1
|
Song Q, Li Y, Ma L, Li Y, Lv Y. A High-Throughput Screening Strategy for Synthesizing Molecularly Imprinted Polymer Nanoparticles Selectively Targeting Tumors. Adv Healthc Mater 2024; 13:e2400290. [PMID: 39021323 DOI: 10.1002/adhm.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Molecularly imprinted polymers (MIPs) show significant promise as effective alternatives to antibodies in disease diagnosis and therapy. However, the challenging process of screening extensive libraries of monomer combinations and synthesis conditions to identify formulations with enhanced selectivity and affinity presents a notable time constraint. The need for expedient methods becomes clear in accelerating the strategic development of MIPs tailored for precise molecular recognition purposes. In this study, an innovative high-throughput screening methodology designed to identify the optimal MIP formulation for targeting tumors is presented. Employing a microtiter plate format, over 100 polymer syntheses are conducted, incorporating diverse combinations of functional monomers. Evaluation of binding performance utilizes fluorescence-based assays, focusing on an epitope of the epidermal growth factor receptor (EGFR). Through this meticulously structured screening process, synthesis conditions that produced MIP nanoparticles exhibiting substantial specificity for EGFR targeting (KD = 10-12 m) are identified. These "bionic antibodies" demonstrate selective recognition of cancer cells in whole blood samples, even at concentrations as low as 5 cells mL-1. Further validation through fluorescent imaging confirms the tumor-specific localization of the MIPs in vivo. This highly efficient screening approach facilitates the strategic synthesis of imprinted polymers functioning as precision bioprobes.
Collapse
Affiliation(s)
- Qingmei Song
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Li
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liang Ma
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Chen D, Li Y, Liu X, Zhao Y, Ren T, Guo J, Yang D, Li S. Multi-DNA-Modified Double-Network Hydrogel with Customized Microstructure: A Novel System for Living Circulating Tumor Cells Capture and Real-Time Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8301-8309. [PMID: 38319249 DOI: 10.1021/acsami.3c15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The precise and effective isolation of living circulating tumor cells (CTCs) from peripheral blood, followed by their real-time monitoring, is crucial for diagnosing cancer patients. In this study, a cell-imprinted double-network (DN) hydrogel modified with circular multi-DNA (CMD), coined the CMD-imprinted hydrogel with fixed cells as templates (CMD-CIDH), was developed. The hydrogel featured a customized surface for proficient capture of viable CTCs and in situ real-time fluorescent detection without subsequent release. The customized surface, constructed using polyacrylamide/chitosan DN hydrogel as the matrix on the cell template, had a dense network structure, thereby ensuring excellent stability and a low degradation rate. Optimal capture efficiencies, recorded at 93 ± 3% for MCF-7 cells and 90 ± 2% for Hela cells, were achieved by grafting the CMD and adjusting the nodule size on the customized surface. The capture efficiency remained significantly high at 67 ± 11% in simulated breast cancer patient experiments even at a minimal concentration of 5 cells mL-1. Furthermore, CMD grafted onto the surface produced a potent fluorescence signature, enabling in situ real-time fluorescent detection of the target cell's growth state even in complex environments. The customized surface is highly efficient for screening CTCs in peripheral blood and has promising potential for setting up the CTCs culture.
Collapse
Affiliation(s)
- Dongliang Chen
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Yonggang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Xiaoqiu Liu
- Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yali Zhao
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Tianying Ren
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| |
Collapse
|
3
|
Jiang X, Zhang X, Guo C, Ou L. Antifouling modification for high-performance isolation of circulating tumor cells. Talanta 2024; 266:125048. [PMID: 37579675 DOI: 10.1016/j.talanta.2023.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Circulating tumor cells (CTCs), which shed from solid tumor tissue into blood circulatory system, have attracted wide attention as a biomarker in the early diagnosis and prognosis of cancer. Given their potential significance in clinics, many platforms have been developed to separate CTCs. However, the high-performance isolation of CTCs remains significant challenges including achieving the sensitivity and specificity necessary due to their extreme rarity and severe biofouling in blood, such as billions of background cells and various proteins. With the advancement of CTCs detection technologies in recent years, the highly efficient and highly specific detection platforms for CTCs have gradually been developed, resulting in improving CTC capture efficiency, purity and sensitivity. In this review, we systematically describe the current strategies with surface modifications by utilizing the antifouling property of polymer, peptide, protein and cell membrane for high-performance enrichment of CTCs. To wrap up, we discuss the substantial challenges facing by current technologies and the potential directions for future research and development.
