1
|
Chougule A, Zhang C, Vinokurov N, Mendez D, Vojtisek E, Shi C, Zhang J, Gardinier J. Purinergic signaling through the P2Y2 receptor regulates osteocytes' mechanosensitivity. J Cell Biol 2024; 223:e202403005. [PMID: 39212624 PMCID: PMC11363863 DOI: 10.1083/jcb.202403005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Osteocytes' response to dynamic loading plays a crucial role in regulating the bone mass but quickly becomes saturated such that downstream induction of bone formation plateaus. The underlying mechanisms that downregulate osteocytes' sensitivity and overall response to loading remain unknown. In other cell types, purinergic signaling through the P2Y2 receptor has the potential to downregulate the sensitivity to loading by modifying cell stiffness through actin polymerization and cytoskeleton organization. Herein, we examined the role of P2Y2 activation in regulating osteocytes' mechanotransduction using a P2Y2 knockout cell line alongside conditional knockout mice. Our findings demonstrate that the absence of P2Y2 expression in MLO-Y4 cells prevents actin polymerization while increasing the sensitivity to fluid flow-induced shear stress. Deleting osteocytes' P2Y2 expression in conditional-knockout mice enabled bone formation to increase when increasing the duration of exercise. Overall, P2Y2 activation under loading produces a negative feedback loop, limiting osteocytes' response to continuous loading by shifting the sensitivity to mechanical strain through actin stress fiber formation.
Collapse
Affiliation(s)
- Amit Chougule
- Bone and Joint Center, Henry Ford Health System, Detroit, MI, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
- Department Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Chunbin Zhang
- Bone and Joint Center, Henry Ford Health System, Detroit, MI, USA
| | | | - Devin Mendez
- School of Medicine, Wayne State University, Detroit, MI, USA
| | | | - Chenjun Shi
- Department Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Jitao Zhang
- Department Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Joseph Gardinier
- Bone and Joint Center, Henry Ford Health System, Detroit, MI, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
- Department Physiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Prahl LS, Liu J, Viola JM, Huang AZ, Chan TJ, Hayward-Lara G, Porter CM, Shi C, Zhang J, Hughes AJ. Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses. NATURE MATERIALS 2024; 23:1582-1591. [PMID: 39385019 DOI: 10.1038/s41563-024-02019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Urinary collecting tubules form during kidney embryogenesis through the branching of the ureteric bud epithelium. A travelling mesenchyme niche of nephron progenitor cells caps each branching ureteric bud tip. These 'tip domain' niches pack more closely over developmental time and their number relates to nephron endowment at birth. Yet, how the crowded tissue environment impacts niche number and cell decision-making remains unclear. Here, through experiments and mathematical modelling, we show that niche packing conforms to physical limitations imposed by kidney curvature. We relate packing geometries to rigidity theory to predict a stiffening transition starting at embryonic day 15 in the mouse, validated by micromechanical analysis. Using a method to estimate tip domain 'ages' relative to their most recent branch events, we find that new niches overcome mechanical resistance as they branch and displace neighbours. This creates rhythmic mechanical stress in the niche. These findings expand our understanding of kidney development and inform engineering strategies for synthetic regenerative tissues.
Collapse
Affiliation(s)
- Louis S Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - John M Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Aria Zheyuan Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor J Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Hayward-Lara
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA, USA.
- Materials Research Science and Engineering Center (MRSEC), University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Dinger N, Russo C, Fusco S, Netti PA, Sirignano M, Panzetta V. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure. Nanotoxicology 2024; 18:618-644. [PMID: 39484725 DOI: 10.1080/17435390.2024.2419418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies. Similarly, carbon dots (CDs) uptaken by the nucleus can also be used to set-up cutting edge nano delivery systems. In an earlier paper, we showed the cellular uptake and plasma membrane impact of combustion generated yellow luminescing CDs produced by our group from fuel rich combustion reactors in a one-step tunable production. In this paper, we aim to specifically study the nucleus by establishing the uptake kinetics of these combustion-generated yellow luminescing CDs. At sub-lethal doses, after crossing the plasma membrane, they impact the actin and microtubule mesh, affecting cell adhesion and migration; enter nucleus by diffusion processes; modify the overall appearance of the nucleus in terms of morphology; and alter chromatin condensation. We thus establish how this one-step produced, cost and bulk production friendly carbon dots from fuel rich combustion flames can be innovatively repurposed as potential nano delivery agents in cancer cells.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilita Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| | - Paolo A Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
4
|
Rosvold JR, Zanini G, Handler C, Frank E, Li J, Vitolo MI, Martin SS, Scarcelli G. Stimulated Brillouin scattering flow cytometry. BIOMEDICAL OPTICS EXPRESS 2024; 15:6024-6035. [PMID: 39421786 PMCID: PMC11482170 DOI: 10.1364/boe.537602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
We present the use of stimulated Brillouin scattering spectroscopy to achieve rapid measurements of cell biomechanics in a flow cytometer setup. Specifically, our stimulated Brillouin scattering flow cytometry can acquire at a rate of 200 Hz, with a spectral acquisition time of 5 ms, which marks a 10x improvement compared to previous demonstrations of spontaneous Brillouin scattering flow cytometry. We experimentally validate our stimulated Brillouin scattering flow cytometer by measuring cell populations of normal breast epithelial cells and metastatic breast epithelial cancer cells.
Collapse
Affiliation(s)
- Jake R. Rosvold
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Giulia Zanini
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Chenchen Handler
- Department of Mechanical Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eric Frank
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Jiarui Li
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Michele I. Vitolo
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stuart S. Martin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| |
Collapse
|
5
|
Fernández-Galiana Á, Bibikova O, Vilms Pedersen S, Stevens MM. Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210807. [PMID: 37001970 DOI: 10.1002/adma.202210807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular specificity, Raman-based techniques have become ubiquitous tools for in situ characterization of materials. This review comprehensively describes the theoretical and practical background of Raman spectroscopy and its advanced variants. The numerous facets of material characterization that Raman scattering can reveal, including biomolecular identification, solid-to-solid phase transitions, and spatial mapping of biomolecular species in bioactive materials, are highlighted. The review illustrates the potential of these techniques in the context of active biomedical material design and development by highlighting representative studies from the literature. These studies cover the use of Raman spectroscopy for the characterization of both natural and synthetic biomaterials, including engineered tissue constructs, biopolymer systems, ceramics, and nanoparticle formulations, among others. To increase the accessibility and adoption of these techniques, the present review also provides the reader with practical recommendations on the integration of Raman techniques into the experimental laboratory toolbox. Finally, perspectives on how recent developments in plasmon- and coherently-enhanced Raman spectroscopy can propel Raman from underutilized to critical for biomaterial development are provided.
Collapse
Affiliation(s)
- Álvaro Fernández-Galiana
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Olga Bibikova
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Simon Vilms Pedersen
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
6
|
Rosvold JR, Murray JB, Zanini G, Redding B, Scarcelli G. Impact of polarization pulling on optimal spectrometer design for stimulated Brillouin scattering microscopy. APL PHOTONICS 2024; 9:100807. [PMID: 39463487 PMCID: PMC11503528 DOI: 10.1063/5.0225074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Brillouin spectroscopy has become an important tool for mapping the mechanical properties of biological samples. Recently, stimulated Brillouin scattering (SBS) measurements have emerged in this field as a promising technology for lower noise and higher speed measurements. However, further improvements are fundamentally limited by constraints on the optical power level that can be used in biological samples, which effectively caps the gain and signal-to-noise ratio (SNR) of SBS biological measurements. This limitation is compounded by practical limits on the optical probe power due to detector saturation thresholds. As a result, SBS-based measurements in biological samples have provided minimal improvements (in noise and imaging speed) compared with spontaneous Brillouin microscopy, despite the potential advantages of the nonlinear scattering process. Here, we consider how a SBS spectrometer can circumvent this fundamental trade-off in the low-gain regime by leveraging the polarization dependence of the SBS interaction to effectively filter the signal from the background light via the polarization pulling effect. We present an analytic model of the polarization pulling detection scheme and describe the trade-space unique to Brillouin microscopy applications. We show that an optimized receiver design could provide >25× improvement in SNR compared to a standard SBS receiver in most typical experimental conditions. We then experimentally validate this model using optical fiber as a simplified test bed. With our experimental parameters, we find that the polarization pulling scheme provides 100× higher SNR than a standard SBS receiver, enabling 100× faster measurements in the low-gain regime. Finally, we discuss the potential for this proposed spectrometer design to benefit low-gain spectroscopy applications such as Brillouin microscopy by enabling pixel dwell times as short as 10 μs.
