1
|
Qiu J, Li J, Li W, Wang K, Zhang S, Suk CH, Wu C, Zhou X, Zhang Y, Guo T, Kim TW. Advancements in Nanowire-Based Devices for Neuromorphic Computing: A Review. ACS NANO 2024. [PMID: 39499041 DOI: 10.1021/acsnano.4c10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Neuromorphic computing, inspired by the highly interconnected and energy-efficient way the human brain processes information, has emerged as a promising technology for post-Moore's law era. This emerging technology can emulate the structures and the functions of the human brain and is expected to overcome the fundamental limitation of the current von Neumann computing architecture. Neuromorphic devices stand out as the key components of future electronic systems, exhibiting potential in shaping the landscape of neuromorphic computing. Especially, nanowire (NW)-based neuromorphic devices, with their advantages of high integration, high-speed computing, and low power consumption, have recently emerged as candidates for neuromorphic computing technology. Here, a critical overview of the current development and relevant research in the field of NW-based neuromorphic devices are provided. Neuromorphic devices based on different NW materials are comprehensively discussed, including Ag NW-based, organic NW-based, metal oxide NW-based, and semiconductor NW-based devices. Finally, as a foresight perspective, the potentials and the challenges of these NW-based neuromorphic devices for use as future brain-like electronics are discussed.
Collapse
Affiliation(s)
- Jiawen Qiu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junlong Li
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenhao Li
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Kun Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shuqian Zhang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chan Hee Suk
- Department of Electronic and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chaoxing Wu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Xiongtu Zhou
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Yongai Zhang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Tailiang Guo
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Tae Whan Kim
- Department of Electronic and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Ma M, Huang C, Yang M, He D, Pei Y, Kang Y, Li W, Lei C, Xiao X. Ultra-Low Power Consumption Artificial Photoelectric Synapses Based on Lewis Acid Doped WSe 2 for Neuromorphic Computing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406402. [PMID: 39434458 DOI: 10.1002/smll.202406402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/22/2024] [Indexed: 10/23/2024]
Abstract
Capitalizing on the extensive spectral capacity and minimal crosstalk properties inherent in optical signals, photoelectric synapses are poised to assume a pivotal stance in the realm of neuromorphic computation. Herein, a photoelectric synapse based on Lewis acid-doped semiconducting tungsten diselenide (WSe2) is introduced, exhibiting tunable short-term and long-term plasticity. The device consumes a mere 0.1 fJ per synaptic operation, which is lower than the energy required by a single synaptic event observed in the human brain. Furthermore, these devices demonstrate high-pass filtering capabilities, highlighting their potential in image-sharpening applications. In particular, by synergistically modulating the photoconductivity and electrical gate bias, versatile logic capabilities are demonstrated within a single device, enabling it to flexibly perform both Boolean AND and OR gate operations. This work demonstrates a viable approach for Lewis acid-treated TMDs to realize multifunctional photoelectric synapses for neuromorphic computing.
Collapse
Affiliation(s)
- Mingjun Ma
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Chaoning Huang
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Mingyu Yang
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Dong He
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Yongfeng Pei
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Yufan Kang
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Wenqing Li
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiangheng Xiao
- School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Li R, Yue Z, Luan H, Dong Y, Chen X, Gu M. Multimodal Artificial Synapses for Neuromorphic Application. RESEARCH (WASHINGTON, D.C.) 2024; 7:0427. [PMID: 39161534 PMCID: PMC11331013 DOI: 10.34133/research.0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024]
Abstract
The rapid development of neuromorphic computing has led to widespread investigation of artificial synapses. These synapses can perform parallel in-memory computing functions while transmitting signals, enabling low-energy and fast artificial intelligence. Robots are the most ideal endpoint for the application of artificial intelligence. In the human nervous system, there are different types of synapses for sensory input, allowing for signal preprocessing at the receiving end. Therefore, the development of anthropomorphic intelligent robots requires not only an artificial intelligence system as the brain but also the combination of multimodal artificial synapses for multisensory sensing, including visual, tactile, olfactory, auditory, and taste. This article reviews the working mechanisms of artificial synapses with different stimulation and response modalities, and presents their use in various neuromorphic tasks. We aim to provide researchers in this frontier field with a comprehensive understanding of multimodal artificial synapses.