Collapse
Affiliation(s)
- Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Kang MS, Cho E, Choi HE, Amri C, Lee JH, Kim KS. Molecularly imprinted polymers (MIPs): emerging biomaterials for cancer theragnostic applications. Biomater Res 2023; 27:45. [PMID: 37173721 PMCID: PMC10182667 DOI: 10.1186/s40824-023-00388-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a disease caused by abnormal cell growth that spreads through other parts of the body and threatens life by destroying healthy tissues. Therefore, numerous techniques have been employed not only to diagnose and monitor the progress of cancer in a precise manner but also to develop appropriate therapeutic agents with enhanced efficacy and safety profiles. In this regard, molecularly imprinted polymers (MIPs), synthetic receptors that recognize targeted molecules with high affinity and selectivity, have been intensively investigated as one of the most attractive biomaterials for theragnostic approaches. This review describes diverse synthesis strategies to provide the rationale behind these synthetic antibodies and provides a selective overview of the recent progress in the in vitro and in vivo targeting of cancer biomarkers for diagnosis and therapeutic applications. Taken together, the topics discussed in this review provide concise guidelines for the development of novel MIP-based systems to diagnose cancer more precisely and promote successful treatment. Molecularly imprinted polymers (MIPs), synthetic receptors that recognize targeted molecules with high affinity and selectivity, have been intensively investigated as one of the most attractive biomaterials for cancer theragnostic approaches. This review describes diverse synthesis strategies to provide the rationale behind these synthetic antibodies and provides a selective overview of the recent progress in the in vitro and in vivo targeting of cancer biomarkers for diagnosis and therapeutic applications. The topics discussed in this review aim to provide concise guidelines for the development of novel MIP-based systems to diagnose cancer more precisely and promote successful treatment.
Collapse
Affiliation(s)
- Min Seok Kang
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea
| | - Euni Cho
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea
| | - Chaima Amri
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
- Department of Organic Material Science & Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
5
|
Li Y, Liu X, Zhang Y, Wu Z, Ling W, Zhang X, Zhou M, Onses MS, Zhou P, Mao S, Huo W, Fan Z, Yang H, Wang H, Huang X. A flexible wearable device coupled with injectable Fe 3O 4 nanoparticles for capturing circulating tumor cells and triggering their deaths. Biosens Bioelectron 2023; 235:115367. [PMID: 37187061 DOI: 10.1016/j.bios.2023.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Elimination of circulating tumor cells (CTCs) in the blood can be an effective therapeutic approach to disrupt metastasis. Here, a strategy is proposed to implement flexible wearable electronics and injectable nanomaterials to disrupt the hematogenous transport of CTCs. A flexible device containing an origami magnetic membrane is used to attract Fe3O4@Au nanoparticles (NPs) that are surface modified with specific aptamers and intravenously injected into blood vessels, forming an invisible hand and fishing line/bait configuration to specifically capture CTCs through bonding with aptamers. Thereafter, thinned flexible AlGaAs LEDs in the device offer an average fluence of 15.75 mW mm-2 at a skin penetration depth of 1.5 mm, causing a rapid rise of temperature to 48 °C in the NPs and triggering CTC death in 10 min. The flexible device has been demonstrated for intravascular isolation and enrichment of CTCs with a capture efficiency of 72.31% after 10 cycles in a simulated blood circulation system based on a prosthetic upper limb. The fusion of nanomaterials and flexible electronics reveals an emerging field that utilizes wearable and flexible stimulators to activate biological effects offered by nanomaterials, leading to improved therapeutical effects and postoperative outcomes of diseases.