Collapse
Affiliation(s)
- Jake R. Rosvold
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, Maryland 20742, USA
| | - Joseph B. Murray
- U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, District of Columbia 20375, USA
| | - Giulia Zanini
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, Maryland 20742, USA
| | - Brandon Redding
- U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, District of Columbia 20375, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, Maryland 20742, USA
| |
Collapse
|
7
|
Sarikhani E, Meganathan DP, Larsen AKK, Rahmani K, Tsai CT, Lu CH, Marquez-Serrano A, Sadr L, Li X, Dong M, Santoro F, Cui B, Klausen LH, Jahed Z. Engineering the Cellular Microenvironment: Integrating Three-Dimensional Nontopographical and Two-Dimensional Biochemical Cues for Precise Control of Cellular Behavior. ACS NANO 2024; 18:19064-19076. [PMID: 38978500 PMCID: PMC11271182 DOI: 10.1021/acsnano.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
The development of biomaterials capable of regulating cellular processes and guiding cell fate decisions has broad implications in tissue engineering, regenerative medicine, and cell-based assays for drug development and disease modeling. Recent studies have shown that three-dimensional (3D) nanoscale physical cues such as nanotopography can modulate various cellular processes like adhesion and endocytosis by inducing nanoscale curvature on the plasma and nuclear membranes. Two-dimensional (2D) biochemical cues such as protein micropatterns can also regulate cell function and fate by controlling cellular geometries. Development of biomaterials with precise control over nanoscale physical and biochemical cues can significantly influence programming cell function and fate. In this study, we utilized a laser-assisted micropatterning technique to manipulate the 2D architectures of cells on 3D nanopillar platforms. We performed a comprehensive analysis of cellular and nuclear morphology and deformation on both nanopillar and flat substrates. Our findings demonstrate the precise engineering of single cell architectures through 2D micropatterning on nanopillar platforms. We show that the coupling between the nuclear and cell shape is disrupted on nanopillar surfaces compared to flat surfaces. Furthermore, our results suggest that cell elongation on nanopillars enhances nanopillar-induced endocytosis. We believe our platform serves as a versatile tool for further explorations into programming cell function and fate through combined physical cues that create nanoscale curvature on cell membranes and biochemical cues that control the geometry of the cell.
Collapse
Affiliation(s)
- Einollah Sarikhani
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Dhivya Pushpa Meganathan
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | | | - Keivan Rahmani
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Ching-Ting Tsai
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Chih-Hao Lu
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Abel Marquez-Serrano
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Leah Sadr
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Xiao Li
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Mingdong Dong
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
| | - Francesca Santoro
- Center
for Advanced Biomaterials for Healthcare, Tissue Electronics, Instituto Italiano di Tecnologia, Naples 80125, Italy
- Faculty
of Electrical Engineering and IT, RWTH, Aachen 52074, Germany
- Institute
for Biological Information Processing-Bioelectronics, Forschungszentrum
Juelich, Julich 52428, Germany
| | - Bianxiao Cui
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | | | - Zeinab Jahed
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
- Department
of Bioengineering, University of California
San Diego, La Jolla ,California 92093, United States
| |
Collapse
|
8
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
Coker ZN, Troyanova-Wood M, Steelman ZA, Ibey BL, Bixler JN, Scully MO, Yakovlev VV. Brillouin microscopy monitors rapid responses in subcellular compartments. PHOTONIX 2024; 5:9. [PMID: 38618142 PMCID: PMC11006764 DOI: 10.1186/s43074-024-00123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.
Collapse
Affiliation(s)
- Zachary N. Coker
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- SAIC, Fort Sam Houston, TX 78234 USA
| | | | - Zachary A. Steelman
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Bennett L. Ibey
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Joel N. Bixler
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Marlan O. Scully
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Vladislav V. Yakovlev
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, 101 Bizzell Street, College Station, TX 77843 USA
| |
Collapse
|
10
|
Kabakova I, Zhang J, Xiang Y, Caponi S, Bilenca A, Guck J, Scarcelli G. Brillouin microscopy. NATURE REVIEWS. METHODS PRIMERS 2024; 4:8. [PMID: 39391288 PMCID: PMC11465583 DOI: 10.1038/s43586-023-00286-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 10/12/2024]
Abstract
The field of Brillouin microscopy and imaging was established approximately 20 years ago, thanks to the development of non-scanning high-resolution optical spectrometers. Since then, the field has experienced rapid expansion, incorporating technologies from telecommunications, astrophotonics, multiplexed microscopy, quantum optics and machine learning. Consequently, these advancements have led to much-needed improvements in imaging speed, spectral resolution and sensitivity. The progress in Brillouin microscopy is driven by a strong demand for label-free and contact-free methods to characterize the mechanical properties of biomaterials at the cellular and subcellular scales. Understanding the local biomechanics of cells and tissues has become crucial in predicting cellular fate and tissue pathogenesis. This Primer aims to provide a comprehensive overview of the methods and applications of Brillouin microscopy. It includes key demonstrations of Brillouin microscopy and imaging that can serve as a reference for the existing research community and new adopters of this technology. The article concludes with an outlook, presenting the authors' vision for future developments in this vibrant field. The Primer also highlights specific examples where Brillouin microscopy can have a transformative impact on biology and biomedicine.
Collapse
Affiliation(s)
- Irina Kabakova
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Yuchen Xiang
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Silvia Caponi
- Istituto Officina dei Materiali–National Research Council (IOM-CNR)–Research Unit in Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Maryland Biophysics Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
11
|
Seelbinder B, Wagner S, Jain M, Erben E, Klykov S, Stoev ID, Krishnaswamy VR, Kreysing M. Probe-free optical chromatin deformation and measurement of differential mechanical properties in the nucleus. eLife 2024; 13:e76421. [PMID: 38214505 PMCID: PMC10786458 DOI: 10.7554/elife.76421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
The nucleus is highly organized to facilitate coordinated gene transcription. Measuring the rheological properties of the nucleus and its sub-compartments will be crucial to understand the principles underlying nuclear organization. Here, we show that strongly localized temperature gradients (approaching 1°C/µm) can lead to substantial intra-nuclear chromatin displacements (>1 µm), while nuclear area and lamina shape remain unaffected. Using particle image velocimetry (PIV), intra-nuclear displacement fields can be calculated and converted into spatio-temporally resolved maps of various strain components. Using this approach, we show that chromatin displacements are highly reversible, indicating that elastic contributions are dominant in maintaining nuclear organization on the time scale of seconds. In genetically inverted nuclei, centrally compacted heterochromatin displays high resistance to deformation, giving a rigid, solid-like appearance. Correlating spatially resolved strain maps with fluorescent reporters in conventional interphase nuclei reveals that various nuclear compartments possess distinct mechanical identities. Surprisingly, both densely and loosely packed chromatin showed high resistance to deformation, compared to medium dense chromatin. Equally, nucleoli display particularly high resistance and strong local anchoring to heterochromatin. Our results establish how localized temperature gradients can be used to drive nuclear compartments out of mechanical equilibrium to obtain spatial maps of their material responses.