Collapse
Affiliation(s)
- Runze Li
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute of Photonic Chips,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Zhangjiang Laboratory, Pudong, Shanghai 201210, China
| | - Zengji Yue
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haitao Luan
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yibo Dong
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xi Chen
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
5
|
Dong X, Sun H, Li S, Zhang X, Chen J, Zhang X, Zhao Y, Li Y. Versatile Cu2ZnSnS4-based synaptic memristor for multi-field-regulated neuromorphic applications. J Chem Phys 2024; 160:154702. [PMID: 38619459 DOI: 10.1063/5.0206100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
Integrating both electrical and light-modulated multi-type neuromorphic functions in a single synaptic memristive device holds the most potential for realizing next-generation neuromorphic systems, but is still challenging yet achievable. Herein, a simple bi-terminal optoelectronic synaptic memristor is newly proposed based on kesterite Cu2ZnSnS4, exhibiting stable nonvolatile resistive switching with excellent spatial uniformity and unique optoelectronic synaptic behaviors. The device demonstrates not only low switching voltage (-0.39 ± 0.08 V), concentrated Set/Reset voltage distribution (<0.08/0.15 V), and long retention time (>104 s) but also continuously modulable conductance by both electric (different width/interval/amplitude) and light (470-808 nm with different intensity) stimulus. These advantages make the device good electrically and optically simulated synaptic functions, including excitatory and inhibitory, paired-pulsed facilitation, short-/long-term plasticity, spike-timing-dependent plasticity, and "memory-forgetting" behavior. Significantly, decimal arithmetic calculation (addition, subtraction, and commutative law) is realized based on the linear conductance regulation, and high precision pattern recognition (>88%) is well achieved with an artificial neural network constructed by 5 × 5 × 4 memristor array. Predictably, such kesterite-based optoelectronic memristors can greatly open the possibility of realizing multi-functional neuromorphic systems.
Collapse
Affiliation(s)
- Xiaofei Dong
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hao Sun
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Siyuan Li
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiang Zhang
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiangtao Chen
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xuqiang Zhang
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun Zhao
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yan Li
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
6
|
Zhang Q, Li M, Li L, Geng D, Chen W, Hu W. Recent progress in emerging two-dimensional organic-inorganic van der Waals heterojunctions. Chem Soc Rev 2024; 53:3096-3133. [PMID: 38373059 DOI: 10.1039/d3cs00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two-dimensional (2D) materials have attracted significant attention in recent decades due to their exceptional optoelectronic properties. Among them, to meet the growing demand for multifunctional applications, 2D organic-inorganic van der Waals (vdW) heterojunctions have become increasingly popular in the development of optoelectronic devices. These heterojunctions demonstrate impressive capability to synergistically combine the favourable characteristics of organic and inorganic materials, thereby offering a wide range of advantages. Also, they enable the creation of innovative device structures and introduce novel functionalities in existing 2D materials, avoiding the need for lattice matching in different material systems. Presently, researchers are actively working on improving the performance of devices based on 2D organic-inorganic vdW heterojunctions by focusing on enhancing the quality of 2D materials, precise stacking methods, energy band regulation, and material selection. Therefore, this review presents a thorough examination of the emerging 2D organic-inorganic vdW heterojunctions, including their classification, fabrication, and corresponding devices. Additionally, this review offers profound and comprehensive insight into the challenges in this field to inspire future research directions. It is expected to propel researchers to harness the extraordinary capabilities of 2D organic-inorganic vdW heterojunctions for a wider range of applications by further advancing the understanding of their fundamental properties, expanding the range of available materials, and exploring novel device architectures. The ongoing research and development in this field hold potential to unlock captivating advancements and foster practical applications across diverse industries.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menghan Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