Collapse
Affiliation(s)
- Ya Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314006, China
| | - Xinyu Liu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314006, China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314006, China
| | - Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314006, China
| | - Xinyu Zhang
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Mingxing Zhou
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314006, China
| | - M Serdar Onses
- Department of Materials Science and Engineering, Erciyes University, Talas Yolu Melikgazi, Kayseri, 38039, Turkey
| | - Pan Zhou
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314006, China
| | - Sui Mao
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314006, China
| | - Wenxing Huo
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314006, China
| | - Zhenzhen Fan
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hong Yang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, School of Biomedical Engineering, Intensive Care Unit, The Second Hospital, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Hanjie Wang
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314006, China; Institute of Wearable Technology and Bioelectronics, Qiantang Science and Technology Innovation Center, 1002 23rd Street, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Sun Y, Luo Y, Sun L, Wang XR, Chen LW, Zhang N, Wang Y, Dong LY, Guo H, Wang XH. Improving performance of cell imprinted PDMS by integrating boronate affinity and local post-imprinting modification for selective capture of circulating tumor cells from cancer patients. Biosens Bioelectron 2023; 223:115023. [PMID: 36542938 DOI: 10.1016/j.bios.2022.115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Efficient capture of circulating tumor cells (CTCs) from cancer patients is an important technique that may promote early diagnosis and prognosis monitoring of cancer. However, the existing systems have certain disadvantages, such as poor selectivity, low capture efficiency, consumption of antibodies, and difficulty in release of CTCs for downstream analysis. Herein, we fabricated an innovative PEGylated boronate affinity cell imprinted polydimethylsiloxane (PBACIP) for highly efficient capture of CTCs from cancer patients. The antibody-free PBACIP possessed hierarchical structure of imprinted cavities, which were inlaid with boronic acid modified SiO2 nanoparticles (SiO2@BA), so it could specifically capture target CTCs from biological samples due to the synergistic effect of boronate affinity and cell imprinting. Furthermore, PEGylation was accurately completed in the non-imprinted region by the template cells occupying the imprinted cavity, which not only retained the microstructure of original imprinted cavities, but also endowed PBACIP with hydrophilicity. The artificial PBACIP could efficiently capture human breast-cancer cells from biological sample. When 5 to 500 SKBR3 cells were spiked in 1 mL mice lysed blood, the capture efficiency reached 86.7 ± 11.5% to 96.2 ± 2.3%. Most importantly, the PBACIP was successfully used to capture CTCs from blood of breast cancer patients, and the captured CTCs were released for subsequent gene mutation analysis. The PBACIP can efficiently capture and release CTCs for downstream analysis, which provides a universal strategy toward individualized anti-tumor comprehensive treatments and has great potential in the future cell-based clinical applications.
Collapse
Affiliation(s)
- Yi Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Rui Wang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Li-Wei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ning Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
7
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
8
|
Chen MY, Lang JY, Bai CC, Yu SS, Kong XJ, Dong LY, Wang XH. Construction of PEGylated boronate-affinity-oriented imprinting magnetic nanoparticles for ultrasensitive detection of ellagic acid from beverages. Anal Bioanal Chem 2022; 414:6557-6570. [PMID: 35831534 DOI: 10.1007/s00216-022-04213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Molecularly imprinted polymers (MIPs) can exhibit antibody-level affinity for target molecules. However, the nonspecific adsorption of non-imprinted regions for non-target molecules limits the application range of MIPs. Herein, we fabricated PEGylated boronate-affinity-oriented ellagic acid-imprinting magnetic nanoparticles (PBEMN), which first integrated boronate-affinity-oriented surface imprinting and sequential PEGylation for small molecule-imprinted MIPs. The resultant PBEMN possess higher adsorption capacity and faster adsorption rate for template ellagic acid (EA) molecules than the non-PEGylated control. To prove the excellent performance, the PBEMN were linked with hydrophilic boronic acid-modified/fluorescein isothiocyanate-loaded graphene oxide (BFGO), because BFGO could selectively label cis-diol-containing substances by boronate-affinity and output ultrasensitive fluorescent signals. Based on a dual boronate-affinity synergy, the PBEMN first selectively captured EA molecules by boronate-affinity-oriented molecular imprinted recognition, and then the EA molecules were further labeled with BFGO through boronate-affinity. The PBEMN linked BFGO (PBPF) strategy provided ultrahigh sensitivity for EA molecules with a limit of detection of 39.1 fg mL-1, resulting from the low nonspecific adsorption of PBEMN and the ultrasensitive fluorescence signal of BFGO. Lastly, the PBPF strategy was successfully employed in the determination of EA concentration in a spiked beverage sample with recovery and relative standard deviation in the range of 96.5 to 104.2% and 3.8 to 5.1%, respectively. This work demonstrates that the integration of boronate-affinity-oriented surface imprinting and sequential PEGylation may be a universal tool for improving the performance of MIPs.
Collapse
Affiliation(s)
- Meng-Ying Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China
| | - Jin-Ye Lang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China
| | - Chen-Chen Bai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China
| | - Shi-Song Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China
| | - Xiang-Jin Kong
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, 252000, China.