Collapse
Affiliation(s)
- Benjamin Seelbinder
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Susan Wagner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Manavi Jain
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Elena Erben
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Sergei Klykov
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Iliya Dimitrov Stoev
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | | | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| |
Collapse
|
12
|
Shi C, Handler C, Florn H, Zhang J. Monitoring the Mechanical Evolution of Tissue During Neural Tube Closure of Chick Embryo. J Vis Exp 2023:10.3791/66117. [PMID: 38009716 PMCID: PMC11456995 DOI: 10.3791/66117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Neural tube closure (NTC) is a critical process during embryonic development. Failure in this process can lead to neural tube defects, causing congenital malformations or even mortality. NTC involves a series of mechanisms on genetic, molecular, and mechanical levels. While mechanical regulation has become an increasingly attractive topic in recent years, it remains largely unexplored due to the lack of suitable technology for conducting mechanical testing of 3D embryonic tissue in situ. In response, we have developed a protocol for quantifying the mechanical properties of chicken embryonic tissue in a non-contact and non-invasive manner. This is achieved by integrating a confocal Brillouin microscope with an on-stage incubation system. To probe tissue mechanics, a pre-cultured embryo is collected and transferred to an on-stage incubator for ex ovo culture. Simultaneously, the mechanical images of the neural plate tissue are acquired by the Brillouin microscope at different time points during development. This protocol includes detailed descriptions of sample preparation, the implementation of Brillouin microscopy experiments, and data post-processing and analysis. By following this protocol, researchers can study the mechanical evolution of embryonic tissue during development longitudinally.
Collapse
Affiliation(s)
- Chenjun Shi
- Department of Biomedical Engineering, College of Engineering, Wayne State University
| | | | - Haden Florn
- Department of Biomedical Engineering, College of Engineering, Wayne State University
| | - Jitao Zhang
- Department of Biomedical Engineering, College of Engineering, Wayne State University;
| |
Collapse
|
13
|
Shi C, Yan Y, Mehrmohammadi M, Zhang J. Versatile multimodal modality based on Brillouin light scattering and the photoacoustic effect. OPTICS LETTERS 2023; 48:3427-3430. [PMID: 37390147 PMCID: PMC11426331 DOI: 10.1364/ol.495361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Multimodal optical techniques are useful for the comprehensive characterization of material properties. In this work, we developed a new, to the best of our knowledge, multimodal technology that can simultaneously measure a subset of mechanical, optical, and acoustical properties of the sample and is based on the integration of Brillouin (Br) and photoacoustic (PA) microscopy. The proposed technique can acquire co-registered Br and PA signals from the sample. Importantly, using synergistic measurements of the speed of sound and Brillouin shift, the modality offers a new approach to quantifying the optical refractive index, which is a fundamental property of a material and is not accessible by either technique individually. As a proof of concept, we demonstrated the feasibility of integrating the two modalities and acquired the colocalized Br and time-resolved PA signals in a synthetic phantom made out of kerosene and CuSO4 aqueous solution. In addition, we measured the refractive index values of saline solutions and validated the result. Comparison with previously reported data showed a relative error of 0.3%. This further allowed us to directly quantify the longitudinal modulus of the sample with the colocalized Brillouin shift. While the scope of the current work is limited to introducing the combined Br-PA setup for the first time, we envision that this multimodal modality could open a new path for the multi-parametric analysis of material properties.
Collapse
Affiliation(s)
- Chenjun Shi
- Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Yan Yan
- Department of Imaging Science, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mohammad Mehrmohammadi
- Department of Imaging Science, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Biomedical Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, NY, 14642, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
14
|
Audoin B. Principles and advances in ultrafast photoacoustics; applications to imaging cell mechanics and to probing cell nanostructure. PHOTOACOUSTICS 2023; 31:100496. [PMID: 37159813 PMCID: PMC10163675 DOI: 10.1016/j.pacs.2023.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
In this article we first present the foundations of ultrafast photoacoustics, a technique where the acoustic wavelength in play can be considerably shorter than the optical wavelength. The physics primarily involved in the conversion of short light pulses into high frequency sound is described. The mechanical disturbances following the relaxation of hot electrons in metals and other processes leading to the breaking of the mechanical balance are presented, and the generation of bulk shear-waves, of surface and interface waves and of guided waves is discussed. Then, efforts to overcome the limitations imposed by optical diffraction are described. Next, the principles behind the detection of the so generated coherent acoustic phonons with short light pulses are introduced for both opaque and transparent materials. The striking instrumental advances, in the detection of acoustic displacements, ultrafast acquisition, frequency and space resolution are discussed. Then secondly, we introduce picosecond opto-acoustics as a remote and label-free novel modality with an excellent capacity for quantitative evaluation and imaging of the cell's mechanical properties, currently with micron in-plane and sub-optical in depth resolution. We present the methods for time domain Brillouin spectroscopy in cells and for cell ultrasonography. The current applications of this unconventional means of addressing biological questions are presented. This microscopy of the nanoscale intra-cell mechanics, based on the optical monitoring of coherent phonons, is currently emerging as a breakthrough method offering new insights into the supra-molecular structural changes that accompany cell response to a myriad of biological events.
Collapse
|
15
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
16
|
Passeri AA, Di Michele A, Neri I, Cottone F, Fioretto D, Mattarelli M, Caponi S. Size and environment: The effect of phonon localization on micro-Brillouin imaging. BIOMATERIALS ADVANCES 2023; 147:213341. [PMID: 36827851 DOI: 10.1016/j.bioadv.2023.213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Specifically designed samples have been analyzed to test the ability of Brillouin spectroscopy to provide reliable mechanical characterization of micro and nano-objects. The selected samples are polymeric films, whose transversal sizes from hundreds of nano- to some micro-meters cover the entire range of length-scales relevant in Brillouin scattering process. The experimental data highlight how, the size of the extended collective oscillation (acoustic phonons, in brief) is the lowest spatial resolution reachable in Brillouin mechanical characterization. Conversely, in the limit condition of phonon confinement, the technique provides the mechanical properties of nano-objects whose characteristic size is comparable with the phonon wavelength (⁓300 nm). Investigating acoustically heterogeneous materials, both size of heterogeneity and acoustic mismatch between adjacent regions are shown to be relevant in shaping the Brillouin response. In particular, a transition from a confined to a non-confined condition is obtained modulating the acoustic mismatch between the micro-objects and their local environment. The provided results and the derived analytic models for the data analysis will guide the interpretation of Brillouin spectra acquired in complex nano-structured samples such as cells, tissues or biomimetic materials. Our analysis can therefore generate new insights to tackle fundamental problems in mechanobiology or to characterize new bioengineered materials.
Collapse
Affiliation(s)
- A A Passeri
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy
| | - A Di Michele
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy
| | - I Neri
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy
| | - F Cottone
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy
| | - D Fioretto
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy; CEMIN, Centre of Excellence on Nanostructured Innovative Materials, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - M Mattarelli
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy.
| | - S Caponi
- Istituto Officina dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy.
| |
Collapse
|
17
|
Shi C, Yan Y, Mehrmohammadi M, Zhang J. A versatile multimodal optical modality based on Brillouin light scattering and photoacoustic effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532144. [PMID: 36945550 PMCID: PMC10028970 DOI: 10.1101/2023.03.10.532144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Multimodal optical imaging techniques are useful for various applications, including imaging biological samples for providing comprehensive material properties. In this work, we developed a new modality that can measure a set of mechanical, optical, and acoustical properties of a sample at microscopic resolution, which is based on the integration of Brillouin (Br) and photoacoustic (PA) microscopy. The proposed multimodal imaging technique not only can acquire co-registered Br and PA signals but also allows us to utilize the sound speed measured by PA to quantify the sample’s refractive index, which is a fundamental property of the material and cannot be measured by either technique individually. We demonstrated the colocalization of Br and time-resolved PA signals in a synthetic phantom made of kerosene and CuSO 4 aqueous solution. In addition, we measured the refractive index of saline solutions and validated the result against published data with a relative error of 0.3 %. This multimodal Br-PA modality could open a new way for characterizing biological samples in physiological and pathological conditions.