7
|
Kumar A, Lin DJX, Das D, Huang L, Yap SLK, Tan HR, Tan HK, Lim RJJ, Toh YT, Chen S, Lim ST, Fong X, Ho P. Multistate Compound Magnetic Tunnel Junction Synapses for Digital Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10335-10343. [PMID: 38376994 DOI: 10.1021/acsami.3c17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The quest to mimic the multistate synapses for bioinspired computing has triggered nascent research that leverages the well-established magnetic tunnel junction (MTJ) technology. Early works on the spin transfer torque MTJ-based artificial neural network (ANN) are susceptible to poor thermal reliability, high latency, and high critical current densities. Meanwhile, work on spin-orbit torque (SOT) MTJ-based ANN mainly utilized domain wall motion, which yields negligibly small readout signals differentiating consecutive states and has designs that are incompatible with technological scale-up. Here, we propose a multistate device concept built upon a compound MTJ consisting of multiple SOT-MTJs (number of MTJs, n = 1-4) on a shared write channel, mimicking the spin-based ANN. The n + 1 resistance states representing varying synaptic weights can be tuned by varying the voltage pulses (±1.5-1.8 V), pulse duration (100-300 ns), and applied in-plane fields (5.5-10.5 mT). A large TMR difference of more than 13.6% is observed between two consecutive states for the 4-cell compound MTJ, a 4-fold improvement from reported state-of-the-art spin-based synaptic devices. The ANN built upon the compound MTJ shows high learning accuracy for digital recognition tasks with incremental states and retraining, achieving test accuracy as high as 95.75% in the 4-cell compound MTJ. These results provide an industry-compatible platform to integrate these multistate SOT-MTJ synapses directly into neuromorphic architecture for in-memory and unconventional computing applications.
Collapse
Affiliation(s)
- Anuj Kumar
- Physics Department, National University of Singapore, 117551 Singapore
| | - Dennis J X Lin
- Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
| | - Debasis Das
- Electrical and Computer Engineering Department, National University of Singapore, 117583 Singapore
| | - Lisen Huang
- Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
| | - Sherry L K Yap
- Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
| | - Hui Ru Tan
- Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
| | - Hang Khume Tan
- Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
| | - Royston J J Lim
- Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
| | - Yeow Teck Toh
- Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
| | - Shaohai Chen
- Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
| | - Sze Ter Lim
- Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
| | - Xuanyao Fong
- Electrical and Computer Engineering Department, National University of Singapore, 117583 Singapore
| | - Pin Ho
- Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
| |
Collapse
|
8
|
Li J, Lei Y, Wang Z, Meng H, Zhang W, Li M, Tan Q, Li Z, Guo W, Wen S, Zhang J. High-Density Artificial Synapse Array Consisting of Homogeneous Electrolyte-Gated Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305430. [PMID: 38018350 PMCID: PMC10797465 DOI: 10.1002/advs.202305430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The artificial synapse array with an electrolyte-gated transistor (EGT) as an array unit presents considerable potential for neuromorphic computation. However, the integration of EGTs faces the drawback of the conflict between the polymer electrolytes and photo-lithography. This study presents a scheme based on a lateral-gate structure to realize high-density integration of EGTs and proposes the integration of 100 × 100 EGTs into a 2.5 × 2.5 cm2 glass, with a unit density of up to 1600 devices cm-2 . Furthermore, an electrolyte framework is developed to enhance the array performance, with ionic conductivity of up to 2.87 × 10-3 S cm-1 owing to the porosity of zeolitic imidazolate frameworks-67. The artificial synapse array realizes image processing functions, and exhibits high performance and homogeneity. The handwriting recognition accuracy of a representative device reaches 92.80%, with the standard deviation of all the devices being limited to 9.69%. The integrated array and its high performance demonstrate the feasibility of the scheme and provide a solid reference for the integration of EGTs.