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China.
| |
Collapse
|
9
|
Chen B, Zheng J, Gao K, Hu X, Guo SS, Zhao XZ, Liao F, Yang Y, Liu W. Noninvasive Optical Isolation and Identification of Circulating Tumor Cells Engineered by Fluorescent Microspheres. ACS APPLIED BIO MATERIALS 2022; 5:2768-2776. [PMID: 35537085 DOI: 10.1021/acsabm.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Circulating tumor cells (CTCs) are rare, meaning that current isolation strategies can hardly satisfy efficiency and cell biocompatibility requirements, which hinders clinical applications. In addition, the selected cells require immunofluorescence identification, which is a time-consuming and expensive process. Here, we developed a method to simultaneously separate and identify CTCs by the integration of optical force and fluorescent microspheres. Our method achieved high-purity separation of CTCs without damage through light manipulation and avoided additional immunofluorescence staining procedures, thus achieving rapid identification of sorted cells. White blood cells (WBCs) and CTCs are similar in size and density, which creates difficulties in distinguishing them optically. Therefore, fluorescent PS microspheres with high refractive index (RI) are designed here to capture the CTCs (PS-CTCs) and increase the average index of refraction of PS-CTCs. In optofluidic chips, PS-CTCs were propelled to the collection channel from the sample mixture, under the radiation of light force. Cells from the collection outlet were easily identified under a fluorescence microscope due to the fluorescence signals of PS microspheres. This method provides an approach for the sorting and identification of CTCs, which holds great potential for clinical applications in early diagnosis of disease.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Jingjing Zheng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Kefan Gao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xuejia Hu
- Department of Electronic Engineering School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.,Wuhan Institute of Quantum Technology, Wuhan 430206, China.,Hubei Luojia Laboratory, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
10
|
Chen B, Wang G, Huang C, Sun Y, Zhang J, Chai Z, Guo SS, Zhao XZ, Yuan Y, Liu W. A light-induced hydrogel responsive platform to capture and selectively isolate single circulating tumor cells. NANOSCALE 2022; 14:3504-3512. [PMID: 35171188 DOI: 10.1039/d1nr06876h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isolation of circulating tumor cells (CTCs) from patients is a challenge due to the rarity of CTCs. Recently, various platforms to capture and release CTCs for downstream analysis have been developed. However, most of the reported release methods provide external stimuli to release all captured cells, which lead to lack of specificity in the pool of collected cells, and the external stimuli may affect the activity of the released cells. Here, we presented a simple method for single-cell recovery to overcome the shortcomings, which combined the nanostructures with a photocurable hydrogel, chondroitin sulfate methacryloyl (CSMA). In brief, we synthesized gelatin nanoparticles (Gnps) and modified them on flat glass (Gnp substrate) for the specific capture of CTCs. A 405 nm laser was projected onto the selected cells, and then CSMA was cured to encapsulate the selected CTCs. Unselected cells were removed with MMP-9 enzyme solution, and selected CTCs were recovered using a microcapillary. Finally, the photocurable hydrogel-encapsulated cells were analyzed by nucleic acid detection. In addition, the results suggested that the isolation platform showed good biocompatibility and successfully achieved the isolation of selected cells. In summary, our light-induced hydrogel responsive platform holds certain potential for clinical applications.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Chunyu Huang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Zhuomin Chai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
11
|
Liu L, Liu J, Zhou W, Sui Z, Liu J, Yang K, Zhang L, Liang Z, Zhang Y. Artificial antibody for exosome capture by dull template imprinting technology. J Mater Chem B 2022; 10:6655-6663. [DOI: 10.1039/d2tb00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exosomes are extracellular vesicles with unique size distribution derived from the parent cells. They are involved in intercellular communication and transport, and are also biomarkers for early diagnosis and prognosis...