Collapse
|
18
|
Sturgess V, Azubuike UF, Tanner K. Vascular regulation of disseminated tumor cells during metastatic spread. BIOPHYSICS REVIEWS 2023; 4:011310. [PMID: 38510161 PMCID: PMC10903479 DOI: 10.1063/5.0106675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2024]
Abstract
Cancer cells can travel to other organs via interconnected vascular systems to form new lesions in a process known as metastatic spread. Unfortunately, metastasis remains the leading cause of patient lethality. In recent years, it has been demonstrated that physical cues are just as important as chemical and genetic perturbations in driving changes in gene expression, cell motility, and survival. In this concise review, we focus on the physical cues that cancer cells experience as they migrate through the lymphatic and blood vascular networks. We also present an overview of steps that may facilitate organ specific metastasis.
Collapse
Affiliation(s)
- Victoria Sturgess
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| | - Udochi F. Azubuike
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| |
Collapse
|
19
|
Handler C, Scarcelli G, Zhang J. Time-lapse mechanical imaging of neural tube closure in live embryo using Brillouin microscopy. Sci Rep 2023; 13:263. [PMID: 36609620 PMCID: PMC9823106 DOI: 10.1038/s41598-023-27456-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Neural tube closure (NTC) is a complex process of embryonic development involving molecular, cellular, and biomechanical mechanisms. While the genetic factors and biochemical signaling have been extensively investigated, the role of tissue biomechanics remains mostly unexplored due to the lack of tools. Here, we developed an optical modality that can conduct time-lapse mechanical imaging of neural plate tissue as the embryo is experiencing neurulation. This technique is based on the combination of a confocal Brillouin microscope and a modified ex ovo culturing of chick embryo with an on-stage incubator. With this technique, for the first time, we captured the mechanical evolution of the neural plate tissue with live embryos. Specifically, we observed the continuous increase in tissue modulus of the neural plate during NTC for ex ovo cultured embryos, which is consistent with the data of in ovo culture as well as previous studies. Beyond that, we found that the increase in tissue modulus was highly correlated with the tissue thickening and bending. We foresee this non-contact and label-free technique opening new opportunities to understand the biomechanical mechanisms in embryonic development.
Collapse
Affiliation(s)
- Chenchen Handler
- grid.164295.d0000 0001 0941 7177Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742 USA
| | - Giuliano Scarcelli
- grid.164295.d0000 0001 0941 7177Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742 USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
20
|
Comprehensive single-shot biophysical cytometry using simultaneous quantitative phase imaging and Brillouin spectroscopy. Sci Rep 2022; 12:18285. [PMID: 36316372 PMCID: PMC9622723 DOI: 10.1038/s41598-022-23049-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Single-cell analysis, or cytometry, is a ubiquitous tool in the biomedical sciences. Whereas most cytometers use fluorescent probes to ascertain the presence or absence of targeted molecules, biophysical parameters such as the cell density, refractive index, and viscosity are difficult to obtain. In this work, we combine two complementary techniques-quantitative phase imaging and Brillouin spectroscopy-into a label-free image cytometry platform capable of measuring more than a dozen biophysical properties of individual cells simultaneously. Using a geometric simplification linked to freshly plated cells, we can acquire the cellular diameter, volume, refractive index, mass density, non-aqueous mass, fluid volume, dry volume, the fractional water content of cells, both by mass and by volume, the Brillouin shift, Brillouin linewidth, longitudinal modulus, longitudinal viscosity, the loss modulus, and the loss tangent, all from a single acquisition, and with no assumptions of underlying parameters. Our methods are validated across three cell populations, including a control population of CHO-K1 cells, cells exposed to tubulin-disrupting nocodazole, and cells under hypoosmotic shock. Our system will unlock new avenues of research in biophysics, cell biology, and medicine.
Collapse
|
21
|
Nikolić M, Scarcelli G, Tanner K. Multimodal microscale mechanical mapping of cancer cells in complex microenvironments. Biophys J 2022; 121:3586-3599. [PMID: 36059196 PMCID: PMC9617162 DOI: 10.1016/j.bpj.2022.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanical phenotype of the cell is critical for survival following deformations due to confinement and fluid flow. One idea is that cancer cells are plastic and adopt different mechanical phenotypes under different geometries that aid in their survival. Thus, an attractive goal is to disrupt cancer cells' ability to adopt multiple mechanical states. To begin to address this question, we aimed to quantify the diversity of these mechanical states using in vitro biomimetics to mimic in vivo two-dimensional (2D) and 3D extracellular matrix environments. Here, we used two modalities Brillouin microscopy (∼GHz) and broadband frequency (7-15 kHz) optical tweezer microrheology to measure microscale cell mechanics. We measured the response of intracellular mechanics of cancer cells cultured in 2D and 3D environments where we modified substrate stiffness, dimensionality (2D versus 3D), and presence of fibrillar topography. We determined that there was good agreement between two modalities despite the difference in timescale of the two measurements. These findings on cell mechanical phenotype in different environments confirm a correlation between modalities that employ different mechanisms at different temporal scales (Hz-kHz versus GHz). We also determined that observed heterogeneity in cell shape is more closely linked to the cells' mechanical state. Moreover, individual cells in multicellular spheroids exhibit a lower degree of mechanical heterogeneity when compared with single cells cultured in monodisperse 3D cultures. The observed decreased heterogeneity among cells in spheroids suggested that there is mechanical cooperativity between cells that make up a single spheroid.
Collapse
Affiliation(s)
- Miloš Nikolić
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Maryland Biophysics Program, IPST, University of Maryland, College Park, Maryland
| | - Giuliano Scarcelli
- Maryland Biophysics Program, IPST, University of Maryland, College Park, Maryland; Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
22
|
Li N, Jin K, Chen T, Li X. A static force model to analyze the nuclear deformation on cell adhesion to vertical nanostructures. SOFT MATTER 2022; 18:6638-6644. [PMID: 36004571 DOI: 10.1039/d2sm00971d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vertical nanostructures have been found to induce the deformation of the nuclear envelope during cell adhesion. However, there has been a lack of quantitative analysis of the influence of nanostructures morphology on the degree of nuclear deformation. Here, a theoretical model was proposed to investigate the mechanism of nuclear deformation by analyzing the mechanical force balance. Based on the established model, we analyzed the effects of the morphology of the nanopillar array on nuclear deformation and gave the quantitative relationship of the deformation depth of the nucleus with the pitch and radius of nanopillars. Our theoretical results seem to show broad agreements with experimental observations, which implies that the work can provide useful guidance to the design of nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Nanxin Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Kun Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan 511500, China
| | - Xinlei Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
23
|
Liu L, Simon M, Muggiolu G, Vilotte F, Antoine M, Caron J, Kantor G, Barberet P, Seznec H, Audoin B. Changes in intra-nuclear mechanics in response to DNA damaging agents revealed by time-domain Brillouin micro-spectroscopy. PHOTOACOUSTICS 2022; 27:100385. [PMID: 36068801 PMCID: PMC9441258 DOI: 10.1016/j.pacs.2022.100385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 05/25/2023]
Abstract
How DNA damage and repair processes affect the biomechanical properties of the nucleus interior remains unknown. Here, an opto-acoustic microscope based on time-domain Brillouin spectroscopy (TDBS) was used to investigate the induced regulation of intra-nuclear mechanics. With this ultrafast pump-probe technique, coherent acoustic phonons were tracked along their propagation in the intra-nucleus nanostructure and the complex stiffness moduli and thicknesses were measured with an optical resolution. Osteosarcoma cells were exposed to methyl methanesulfonate (MMS) and the presence of DNA damage was tested using immunodetection targeted against damage signaling proteins. TDBS revealed that the intra-nuclear storage modulus decreased significantly upon exposure to MMS, as a result of the chromatin decondensation and reorganization that favors molecular diffusion within the organelle. When the damaging agent was removed and cells incubated for 2 h in the buffer solution before fixation the intra-nuclear reorganization led to an inverse evolution of the storage modulus, the nucleus stiffened. The same tendency was measured when DNA double-strand breaks were caused by cell exposure to ionizing radiation. TDBS microscopy also revealed changes in acoustic dissipation, another mechanical probe of the intra-nucleus organization at the nano-scale, and changes in nucleus thickness during exposure to MMS and after recovery.