Collapse
Affiliation(s)
- Jun Li
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
- Key Laboratory of Advanced Display and System ApplicationsMinistry of EducationShanghai UniversityShanghai200072P. R. China
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| | - Yuxing Lei
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
| | - Zexin Wang
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
| | - Hu Meng
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Wenkui Zhang
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| | - Mengjiao Li
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| | - Qiuyun Tan
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Zeyuan Li
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Wei Guo
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Shengkai Wen
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System ApplicationsMinistry of EducationShanghai UniversityShanghai200072P. R. China
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| |
Collapse
|
9
|
Elboughdiri N, Iqbal S, Abdullaev S, Aljohani M, Safeen A, Althubeiti K, Khan R. Enhanced electrical and magnetic properties of (Co, Yb) co-doped ZnO memristor for neuromorphic computing. RSC Adv 2023; 13:35993-36008. [PMID: 38090095 PMCID: PMC10711987 DOI: 10.1039/d3ra06853f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 09/07/2024] Open
Abstract
We investigate the morphological, electrical, magnetic, and resistive switching properties of (Co, Yb) co-ZnO for neuromorphic computing. By using hydrothermal synthesized nanoparticles and their corresponding sputtering target, we introduce Co and Yb into the ZnO structure, leading to increased oxygen vacancies and grain volume, indicating grain growth. This growth reduces grain boundaries, enhancing electrical conductivity and room-temperature ferromagnetism in Co and Yb-doped ZnO nanoparticles. We present a sputter-grown memristor with a (Co, Yb) co-ZnO layer between Au electrodes. Characterization confirms the ZnO layer's presence and 100 nm-thick Au electrodes. The memristor exhibits repeatable analog resistance switching, allowing manipulation of conductance between low and high resistance states. Statistical endurance tests show stable resistive switching with minimal dispersion over 100 pulse cycles at room temperature. Retention properties of the current states are maintained for up to 1000 seconds, demonstrating excellent thermal stability. A physical model explains the switching mechanism, involving Au ion migration during "set" and filament disruption during "reset." Current-voltage curves suggest space-charge limited current, emphasizing conductive filament formation. All these results shows good electronic devices and systems towards neuromorphic computing.
Collapse
Affiliation(s)
- Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il P.O. Box 2440 Ha'il 81441 Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes Gabes 6029 Tunisia
| | - Shahid Iqbal
- Department of Physics, University of Wisconsin La Crosse WI USA
| | - Sherzod Abdullaev
- Engineering School, Central Asian University Tashkent Uzbekistan
- Scientific and Innovation Department, Tashkent State Pedagogical University Named After Nizami Tashkent Uzbekistan
| | - Mohammed Aljohani
- Department of Chemistry, College of Science, Taif University P.O. BOX. 110 21944 Taif Saudi Arabia
| | - Akif Safeen
- Department of Physics, University of Poonch Rawalakot Rawalakot 12350 Pakistan
| | - Khaled Althubeiti
- Department of Chemistry, College of Science, Taif University P.O. BOX. 110 21944 Taif Saudi Arabia
| | - Rajwali Khan
- Department of Physics, University of Lakki Marwat Lakki Marwat 2842 KP Pakistan
- Department of Physics, United Arab Emirates University United Arab Emirates
| |
Collapse
|
10
|
Lubert-Perquel D, Acharya S, Johnson JC. Optically Addressing Exciton Spin and Pseudospin in Nanomaterials for Spintronics Applications. ACS APPLIED OPTICAL MATERIALS 2023; 1:1742-1760. [PMID: 38037653 PMCID: PMC10683369 DOI: 10.1021/acsaom.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Oriented exciton spins that can be generated and manipulated optically are of interest for a range of applications, including spintronics, quantum information science, and neuromorphic computing architectures. Although materials that host such excitons often lack practical coherence times for use on their own, strategic transduction of the magnetic information across interfaces can combine fast modulation with longer-term storage and readout. Several nanostructure systems have been put forward due to their interesting magneto-optical properties and their possible manipulation using circularly polarized light. These material systems are presented here, namely two-dimensional (2D) systems due to the unique spin-valley coupling properties and quantum dots for their exciton fine structure. 2D magnets are also discussed for their anisotropic spin behavior and extensive 2D magnetic states that are not yet fully understood but could pave the way for emergent techniques of magnetic control. This review also details the experimental and theoretical tools to measure and understand these systems along with a discussion on the progress of optical manipulation of spins and magnetic order transitions.