Collapse
|
12
|
Liu X, Ma L, Yan W, Aazmi A, Fang M, Xu X, Kang H, Xu X. A review of recent progress toward the efficient separation of circulating tumor cells via micro‐/nanostructured microfluidic chips. VIEW 2022. [DOI: 10.1002/viw.20210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoshi Liu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Liang Ma
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou P. R. China
| | - Wenyuan Yan
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou P. R. China
| | - Minghe Fang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Xiuzhen Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Hanyue Kang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Xiaobin Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| |
Collapse
|
13
|
Fan F, Lu X, Liang X, Wang L, Guo Y. Preparation of hydrogel nanocomposite functionalized silica microspheres and its application in mixed-mode liquid chromatography. J Chromatogr A 2021; 1662:462745. [PMID: 34933186 DOI: 10.1016/j.chroma.2021.462745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/07/2022]
Abstract
Hydrogel is a kind of three-dimensional network structure polymer that can absorb water and swell in water. It has been widely used in many fields due to its flexible functionality. We proposed the design strategy of dual-network hydrogel assisted by a metal-organic-framework (MOF) and modified them on the surface of silica (with average particle diameter of 5 μm and average pore diameter of 76 Å). On the basis of effectively avoiding shortcomings such as osmotic pressure caused by swelling, abundant mesh types of composite material also improves the separation selectivity of the stationary phase. A variety of analytes such as nucleosides/bases, antibiotics, organic acids, carbohydrates, alkylbenzenes, polycyclic aromatic hydrocarbons, pesticides and anions can be selectively separated. The research on the retention behavior and the interaction mechanism proves that the column can be used in mixed mode liquid chromatography. By comparing with the optimized chromatographic conditions of commercial HILIC column and C18 column, this new type of stationary phase also has some significant advantages in the selective separation of mixed analytes. This new stationary phase also has excellent acid/base stability. The intraday relative standard deviation of their retention time under acidic conditions is 0.05%-0.26% (n = 10), and the intraday relative standard deviation under basic conditions is 0.11-0.14% (n = 10). After optimizing the chromatographic conditions, the efficiency of this new type of chromatographic column can reach 90,300 plates/m (sucrose). In short, a new strategy for applying hydrogel to liquid chromatography with high selectivity and chromatographic separation performance is proposed.
Collapse
Affiliation(s)
- Fangbin Fan
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Lu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaojing Liang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Licheng Wang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yong Guo
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
14
|
Li H, He H, Liu Z. Recent progress and application of boronate affinity materials in bioanalysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
16
|
Rizwan M, Baker AEG, Shoichet MS. Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv Healthc Mater 2021; 10:e2100234. [PMID: 33987970 DOI: 10.1002/adhm.202100234] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Designing simple biomaterials to replicate the biochemical and mechanical properties of tissues is an ongoing challenge in tissue engineering. For several decades, new biomaterials have been engineered using cytocompatible chemical reactions and spontaneous ligations via click chemistries to generate scaffolds and water swollen polymer networks, known as hydrogels, with tunable properties. However, most of these materials are static in nature, providing only macroscopic tunability of the scaffold mechanics, and do not reflect the dynamic environment of natural extracellular microenvironment. For more complex applications such as organoids or co-culture systems, there remain opportunities to investigate cells that locally remodel and change the physicochemical properties within the matrices. In this review, advanced biomaterials where dynamic covalent chemistry is used to produce stable 3D cell culture models and high-resolution constructs for both in vitro and in vivo applications, are discussed. The implications of dynamic covalent chemistry on viscoelastic properties of in vitro models are summarized, case studies in 3D cell culture are critically analyzed, and opportunities to further improve the performance of biomaterials for 3D tissue engineering are discussed.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Alexander E. G. Baker
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| |
Collapse
|
17
|
Hou J, Liu X, Zhou S. Programmable materials for efficient CTCs isolation: From micro/nanotechnology to biomimicry. VIEW 2021. [DOI: 10.1002/viw.20200023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xia Liu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
18
|
Gao S, Chen S, Liu Y, Mao H, Lu Q. Highly Integrated Cell-Imprinted Biomimetic Interface for All-in-One Diagnosis of Heterogeneous Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19603-19612. [PMID: 33881300 DOI: 10.1021/acsami.1c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-cell capture and in situ analysis of circulating tumor cells (CTCs) in blood are of great significance for early cancer diagnosis, prognosis, and individualized treatment. However, designing an all-in-one platform that enables not only efficiently specific isolation of CTCs but also in situ analysis of heterogeneity and drug screening is challenging. Here, a cell-imprinted alginate hydrogel (CIAH) interface with all-in-one functions was developed for the capture, in situ analysis, and drug-response study at a single-cell level. Based on the equivalent morphology and "specific odor" left by template cells and supplemented by natural antibody, the CIAH interface exhibited outstanding performance in isolating CTCs from samples suffering from cancers. Beyond capture, the CIAH interface was also able to serve as a high-throughput platform for subpopulation analysis and drug response of heterogeneous CTCs. We demonstrated that the highly integrated multifunctional CIAH interface is a promising new tool for single-cell profiling of phenotypic heterogeneity and guiding of personalized anticancer therapy.