Collapse
Affiliation(s)
- Liwang Liu
- Univ. Bordeaux, CNRS, I2M, UMR 5295, F-33400 Talence, France
| | - Marina Simon
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | | | - Florent Vilotte
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | - Mikael Antoine
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | - Jerôme Caron
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | - Guy Kantor
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | | | - Hervé Seznec
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Bertrand Audoin
- Univ. Bordeaux, CNRS, I2M, UMR 5295, F-33400 Talence, France
| |
Collapse
|
24
|
Rix J, Uckermann O, Kirsche K, Schackert G, Koch E, Kirsch M, Galli R. Correlation of biomechanics and cancer cell phenotype by combined Brillouin and Raman spectroscopy of U87-MG glioblastoma cells. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220209. [PMID: 35857926 DOI: 10.1098/rsif.2022.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The elucidation of biomechanics furthers our understanding of brain tumour biology. Brillouin spectroscopy is a new optical method that addresses viscoelastic properties down to subcellular resolution in a contact-free manner. Moreover, it can be combined with Raman spectroscopy to obtain co-localized biochemical information. Here, we applied co-registered Brillouin and Raman spectroscopy to U87-MG human glioblastoma cells in vitro. Using two-dimensional and three-dimensional cultures, we related biomechanical properties to local biochemical composition at the subcellular level, as well as the cell phenotype. Brillouin and Raman mapping of adherent cells showed that the nucleus and nucleoli are stiffer than the perinuclear region and the cytoplasm. The biomechanics of the cell cytoplasm is affected by culturing conditions, i.e. cells grown as spheroids are stiffer than adherent cells. Inside the spheroids, the presence of lipid droplets as assessed by Raman spectroscopy revealed higher Brillouin shifts that are not related to a local increase in stiffness, but are due to a higher refractive index combined with a lower mass density. This highlights the importance of locally defined biochemical reference data for a correct interpretation of the Brillouin shift of cells and tissues in future studies investigating the biomechanics of brain tumour models by Brillouin spectroscopy.
Collapse
Affiliation(s)
- Jan Rix
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Ortrud Uckermann
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany.,Division of Medical Biology, Department of Psychiatry, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Katrin Kirsche
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany.,Klinik für Neurochirurgie, Asklepios Kliniken Schildautal, Karl-Herold-Strasse 1, D-38723 Seesen, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Roberta Galli
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
25
|
Vahabikashi A, Adam SA, Medalia O, Goldman RD. Nuclear lamins: Structure and function in mechanobiology. APL Bioeng 2022; 6:011503. [PMID: 35146235 PMCID: PMC8810204 DOI: 10.1063/5.0082656] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Nuclear lamins are type V intermediate filament proteins that polymerize into complex filamentous meshworks at the nuclear periphery and in less structured forms throughout the nucleoplasm. Lamins interact with a wide range of nuclear proteins and are involved in numerous nuclear and cellular functions. Within the nucleus, they play roles in chromatin organization and gene regulation, nuclear shape, size, and mechanics, and the organization and anchorage of nuclear pore complexes. At the whole cell level, they are involved in the organization of the cytoskeleton, cell motility, and mechanotransduction. The expression of different lamin isoforms has been associated with developmental progression, differentiation, and tissue-specific functions. Mutations in lamins and their binding proteins result in over 15 distinct human diseases, referred to as laminopathies. The laminopathies include muscular (e.g., Emery-Dreifuss muscular dystrophy and dilated cardiomyopathy), neurological (e.g., microcephaly), and metabolic (e.g., familial partial lipodystrophy) disorders as well as premature aging diseases (e.g., Hutchinson-Gilford Progeria and Werner syndromes). How lamins contribute to the etiology of laminopathies is still unknown. In this review article, we summarize major recent findings on the structure, organization, and multiple functions of lamins in nuclear and more global cellular processes.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
26
|
Alunni Cardinali M, Di Michele A, Mattarelli M, Caponi S, Govoni M, Dallari D, Brogini S, Masia F, Borri P, Langbein W, Palombo F, Morresi A, Fioretto D. Brillouin-Raman microspectroscopy for the morpho-mechanical imaging of human lamellar bone. J R Soc Interface 2022; 19:20210642. [PMID: 35104431 PMCID: PMC8807060 DOI: 10.1098/rsif.2021.0642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Bone has a sophisticated architecture characterized by a hierarchical organization, starting at the sub-micrometre level. Thus, the analysis of the mechanical and structural properties of bone at this scale is essential to understand the relationship between its physiology, physical properties and chemical composition. Here, we unveil the potential of Brillouin-Raman microspectroscopy (BRaMS), an emerging correlative optical approach that can simultaneously assess bone mechanics and chemistry with micrometric resolution. Correlative hyperspectral imaging, performed on a human diaphyseal ring, reveals a complex microarchitecture that is reflected in extremely rich and informative spectra. An innovative method for mechanical properties analysis is proposed, mapping the intermixing of soft and hard tissue areas and revealing the coexistence of regions involved in remodelling processes, nutrient transportation and structural support. The mineralized regions appear elastically inhomogeneous, resembling the pattern of the osteons' lamellae, while Raman and energy-dispersive X-ray images through scanning electron microscopy show an overall uniform distribution of the mineral content, suggesting that other structural factors are responsible for lamellar micromechanical heterogeneity. These results, besides giving an important insight into cortical bone tissue properties, highlight the potential of BRaMS to access the origin of anisotropic mechanical properties, which are almost ubiquitous in other biological tissues.
Collapse
Affiliation(s)
- M. Alunni Cardinali
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - A. Di Michele
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Mattarelli
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - S. Caponi
- Istituto Officina Dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - D. Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - S. Brogini
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, Bologna 40136, Italy
| | - F. Masia
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - P. Borri
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - W. Langbein
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - F. Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - A. Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - D. Fioretto
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
- CEMIN - Center of Excellence for Innovative Nanostructured Material, Via Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
27
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
28
|
Mechanical mapping of mammalian follicle development using Brillouin microscopy. Commun Biol 2021; 4:1133. [PMID: 34580426 PMCID: PMC8476509 DOI: 10.1038/s42003-021-02662-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
In early mammalian development, the maturation of follicles containing the immature oocytes is an important biological process as the functional oocytes provide the bulk genetic and cytoplasmic materials for successful reproduction. Despite recent work demonstrating the regulatory role of mechanical stress in oocyte growth, quantitative studies of ovarian mechanical properties remain lacking both in vivo and ex vivo. In this work, we quantify the material properties of ooplasm, follicles and connective tissues in intact mouse ovaries at distinct stages of follicle development using Brillouin microscopy, a non-invasive tool to probe mechanics in three-dimensional (3D) tissues. We find that the ovarian cortex and its interior stroma have distinct material properties associated with extracellular matrix deposition, and that intra-follicular mechanical compartments emerge during follicle maturation. Our work provides an alternative approach to study the role of mechanics in follicle morphogenesis and might pave the way for future understanding of mechanotransduction in reproductive biology, with potential implications for infertility diagnosis and treatment.
Collapse
|
29
|
Non-contact elastography methods in mechanobiology: a point of view. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 51:99-104. [PMID: 34463775 PMCID: PMC8964566 DOI: 10.1007/s00249-021-01567-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
In recent decades, mechanobiology has emerged as a novel perspective in the context of basic biomedical research. It is now widely recognized that living cells respond not only to chemical stimuli (for example drugs), but they are also able to decipher mechanical cues, such as the rigidity of the underlying matrix or the presence of shear forces. Probing the viscoelastic properties of cells and their local microenvironment with sub-micrometer resolution is required to study this complex interplay and dig deeper into the mechanobiology of single cells. Current approaches to measure mechanical properties of adherent cells mainly rely on the exploitation of miniaturized indenters, to poke single cells while measuring the corresponding deformation. This method provides a neat implementation of the everyday approach to measure mechanical properties of a material, but it typically results in a very low throughput and invasive experimental protocol, poorly translatable towards three-dimensional living tissues and biological constructs. To overcome the main limitations of nanoindentation experiments, a radical paradigm change is foreseen, adopting next generation contact-less methods to measure mechanical properties of biological samples with sub-cell resolution. Here we briefly introduce the field of single cell mechanical characterization, and we concentrate on a promising high resolution optical elastography technique, Brillouin spectroscopy. This non-contact technique is rapidly emerging as a potential breakthrough innovation in biomechanics, but the application to single cells is still in its infancy.