Collapse
Affiliation(s)
- Daphné Lubert-Perquel
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Swagata Acharya
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Justin C. Johnson
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
11
|
Hwang T, Park E, Seo J, Tsogbayar D, Ko E, Yang C, Ahn H, Lee DY, Lee HS. Dissecting the Interplay between Organic Charge-Modulated Field-Effect Transistors and Field-Effect Transistors through Interface Control Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53765-53775. [PMID: 37944051 DOI: 10.1021/acsami.3c12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Organic charge-modulated field-effect transistors (OCMFETs) have garnered significant interest as sensing platforms for diverse applications that include biomaterials and chemical sensors owing to their distinct operational principles. This study aims to improve the understanding of driving mechanisms in OCMFETs and optimize their device performance by investigating the correlation between organic field-effect transistors (OFETs) and OCMFETs. By introducing self-assembled monolayers (SAMs) with different functional groups on the AlOx gate dielectric surface, we explored the impact of the surface characteristics on the electrical behavior of both devices. Our results indicate that the dipole moment of the dielectric surface is a critical control variable in the performance correlation between OFET and OCMFET devices, as it directly impacts the generation of the induced floating gate voltage through the control gate voltage. The insights obtained from this study contribute to the understanding of the factors affecting OCMFET performance and emphasize their potential as platforms for diverse sensing systems.
Collapse
Affiliation(s)
- Taehoon Hwang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Eunyoung Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jungyoon Seo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Dashdendev Tsogbayar
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Ko
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Chanwoo Yang
- Advanced Nano-Surface and Wearable Electronics Research Laboratory, Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology, Incheon 21999, Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Gyeongbuk, Pohang 37673, Republic of Korea
| | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hwa Sung Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
12
|
Cimrová V, Babičová P, Guesmi M, Výprachtický D. Donor-Acceptor Copolymers with 9-(2-Ethylhexyl)carbazole or Dibenzothiophene-5,5-dioxide Donor Units and 5,6-Difluorobenzo[ c][1,2,5]thiadiazole Acceptor Units for Photonics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2939. [PMID: 37999292 PMCID: PMC10675554 DOI: 10.3390/nano13222939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Semiconducting polymers, particularly of the third generation, including donor-acceptor (D-A) copolymers, are extensively studied due to their huge potential for photonic and electronic applications. Here, we report on two new D-A copolymers, CP1 and CP2, composed of different electron-donor (D) units: 9-(2-ethylhexyl)carbazole or dibenzothiophene-5,5-dioxide, respectively, and of 4,7-bis(4'-(2-octyldodecyl)thiophen-2'-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole building block with central 5,6-difluorobenzo[c][1,2,5]thiadiazole electron-acceptor (A) units, which were synthesized by Suzuki coupling in the high-boiling solvent xylene and characterized. The copolymers exhibited very good thermal and oxidation stability. A copolymer CP1 with different molecular weights was prepared in order to facilitate a comparison of CP1 with CP2 of comparable molecular weight and to reveal the relationship between molecular weight and properties. The photophysical, electrochemical, and electroluminescence properties were examined. Intense red photoluminescence (PL) with higher PL efficiencies for CP1 than for CP2 was observed in both solutions and films. Red shifts in the PL thin film spectra compared with the PL solution spectra indicated aggregate formation in the solid state. X-ray diffraction measurements revealed differences in the arrangement of molecules in thin films depending on the molecular weight of the copolymers. Light-emitting devices with efficient red emission and low onset voltages were prepared and characterized.
Collapse
Affiliation(s)
- Věra Cimrová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic (D.V.)
| | | | | | | |
Collapse
|
13
|
Assi DS, Huang H, Karthikeyan V, Theja VCS, de Souza MM, Xi N, Li WJ, Roy VAL. Quantum Topological Neuristors for Advanced Neuromorphic Intelligent Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300791. [PMID: 37340871 PMCID: PMC10460853 DOI: 10.1002/advs.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/02/2023] [Indexed: 06/22/2023]
Abstract
Neuromorphic artificial intelligence systems are the future of ultrahigh performance computing clusters to overcome complex scientific and economical challenges. Despite their importance, the advancement in quantum neuromorphic systems is slow without specific device design. To elucidate biomimicking mammalian brain synapses, a new class of quantum topological neuristors (QTN) with ultralow energy consumption (pJ) and higher switching speed (µs) is introduced. Bioinspired neural network characteristics of QTNs are the effects of edge state transport and tunable energy gap in the quantum topological insulator (QTI) materials. With augmented device and QTI material design, top notch neuromorphic behavior with effective learning-relearning-forgetting stages is demonstrated. Critically, to emulate the real-time neuromorphic efficiency, training of the QTNs is demonstrated with simple hand gesture game by interfacing them with artificial neural networks to perform decision-making operations. Strategically, the QTNs prove the possession of incomparable potential to realize next-gen neuromorphic computing for the development of intelligent machines and humanoids.