Collapse
Affiliation(s)
- Su Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yangyang Liu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Jin R, Wang J, Gao M, Zhang X. Pollen-like silica nanoparticles as a nanocarrier for tumor targeted and pH-responsive drug delivery. Talanta 2021; 231:122402. [PMID: 33965051 DOI: 10.1016/j.talanta.2021.122402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/01/2022]
Abstract
Aptamer modified hollow silica nanoparticles with pollen structure (plSP@aptamer) were synthesized and used as a nanocarrier for tumor targeted and pH-responsive drug delivery. The 292 ± 14 nm interior void in diameter together with 11.8 nm surface pore size of plSP@aptamer nanoparticles contributed to a high drug loading efficiency of 0.509 g g-1. Furthermore, the drug delivery system was pH-responsive, and the releasing efficiency was up to 87.5% at pH of 5. The special spikes of this plSP@aptamer nanoparticles acted as "entry claws" to enhanced the interaction between cell and drug nanocarriers and then increased the internalization rate of drug vehicles. The cell uptake assay suggested that most of doxorubicin (DOX)@plSP@aptamer nanoparticles can escape form lysosome and located in nuclei of MCF-7 cells. The targeted performance testing showed that almost no DOX@plSP@aptamer were internalized by normal cells, indicating a high specificity of our drug vehicles. The cytotoxicity of nanoparticles was also investigated, the plSP@aptamer particles had excellent biocompatibility and the cell viability was nearly 100%. After loaded with DOX, DOX@plSP@aptamer showed great potential in targeted therapy of tumors, and only 4.2% MCF-7 cells were viable.
Collapse
Affiliation(s)
- Rongrong Jin
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jiaxi Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
20
|
Hou M, Yin X, Jiang J, He J. DNAzyme-Triggered Sol-Gel-Sol Transition of a Hydrogel Allows Target Cell Enrichment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15031-15039. [PMID: 33764744 DOI: 10.1021/acsami.1c02262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enrichment of rare cancer cells from various cell mixtures for subsequent analysis or culture is essential for understanding cancer formation and progression. In particular, maintaining the viability of captured cancer cells and gently releasing them for relevant applications remain challenging for many reported methods. Here, a physically cross-linked deoxyribozyme (DNAzyme)-based hydrogel strategy was developed for the specific envelopment and release of targeted cancer cells, allowing the aptamer-guided capture, 3D envelopment, and Zn2+-dependent release of viable cancer cells. The DNAzyme hydrogel is constructed through the intertwinement and hybridization of two complementary DNAzyme strands located on two rolling circle amplification-synthesized ultralong DNA chains. The enveloping and separation of target cells were achieved during the formation of the DNAzyme hydrogel (sol-gel transition). Triggered by Zn2+, the encapsulated cells can be gently released from the dissociated DNAzyme hydrogel with high viability (gel-sol transition). Successful isolations of target cells from cancer cell mixtures and peripheral blood mononuclear cells (PBMC) were demonstrated. This method offers an attractive approach for the separation of target cancer cells for various downstream applications that require viable cells.
Collapse
Affiliation(s)
- Min Hou
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiang Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianjun He
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
21
|
The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater 2021; 126:45-62. [PMID: 33727195 DOI: 10.1016/j.actbio.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Bioactive surfaces modified with functional peptides are critical for both fundamental research and practical application of implant materials and tissue repair. However, when bioactive molecules are tethered on biomaterial surfaces, their functions can be compromised due to unwanted fouling (mainly nonspecific protein adsorption and cell adhesion). In recent years, researchers have continuously studied antifouling strategies to obtain low background noise and effectively present the function of bioactive molecules. In this review, we describe several commonly used antifouling strategies and analyzed their advantages and drawbacks. Among these strategies, antifouling molecules are widely used to construct the antifouling layer of various bioactive surfaces. Subsequently, we summarize various structures of antifouling molecules and their surface grafting methods and characteristics. Application of these functionalized surfaces in microarray, biosensors, and implants are also introduced. Finally, we discuss the primary challenges associated with antifouling layers in fabricating bioactive surfaces and provide prospects for the future development of this field. STATEMENT OF SIGNIFICANCE: The nonspecific protein adsorption and cell adhesion will cause unwanted background "noise" on the surface of biological materials and detecting devices and compromise the performance of functional molecules and, therefore, impair the performance of materials and the sensitivity of devices. In addition, the selection of antifouling surfaces with proper chain length and high grafting density is also of great importance and requires further studies. Otherwise, the surface-tethered bioactive molecules may not function in their optimal status or even fail to display their functions. Based on these two critical issues, we summarize antifouling molecules with different structures, variable grafting methods, and diverse applications in biomaterials and biomedical devices reported in literature. Overall, we expect to shed some light on choosing the appropriate antifouling molecules in fabricating bioactive surfaces.