Collapse
|
30
|
Rioboó RJJ, Gontán N, Sanderson D, Desco M, Gómez-Gaviro MV. Brillouin Spectroscopy: From Biomedical Research to New Generation Pathology Diagnosis. Int J Mol Sci 2021; 22:8055. [PMID: 34360822 PMCID: PMC8347166 DOI: 10.3390/ijms22158055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
Brillouin spectroscopy has recently gained considerable interest within the biomedical field as an innovative tool to study mechanical properties in biology. The Brillouin effect is based on the inelastic scattering of photons caused by their interaction with thermodynamically driven acoustic modes or phonons and it is highly dependent on the material's elasticity. Therefore, Brillouin is a contactless, label-free optic approach to elastic and viscoelastic analysis that has enabled unprecedented analysis of ex vivo and in vivo mechanical behavior of several tissues with a micrometric resolution, paving the way to a promising future in clinical diagnosis. Here, we comprehensively review the different studies of this fast-moving field that have been performed up to date to provide a quick guide of the current literature. In addition, we offer a general view of Brillouin's biomedical potential to encourage its further development to reach its implementation as a feasible, cost-effective pathology diagnostic tool.
Collapse
Affiliation(s)
- Rafael J. Jiménez Rioboó
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain;
| | - Nuria Gontán
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| |
Collapse
|
31
|
Modelling Nuclear Morphology and Shape Transformation: A Review. MEMBRANES 2021; 11:membranes11070540. [PMID: 34357190 PMCID: PMC8304582 DOI: 10.3390/membranes11070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
As one of the most important cellular compartments, the nucleus contains genetic materials and separates them from the cytoplasm with the nuclear envelope (NE), a thin membrane that is susceptible to deformations caused by intracellular forces. Interestingly, accumulating evidence has also indicated that the morphology change of NE is tightly related to nuclear mechanotransduction and the pathogenesis of diseases such as cancer and Hutchinson–Gilford Progeria Syndrome. Theoretically, with the help of well-designed experiments, significant progress has been made in understanding the physical mechanisms behind nuclear shape transformation in different cellular processes as well as its biological implications. Here, we review different continuum-level (i.e., energy minimization, boundary integral and finite element-based) approaches that have been developed to predict the morphology and shape change of the cell nucleus. Essential gradients, relative advantages and limitations of each model will be discussed in detail, with the hope of sparking a greater research interest in this important topic in the future.
Collapse
|
32
|
Wang Z, Zhu X, Cong X. Spatial micro-variation of 3D hydrogel stiffness regulates the biomechanical properties of hMSCs. Biofabrication 2021; 13. [PMID: 34107453 DOI: 10.1088/1758-5090/ac0982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are one of the most promising candidates for cell-based therapeutic products. Nonetheless, their biomechanical phenotype afterin vitroexpansion is still unsatisfactory, for example, restricting the efficiency of microcirculation of delivered hMSCs for further cell therapies. Here, we propose a scheme using maleimide-dextran hydrogel with locally varied stiffness in microscale to modify the biomechanical properties of hMSCs in three-dimensional (3D) niches. We show that spatial micro-variation of stiffness can be controllably generated in the hydrogel with heterogeneously cross-linking via atomic force microscopy measurements. The result of 3D cell culture experiment demonstrates the hydrogels trigger the formation of multicellular spheroids, and the derived hMSCs could be rationally softened via adjustment of the stiffness variation (SV) degree. Importantly,in vitro, the hMSCs modified with the higher SV degree can pass easier through capillary-shaped micro-channels. Further, we discuss the underlying mechanics of the increased cellular elasticity by focusing on the effect of rearranged actin networks, via the proposed microscopic model of biomechanically modified cells. Overall, this work highlights the effectiveness of SV-hydrogels in reprogramming and manufacturing hMSCs with designed biomechanical properties for improved therapeutic potential.
Collapse
Affiliation(s)
- Zheng Wang
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China
| | - Xiaolu Zhu
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China.,Changzhou Key Laboratory of Digital Manufacture Technology, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China.,Jiangsu Key Laboratory of Special Robot Technology, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China
| | - Xiuli Cong
- Department of Orthopaedics, Zhejiang Hospital, No. 12 Lingyin Road, Hangzhou, Zhejiang 310013, People's Republic of China
| |
Collapse
|
33
|
Abdollahiyan P, Oroojalian F, Baradaran B, de la Guardia M, Mokhtarzadeh A. Advanced mechanotherapy: Biotensegrity for governing metastatic tumor cell fate via modulating the extracellular matrix. J Control Release 2021; 335:596-618. [PMID: 34097925 DOI: 10.1016/j.jconrel.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
Mechano-transduction is the procedure of mechanical stimulus translation via cells, among substrate shear flow, topography, and stiffness into a biochemical answer. TAZ and YAP are transcriptional coactivators which are recognized as relay proteins that promote mechano-transduction within the Hippo pathway. With regard to healthy cells in homeostasis, mechano-transduction regularly restricts proliferation, and TAZ and YAP are totally inactive. During cancer development a YAP/TAZ - stimulating positive response loop is formed between the growing tumor and the stiffening ECM. As tumor developments, local stromal and cancerous cells take advantage of mechanotransduction to enhance proliferation, induce their migratory into remote tissues, and promote chemotherapeutic resistance. As a newly progresses paradigm, nanoparticle-conjunctions (such as magnetic nanoparticles, and graphene derivatives nanoparticles) hold significant promises for remote regulation of cells and their relevant events at molecular scale. Despite outstanding developments in employing nanoparticles for drug targeting studies, the role of nanoparticles on cellular behaviors (proliferation, migration, and differentiation) has still required more evaluations in the field of mechanotherapy. In this paper, the in-depth contribution of mechano-transduction is discussed during tumor progression, and how these consequences can be evaluated in vitro.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Roberts AB, Zhang J, Raj Singh V, Nikolić M, Moeendarbary E, Kamm RD, So PTC, Scarcelli G. Tumor cell nuclei soften during transendothelial migration. J Biomech 2021; 121:110400. [PMID: 33882444 PMCID: PMC8274349 DOI: 10.1016/j.jbiomech.2021.110400] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
During cancer metastasis, tumor cells undergo significant deformation in order to traverse through endothelial cell junctions in the walls of blood vessels. As cells pass through narrow gaps, smaller than the nuclear diameter, the spatial configuration of chromatin must change along with the distribution of nuclear enzymes. Nuclear stiffness is an important determinant of the ability of cells to undergo transendothelial migration, yet no studies have been conducted to assess whether tumor cell cytoskeletal or nuclear stiffness changes during this critical process in order to facilitate passage. To address this question, we employed two non-contact methods, Brillouin confocal microscopy (BCM) and confocal reflectance quantitative phase microscopy (QPM), to track the changes in mechanical properties of live, transmigrating tumor cells in an in vitro collagen gel platform. Using these two imaging modalities to study transmigrating MDA-MB-231, A549, and A375 cells, we found that both the cells and their nuclei soften upon extravasation and that the nuclear membranes remain soft for at least 24 h. These new data suggest that tumor cells adjust their mechanical properties in order to facilitate extravasation.
Collapse
Affiliation(s)
- Anya B Roberts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park 20742, MD, USA
| | - Vijay Raj Singh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Miloš Nikolić
- Maryland Biophysics Program, University of Maryland, College Park, MD 20742, USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139, MA, USA.
| | - Peter T C So
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge 02139, MA, USA.