Collapse
Affiliation(s)
- Dani S. Assi
- Electronics and Nanoscale EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Hongli Huang
- Electronics and Nanoscale EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Vaithinathan Karthikeyan
- Electronics and Nanoscale EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Vaskuri C. S. Theja
- Materials Science and EngineeringCity University of Hong KongTat Chee AvenueHong KongHong Kong
| | | | - Ning Xi
- Industrial and Manufacturing Systems EngineeringThe University of Hong KongPokfulam RoadHong KongHong Kong
| | - Wen Jung Li
- Mechanical EngineeringCity University of Hong KongTat Chee AvenueHong KongHong Kong
| | - Vellaisamy A. L. Roy
- School of Science and TechnologyHong Kong Metropolitan UniversityHo Man TinHong KongHong Kong
| |
Collapse
|
14
|
Cimrová V, Výprachtický D, Růžička A, Pokorná V. Carbazole-Fluorene Copolymers with Various Substituents at the Carbazole Nitrogen: Structure-Properties Relationship. Polymers (Basel) 2023; 15:2932. [PMID: 37447577 DOI: 10.3390/polym15132932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Carbazole derivatives, carbazole-containing polymers and iridium complexes are of interest due to many possible applications in photonics, electronics and biology, particularly as active or hole-transporting layers in organic as well as perovskite devices due to their interesting properties. Here, a series of carbazole-fluorene conjugated copolymers with various substituents at the N-carbazole position (2-methoxycarbonylethyl, 2-carboxyethyl, 2-ethylhexyl, and nonan-2,4-dionatoiridium(III)bis(2-phenylpyridine-N,C2')-9-yl) was prepared by Suzuki coupling. Their photophysical, electrochemical and electroluminescence (EL) properties were studied. Effects of molecular weight and substituents attached to carbazole unit on their properties are reported. The carbazole-fluorene copolymers in dilute solutions exhibited intense photoluminescence (PL) emission in the blue spectral region with high PL quantum yields (78-87%) except for the copolymer with the iridium complex (23%). Similar PL spectra were observed in dilute solutions. More pronounced differences were found in thin film PL and EL properties due to excimer/aggregate formation. Light-emitting devices (LEDs) made of copolymers with 2-ethylhexyl as N-carbazole substituent exhibited efficient EL emission with the best performance and the lowest EL onset voltages (3-4 V), while the LEDs made of copolymers with other substituents were not as efficient, but showed anomalous behavior and memory effects in current-voltage characteristics promising also for bio-inspired electronics.
Collapse
Affiliation(s)
- Věra Cimrová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic
| | - Drahomír Výprachtický
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic
| | - Aleš Růžička
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic
| | - Veronika Pokorná
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic
| |
Collapse
|
15
|
Zhang Y, Huang Z, Jiang J. Emerging photoelectric devices for neuromorphic vision applications: principles, developments, and outlooks. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2186689. [PMID: 37007672 PMCID: PMC10054230 DOI: 10.1080/14686996.2023.2186689] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The traditional von Neumann architecture is gradually failing to meet the urgent need for highly parallel computing, high-efficiency, and ultra-low power consumption for the current explosion of data. Brain-inspired neuromorphic computing can break the inherent limitations of traditional computers. Neuromorphic devices are the key hardware units of neuromorphic chips to implement the intelligent computing. In recent years, the development of optogenetics and photosensitive materials has provided new avenues for the research of neuromorphic devices. The emerging optoelectronic neuromorphic devices have received a lot of attentions because they have shown great potential in the field of visual bionics. In this paper, we summarize the latest visual bionic applications of optoelectronic synaptic memristors and transistors based on different photosensitive materials. The basic principle of bio-vision formation is first introduced. Then the device structures and operating mechanisms of optoelectronic memristors and transistors are discussed. Most importantly, the recent progresses of optoelectronic synaptic devices based on various photosensitive materials in the fields of visual perception are described. Finally, the problems and challenges of optoelectronic neuromorphic devices are summarized, and the future development of visual bionics is also proposed.