Collapse
|
22
|
Metal coordination assisted thermo-sensitive magnetic imprinted microspheres for selective adsorption and efficient elution of proteins. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Sun L, Peng C, Luo Y, Chen L, Chen Z, Xiao M, Duan R, Dong LY, Guo H, Wang XH. Visual detection of hepatocellular carcinoma cells with cell imprinted substrate and pH-sensitive allochroic-graphene oxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111966. [PMID: 33812594 DOI: 10.1016/j.msec.2021.111966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022]
Abstract
Herein, we integrate cell-imprinted substrate (CIS) and allochroic-graphene oxide (AGO) for specific visualization sorting of hepatocellular carcinoma cells. The state-of-the-art-of detection method relies on the enzyme linked immunosorbent assay (ELISA)-like sandwich strategy with hierarchical recognition. The target tumor cells are first selectively captured by the CIS based on cell imprinted recognition, and then specifically labeled with AGO by boronate affinity recognition between boronic acid on AGO and cis-diols on the surface of target cells. The selectively recognition of CIS for target template cells is verified by cell function experiments. It is also worth mentioning that the AGO can specifically recognize target tumor cells under physiological pH, and then perform signal amplification and output through pH-triggered allochroism. The CIS linked AGO for cell assay (CIS-AGO-CA) is successfully used for visualization detection of human hepatocarcinoma HLE cells from hepatocyte suspension. When the hepatocyte suspension is spiked with 1.0 × 105 cells, the recoveries of CIS-AGO-CA are 80.67 ± 4.33% for target HLE cells, and only 12.00 ± 1.00% for non-target Hep3B cells. It is worth emphasizing that the CIS-AGO-CA process is antibody-free. Therefore, this novel ELISA-like sandwich strategy is high specificity, cost-efficient and easy-to-use, and exhibits great prospect in the visualization sorting of tumor subpopulation.
Collapse
Affiliation(s)
- Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Chao Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Ziye Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Manyu Xiao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Rui Duan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
24
|
Pelle M, Das AAK, Madden LA, Paunov VN. Bioimprint Mediated Label-Free Isolation of Pancreatic Tumor Cells from a Healthy Peripheral Blood Cell Population. ADVANCED BIOSYSTEMS 2020; 4:e2000054. [PMID: 33016004 DOI: 10.1002/adbi.202000054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/22/2020] [Indexed: 11/11/2022]
Abstract
New techniques are required for earlier diagnosis and response to treatment of pancreatic cancer. Here, a label-free approach is reported in which circulating pancreatic tumor cells are isolated from healthy peripheral blood cells via cell bioimprinting technology. The method involves pre-fabrication of pancreatic cell layers and sequential casting of cell surfaces with a series of custom-made resins to produce negative cell imprints. The imprint is functionalized with a combination of polymers to engineer weak attraction to the cells which is further amplified by the increased area of contact with the matching cells. A flow-through bioimprint chip is designed and tested for selectivity toward two pancreatic tumor cell lines, ASPC-1 and Mia-PaCa-2. Healthy human peripheral blood mononuclear cells (PBMCs) are spiked with pancreatic tumor cells at various concentrations. Bioimprints are designed for preferential retention of the matching pancreatic tumor cells and with respect to PBMCs. Tumor bioimprints are capable of capturing and concentrating pancreatic tumor cells from a mixed cell population with increased retention observed with the number of seedings. ASPC-1 bioimprints preferentially retain both types of pancreatic tumor cells. This technology could be relevant for the collection and interrogation of liquid biopsies, early detection, and relapse monitoring of pancreatic cancer patients.
Collapse
Affiliation(s)
- Marie Pelle
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Anupam A K Das
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Leigh A Madden
- Department of Biomedical Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|