complex fluidic environments. In this work, we successfully constructed Janus nanomotors with H2O2 and NIR light dual-propulsion by employing dendritic porous silica nanoparticles (DPSNs) as carriers via a Pickering emulsion and electrostatic self-assembly. The aminopropyl-modified DPSNs (DPSNs-NH2) with positive charge were semiburied in paraffin wax microparticles in order to achieve electrostatic adsorption of Pt nanoparticles (NPs) with negative charge on the exposed surface for H2O2 propulsion, followed by electrostatic adsorption of negatively charged CuS NPs with excellent NIR light absorption on the other exposed surface of the eluted DPSNs-NH2@Pt for NIR light propulsion. Center-radial large mesopores facilitate the high density loading of Pt NPs and CuS NPs for efficient propulsion. Compared with the commonly used sputtering approach, this Pickering emulsion method can realize relatively large-scale fabrication of Janus NPs. DPSNs-NH2@Pt@CuS Janus nanomotors can be effectively driven not only by self-diffusiophoresis, which results from the decomposition of H2O2 catalyzed by Pt NPs, but also by self-thermophoresis, which is generated from thermal gradients caused by the photothermal effect of CuS NPs. Moreover, the motion speed of the nanomotors can be conveniently modulated by regulating the H2O2 concentration and NIR light intensity. This work provides a novel exploration into the construction of dual-propulsion nanomotors, which are supposed to have significant potential in biomedical and intelligent device applications.
Collapse
Affiliation(s)
- Haozheng Lv
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P. R. China.
| | | | | | | | | |
Collapse
|
49
|
Chen X, Zhou C, Peng Y, Wang Q, Wang W. Temporal Light Modulation of Photochemically Active, Oscillating Micromotors: Dark Pulses, Mode Switching, and Controlled Clustering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11843-11851. [PMID: 32092253 DOI: 10.1021/acsami.9b22342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photochemically powered micromotors are prototype microrobots, and spatiotemporal control is pivotal for a wide range of potential applications. Although their spatial navigation has been extensively studied, temporal control of photoactive micromotors remains much less explored. Using Ag-based oscillating micromotors as a model system, a strategy is presented for the controlled modulation of their individual and collective dynamics via periodically switching illumination on and off. In particular, such temporal light modulation drives individual oscillating micromotors into a total of six regimes of distinct dynamics, as the light-toggling frequencies vary from 0 to 103 Hz. On an ensemble level, toggling light at 5 Hz gives rise to controlled, reversible clustering of oscillating micromotors and self-assembly of tracer microspheres into colloidal crystals. A qualitative mechanism based on Ag-catalyzed decomposition of H2O2 is given to account for some, but not all, of the above observations. This study might potentially inspire more sophisticated temporal control of micromotors and the development of smart, biomimetic materials that respond to environmental stimuli that not only change in space but also in time.
Collapse
Affiliation(s)
- Xi Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Chao Zhou
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yixin Peng
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Qizhang Wang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
50
|
Šípová-Jungová H, Andrén D, Jones S, Käll M. Nanoscale Inorganic Motors Driven by Light: Principles, Realizations, and Opportunities. Chem Rev 2019; 120:269-287. [DOI: 10.1021/acs.chemrev.9b00401] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hana Šípová-Jungová
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Daniel Andrén
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Steven Jones
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| |
Collapse
|