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park 20742, MD, USA; Maryland Biophysics Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
35
|
Reynolds N, McEvoy E, Ghosh S, Panadero Pérez JA, Neu CP, McGarry P. Image-derived modeling of nucleus strain amplification associated with chromatin heterogeneity. Biophys J 2021; 120:1323-1332. [PMID: 33675762 PMCID: PMC8105730 DOI: 10.1016/j.bpj.2021.01.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Beyond the critical role of cell nuclei in gene expression and DNA replication, they also have a significant influence on cell mechanosensation and migration. Nuclear stiffness can impact force transmission and, furthermore, act as a physical barrier to translocation across tight spaces. As such, it is of wide interest to accurately characterize nucleus mechanical behavior. In this study, we present a computational investigation of the in situ deformation of a heterogeneous chondrocyte nucleus. A methodology is developed to accurately reconstruct a three-dimensional finite-element model of a cell nucleus from confocal microscopy. By incorporating the reconstructed nucleus into a chondrocyte model embedded in pericellular and extracellular matrix, we explore the relationship between spatially heterogeneous nuclear DNA content, shear stiffness, and resultant shear strain. We simulate an externally applied extracellular matrix shear deformation and compute intranuclear strain distributions, which are directly compared with corresponding experimentally measured distributions. Simulations suggest that the mechanical behavior of the nucleus is highly heterogeneous, with a nonlinear relationship between experimentally measured grayscale values and corresponding local shear moduli (μn). Three distinct phases are identified within the nucleus: a low-stiffness mRNA-rich interchromatin phase (0.17 kPa ≤ μn ≤ 0.63 kPa), an intermediate-stiffness euchromatin phase (1.48 kPa ≤ μn ≤ 2.7 kPa), and a high-stiffness heterochromatin phase (3.58 kPa ≤ μn ≤ 4.0 kPa). Our simulations also indicate that disruption of the nuclear envelope associated with lamin A/C depletion significantly increases nuclear strain in regions of low DNA concentration. We further investigate a phenotypic shift of chondrocytes to fibroblast-like cells, a signature for osteoarthritic cartilage, by increasing the contractility of the actin cytoskeleton to a level associated with fibroblasts. Peak nucleus strains increase by 35% compared to control, with the nucleus becoming more ellipsoidal. Our findings may have broad implications for current understanding of how local DNA concentrations and associated strain amplification can impact cell mechanotransduction and drive cell behavior in development, migration, and tumorigenesis.
Collapse
Affiliation(s)
- Noel Reynolds
- Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Eoin McEvoy
- Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Soham Ghosh
- Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| | | | - Corey P Neu
- Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Patrick McGarry
- Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
36
|
Che B, Zhao W, Liu Y, Sun D, Jing G, Bai J, Feng X, Zhang C. Dynamic intracellular mechanical cues facilitate collective signaling responses. iScience 2021; 24:102396. [PMID: 33997681 PMCID: PMC8091894 DOI: 10.1016/j.isci.2021.102396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/11/2021] [Accepted: 04/02/2021] [Indexed: 12/02/2022] Open
Abstract
Collective behavior emerges in diverse life machineries, e.g., the immune responses to dynamic stimulations. The essential questions that arise here are that whether and how cells in vivo collectively respond to stimulation frequencies higher than their intrinsic natural values, e.g., the acute inflammation conditions. In this work, we systematically studied morphological and signaling responses of population fibroblasts in an interconnected cell monolayer and uncovered that, besides the natural NF-κB oscillation frequency of 1/90 min−1, collective signaling response emerges in the cell monolayer at 1/20 min−1 TNF-α input periodicity as well. Using a customized microfluidic device, we independently induced dynamic chemical stimulation and cytoskeleton reorganization on the stand-alone cells to exclude the effect of cell-cell communication. Our results reveal that, at this particular frequency, chemical stimulation is translated into dynamic intracellular mechanical cues through RAC1-medicated induction of dynamic cell-cell connections and cytoskeleton reorganizations, which synergize with chemical input to facilitate collective signaling responses. Dynamic intracellular mechanical cues facilitate collective cellular responses The dynamic chemical stimulations are translated into intracellular mechanical cues The synergy between dynamic mechanical and chemical signal plays crucial roles
Collapse
Affiliation(s)
- Bingchen Che
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Yanan Liu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Guangyin Jing
- School of Physics, Northwest University, Xi'an 710069, China
| | - Jintao Bai
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Xiqiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
37
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|
38
|
Zhang J, Scarcelli G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat Protoc 2021; 16:1251-1275. [PMID: 33452504 PMCID: PMC8218248 DOI: 10.1038/s41596-020-00457-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023]
Abstract
Several techniques have been developed over the past few decades to assess the mechanical properties of biological samples, which has fueled a rapid growth in the fields of biophysics, bioengineering, and mechanobiology. In this context, Brillouin optical spectroscopy has long been known as an intriguing modality for noncontact material characterization. However, limited by speed and sample damage, it had not translated into a viable imaging modality for biomedically relevant materials. Recently, based on a novel spectroscopy strategy that substantially improves the speed of Brillouin measurement, confocal Brillouin microscopy has emerged as a unique complementary tool to traditional methods as it allows noncontact, nonperturbative, label-free measurements of material mechanical properties. The feasibility and potential of this innovative technique at both the cell and tissue level have been extensively demonstrated over the past decade. As Brillouin technology is rapidly recognized, a standard approach for building and operating Brillouin microscopes is required to facilitate the widespread adoption of this technology. In this protocol, we aim to establish a robust approach for instrumentation, and data acquisition and analysis. By carefully following this protocol, we expect that a Brillouin instrument can be built in 5-9 days by a person with basic optics knowledge and alignment experience; the data acquisition as well as postprocessing can be accomplished within 2-8 h.
Collapse
Affiliation(s)
- Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
39
|
Ghosh S, Cuevas VC, Seelbinder B, Neu CP. Image-Based Elastography of Heterochromatin and Euchromatin Domains in the Deforming Cell Nucleus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006109. [PMID: 33448065 PMCID: PMC7869959 DOI: 10.1002/smll.202006109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Indexed: 05/21/2023]
Abstract
Chromatin of the eukaryotic cell nucleus comprises microscopically dense heterochromatin and loose euchromatin domains, each with distinct transcriptional ability and roles in cellular mechanotransduction. While recent methods are developed to characterize the mechanics of nucleus, measurement of intranuclear mechanics remains largely unknown. Here, the development of "nuclear elastography," which combines microscopic imaging and computational modeling to quantify the relative elasticity of the heterochromatin and euchromatin domains, is described. Using contracting murine embryonic cardiomyocytes, nuclear elastography reveals that the heterochromatin is almost four times stiffer than the euchromatin at peak deformation. The relative elasticity between the two domains changes rapidly during the active deformation of the cardiomyocyte in the normal physiological condition but progresses more slowly in cells cultured in a mechanically stiff environment, although the relative stiffness at peak deformation does not change. Further, it is found that the disruption of the Klarsicht, ANC-1, Syne Homology domain of the Linker of Nucleoskeleton and Cytoskeleton complex compromises the intranuclear elasticity distribution resulting in elastically similar heterochromatin and euchromatin. These results provide insight into the elastography dynamics of heterochromatin and euchromatin domains and provide a noninvasive framework to further investigate the mechanobiological function of subcellular and subnuclear domains limited only by the spatiotemporal resolution of the acquired images.