Collapse
Affiliation(s)
- Yi Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, China
| | - Zhuohui Huang
- Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, China
| | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning. Nat Commun 2023; 14:468. [PMID: 36709349 PMCID: PMC9884246 DOI: 10.1038/s41467-023-36205-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
In-sensor multi-task learning is not only the key merit of biological visions but also a primary goal of artificial-general-intelligence. However, traditional silicon-vision-chips suffer from large time/energy overheads. Further, training conventional deep-learning models is neither scalable nor affordable on edge-devices. Here, a material-algorithm co-design is proposed to emulate human retina and the affordable learning paradigm. Relying on a bottle-brush-shaped semiconducting p-NDI with efficient exciton-dissociations and through-space charge-transport characteristics, a wearable transistor-based dynamic in-sensor Reservoir-Computing system manifesting excellent separability, fading memory, and echo state property on different tasks is developed. Paired with a 'readout function' on memristive organic diodes, the RC recognizes handwritten letters and numbers, and classifies diverse costumes with accuracies of 98.04%, 88.18%, and 91.76%, respectively (higher than all reported organic semiconductors). In addition to 2D images, the spatiotemporal dynamics of RC naturally extract features of event-based videos, classifying 3 types of hand gestures at an accuracy of 98.62%. Further, the computing cost is significantly lower than that of the conventional artificial-neural-networks. This work provides a promising material-algorithm co-design for affordable and highly efficient photonic neuromorphic systems.
Collapse
|
17
|
Liu F, Deswal S, Christou A, Sandamirskaya Y, Kaboli M, Dahiya R. Neuro-inspired electronic skin for robots. Sci Robot 2022; 7:eabl7344. [PMID: 35675450 DOI: 10.1126/scirobotics.abl7344] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Touch is a complex sensing modality owing to large number of receptors (mechano, thermal, pain) nonuniformly embedded in the soft skin all over the body. These receptors can gather and encode the large tactile data, allowing us to feel and perceive the real world. This efficient somatosensation far outperforms the touch-sensing capability of most of the state-of-the-art robots today and suggests the need for neural-like hardware for electronic skin (e-skin). This could be attained through either innovative schemes for developing distributed electronics or repurposing the neuromorphic circuits developed for other sensory modalities such as vision and audio. This Review highlights the hardware implementations of various computational building blocks for e-skin and the ways they can be integrated to potentially realize human skin-like or peripheral nervous system-like functionalities. The neural-like sensing and data processing are discussed along with various algorithms and hardware architectures. The integration of ultrathin neuromorphic chips for local computation and the printed electronics on soft substrate used for the development of e-skin over large areas are expected to advance robotic interaction as well as open new avenues for research in medical instrumentation, wearables, electronics, and neuroprosthetics.
Collapse
Affiliation(s)
- Fengyuan Liu
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Sweety Deswal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | | | - Mohsen Kaboli
- Department of Research, New Technologies, Innovation, BMW Group, Parkring 19, 85748 Garching bei Munchen, Germany.,Cognitive Robotics and Tactile Intelligence Group, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| |
Collapse
|
18
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
19
|
He Z, Ye D, Liu L, Di CA, Zhu D. Advances in materials and devices for mimicking sensory adaptation. MATERIALS HORIZONS 2022; 9:147-163. [PMID: 34542132 DOI: 10.1039/d1mh01111a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adaptive devices, which aim to adjust electrical behaviors autonomically to external stimuli, are considered to be attractive candidates for next-generation artificial perception systems. Compared with typical electronic devices with stable signal output, adaptive devices possess unique features in exhibiting dynamic fitness to varying environments. To meet this requirement, increasing efforts have been made focusing on developing new materials, functional interfaces and novel device geometry for sensory perception applications. In this review, we summarize the recent advances in materials and devices for mimicking sensory adaptation. Keeping this in mind, we first introduce the fundamentals of biological sensory adaptation. Thereafter, the recent progress in mimicking sensory adaptation, such as tactile and visual adaptive systems, is overviewed. Moreover, we suggest five strategies to construct adaptive devices. Finally, challenges and perspectives are proposed to highlight the directions that deserve focused attention in this flourishing field.