Collapse
Affiliation(s)
- Soham Ghosh
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Victor Crespo Cuevas
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Benjamin Seelbinder
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Corey P. Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
40
|
Piersimoni ME, Teng X, Cass AEG, Ying L. Antioxidant lipoic acid ligand-shell gold nanoconjugates against oxidative stress caused by α-synuclein aggregates. NANOSCALE ADVANCES 2020; 2:5666-5681. [PMID: 36133855 PMCID: PMC9416995 DOI: 10.1039/d0na00688b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/21/2020] [Indexed: 05/13/2023]
Abstract
Gold nanoparticles are becoming a promising platform for the delivery of drugs to treat neurodegenerative diseases. Parkinson's disease, associated with the aggregation of α-synuclein, is a condition that results in dysfunctional neuronal cells leading to their degeneration and death. Oxidative stress has been strongly implicated as a common feature in this process. The limited efficacy of the traditional therapies and the development of associated severe side effects present an unmet need for preventive and adjuvant therapies. The organosulfur compound lipoic acid, naturally located in the mitochondria, plays a powerful antioxidative role against oxidative stress. However, the efficacy is limited by its low physiological concentration, and the administration is affected by its short half-life and bioavailability due to hepatic degradation. Here we exploited the drug delivery potential of gold nanoparticles to assemble lipoic acid, and administered the system into SH-SY5Y cells, a cellular model commonly used to study Parkinson's disease. We tested the nanoconjugates of GNPs-LA, under an oxidative environment induced by gold nanoparticle/α-synuclein conjugates (GNPs-α-Syn). GNPs-LA were found to be biocompatible and capable of restoring the cell damage caused by high-level reactive oxygen species generated by excessive oxidative stress in the cellular environment. We conclude that GNPs-LA may serve as promising drug delivery vehicles conveying antioxidant molecules for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Maria Elena Piersimoni
- National Heart and Lung Institute, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
- Bio Nano Consulting London W1T 4TQ UK
| | - Xiangyu Teng
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| | - Anthony E G Cass
- Bio Nano Consulting London W1T 4TQ UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| |
Collapse
|
41
|
Kim K, Guck J. The Relative Densities of Cytoplasm and Nuclear Compartments Are Robust against Strong Perturbation. Biophys J 2020; 119:1946-1957. [PMID: 33091376 PMCID: PMC7732746 DOI: 10.1016/j.bpj.2020.08.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
The cell nucleus is a compartment in which essential processes such as gene transcription and DNA replication occur. Although the large amount of chromatin confined in the finite nuclear space could install the picture of a particularly dense organelle surrounded by less dense cytoplasm, recent studies have begun to report the opposite. However, the generality of this newly emerging, opposite picture has so far not been tested. Here, we used combined optical diffraction tomography and epi-fluorescence microscopy to systematically quantify the mass densities of cytoplasm, nucleoplasm, and nucleoli of human cell lines, challenged by various perturbations. We found that the nucleoplasm maintains a lower mass density than cytoplasm during cell cycle progression by scaling its volume to match the increase of dry mass during cell growth. At the same time, nucleoli exhibited a significantly higher mass density than the cytoplasm. Moreover, actin and microtubule depolymerization and changing chromatin condensation altered volume, shape, and dry mass of those compartments, whereas the relative distribution of mass densities was generally unchanged. Our findings suggest that the relative mass densities across membrane-bound and membraneless compartments are robustly conserved, likely by different as-of-yet unknown mechanisms, which hints at an underlying functional relevance. This surprising robustness of mass densities contributes to an increasing recognition of the importance of physico-chemical properties in determining cellular characteristics and compartments.
Collapse
Affiliation(s)
- Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| |
Collapse
|
42
|
Aleman A, Muralidhar S, Awad AA, Åkerman J, Hanstorp D. Frequency comb enhanced Brillouin microscopy. OPTICS EXPRESS 2020; 28:29540-29552. [PMID: 33114852 DOI: 10.1364/oe.398619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Brillouin light scattering (BLS) microscopy is a well established and powerful technique to study acoustic and magnetic excitations in the frequency domain with sub-micron spatial resolution. Many other spectroscopic techniques have benefited from the introduction of femtosecond laser sources to optically pump and stimulate the sample under investigation. In BLS microscopy, the use of femtosecond lasers as the excitation source introduces several challenges, primarily since the measured frequency shift is small and the signal levels are weak due to the low duty cycle of typical femtosecond lasers. Here we present a method to evade these challenges. A strong enhancement of the weak scattering amplitude on selected modes is observed by pumping the sample with a high repetition rate frequency comb laser source. The laser beam can be focused to the diffraction limit, providing a micron pumping area. We can thus preserve the innate high frequency and spatial resolution of BLS microscopy. Furthermore, we are able to induce a point-like source of mode-selected elementary excitations which propagate away from the pumping spot. We conclude that we have demonstrated frequency comb pumped BLS microscopy as an attractive tool for studies of ultrafast induced laser dynamics directly in the frequency domain.
Collapse
|
43
|
Wisniewski EO, Mistriotis P, Bera K, Law RA, Zhang J, Nikolic M, Weiger M, Parlani M, Tuntithavornwat S, Afthinos A, Zhao R, Wirtz D, Kalab P, Scarcelli G, Friedl P, Konstantopoulos K. Dorsoventral polarity directs cell responses to migration track geometries. SCIENCE ADVANCES 2020; 6:eaba6505. [PMID: 32789173 PMCID: PMC7399493 DOI: 10.1126/sciadv.aba6505] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/12/2020] [Indexed: 05/02/2023]
Abstract
How migrating cells differentially adapt and respond to extracellular track geometries remains unknown. Using intravital imaging, we demonstrate that invading cells exhibit dorsoventral (top-to-bottom) polarity in vivo. To investigate the impact of dorsoventral polarity on cell locomotion through different confining geometries, we fabricated microchannels of fixed cross-sectional area, albeit with distinct aspect ratios. Vertical confinement, exerted along the dorsoventral polarity axis, induces myosin II-dependent nuclear stiffening, which results in RhoA hyperactivation at the cell poles and slow bleb-based migration. In lateral confinement, directed perpendicularly to the dorsoventral polarity axis, the absence of perinuclear myosin II fails to increase nuclear stiffness. Hence, cells maintain basal RhoA activity and display faster mesenchymal migration. In summary, by integrating microfabrication, imaging techniques, and intravital microscopy, we demonstrate that dorsoventral polarity, observed in vivo and in vitro, directs cell responses in confinement by spatially tuning RhoA activity, which controls bleb-based versus mesenchymal migration.
Collapse
Affiliation(s)
- Emily O. Wisniewski
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Kaustav Bera
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert A. Law
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Milos Nikolic
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Maryland Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Michael Weiger
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Parlani
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Soontorn Tuntithavornwat
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexandros Afthinos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Peter Friedl
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Cancer Genomics Centre, 3584 Utrecht, Netherlands
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Antonacci G, Beck T, Bilenca A, Czarske J, Elsayad K, Guck J, Kim K, Krug B, Palombo F, Prevedel R, Scarcelli G. Recent progress and current opinions in Brillouin microscopy for life science applications. Biophys Rev 2020; 12:615-624. [PMID: 32458371 PMCID: PMC7311586 DOI: 10.1007/s12551-020-00701-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Many important biological functions and processes are reflected in cell and tissue mechanical properties such as elasticity and viscosity. However, current techniques used for measuring these properties have major limitations, such as that they can often not measure inside intact cells and/or require physical contact-which cells can react to and change. Brillouin light scattering offers the ability to measure mechanical properties in a non-contact and label-free manner inside of objects with high spatial resolution using light, and hence has emerged as an attractive method during the past decade. This new approach, coined "Brillouin microscopy," which integrates highly interdisciplinary concepts from physics, engineering, and mechanobiology, has led to a vibrant new community that has organized itself via a European funded (COST Action) network. Here we share our current assessment and opinion of the field, as emerged from a recent dedicated workshop. In particular, we discuss the prospects towards improved and more bio-compatible instrumentation, novel strategies to infer more accurate and quantitative mechanical measurements, as well as our current view on the biomechanical interpretation of the Brillouin spectra.
Collapse
Affiliation(s)
- Giuseppe Antonacci
- Photonics Research Group, INTEC, Ghent University-imec, 9052, Ghent, Belgium
- Present address: Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milan, Italy
| | - Timon Beck
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Jürgen Czarske
- Laboratory of Measurement and Sensor System Technique, TU Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Kareem Elsayad
- Advanced Microscopy, Vienna Biocenter Core Facilities (VBCF), Vienna, Austria.
| | - Jochen Guck
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Kyoohyun Kim
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Benedikt Krug
- Laboratory of Measurement and Sensor System Technique, TU Dresden, Dresden, Germany
| | | | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|