Collapse
Affiliation(s)
- Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekai Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Liyao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
20
|
Kim Y, Lee K, Lee J, Jang S, Kim H, Lee H, Lee SW, Wang G, Park C. Bird-Inspired Self-Navigating Artificial Synaptic Compass. ACS NANO 2021; 15:20116-20126. [PMID: 34793113 DOI: 10.1021/acsnano.1c08005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extrasensory neuromorphic devices that can recognize, memorize, and learn stimuli imperceptible to human beings are of considerable interest in interactive intelligent electronics research. This study presents an artificially intelligent magnetoreceptive synapse inspired by the magnetocognitive ability used by birds for navigation and orientation. The proposed synaptic platform is based on arrays of ferroelectric field-effect transistors with air-suspended magneto-interactive top-gates. A suspended gate of an elastomeric composite with superparamagnetic particles laminated with an electrically conductive polymer is mechanically deformed under a magnetic field, facilitating control of the magnetic-field-dependent contact area of the suspended gate with an underlying ferroelectric layer. The remanent polarization of the ferroelectric layer is electrically programmed with the deformed suspended gate, resulting in analog conductance modulation as a function of the magnitude, number, and time interval of the input magnetic pulses. The proposed extrasensory magnetoreceptive synapse may be used as an artificially intelligent synaptic compass that facilitates barrier-adaptable navigation and mapping of a moving object.
Collapse
Affiliation(s)
- Youngwoo Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junseok Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seonghoon Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunhaeng Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
21
|
Oh S, Khan MRR, Choi G, Seo J, Park E, An TK, Park YD, Lee HS. Advanced Organic Transistor-Based Sensors Utilizing a Solvatochromic Medium with Twisted Intramolecular Charge-Transfer Behavior and Its Application to Ammonia Gas Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56385-56393. [PMID: 34796709 DOI: 10.1021/acsami.1c15116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we designed and developed an organic field-effect transistor (OFET)-based gas sensor by applying solvatochromic dye (Nile red, NR) with twisted intramolecular charge-transfer (TICT) behavior depending on the polarity of the surrounding molecules, as an auxiliary NR sensing medium (aNR-SM). As a polar molecule approaches, intra-charge transfers from the donor diethylamine group to the ketone group occur in the NR molecule, resulting in the twisting of the donor functional group and thereby increasing its dipole moment. Using this characteristic, NR was applied as an auxiliary sensing medium to the OFET for detecting ammonia (NH3), a representative toxic gas. The Top-NR case, where the aNR-SM covers only the top of the organic semiconductor layer, showed the best gas sensing performance, and its response and recovery rates were improved by 46 and 94%, respectively, compared to the pristine case. More importantly, a sensitivity of 0.87 ± 0.045 ppm-1 % was measured, having almost perfect linearity (0.999) over the range of measured NH3 concentrations, which is the result of solving the saturation problem in the sensing characteristics of the OFET-based gas sensor. Our result not only improved the sensing performance of the OFET-based sensor but also made an important advance in that the reliability of the sensing performance was easily secured by applying solvatochromic and TICT behaviors of an auxiliary sensing medium.
Collapse
Affiliation(s)
- Seungtaek Oh
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Md Rajibur Rahaman Khan
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Giheon Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Jungyoon Seo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Eunyoung Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Tae Kyu An
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of IT Convergence, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Yeong Don Park
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hwa Sung Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| |
Collapse
|
22
|
Jin T, Zheng Y, Gao J, Wang Y, Li E, Chen H, Pan X, Lin M, Chen W. Controlling Native Oxidation of HfS 2 for 2D Materials Based Flash Memory and Artificial Synapse. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10639-10649. [PMID: 33606512 DOI: 10.1021/acsami.0c22561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) materials based artificial synapses are important building blocks for the brain-inspired computing systems that are promising in handling large amounts of informational data with high energy-efficiency in the future. However, 2D devices usually rely on deposited or transferred insulators as the dielectric layer, resulting in various challenges in device compatibility and fabrication complexity. Here, we demonstrate a controllable and reliable oxidation process to turn 2D semiconductor HfS2 into native oxide, HfOx, which shows good insulating property and clean interface with HfS2. We then incorporate the HfOx/HfS2 heterostructure into a flash memory device, achieving a high on/off current ratio of ∼105, a large memory window over 60 V, good endurance, and a long retention time over 103 seconds. In particular, the memory device can work as an artificial synapse to emulate basic synaptic functions and feature good linearity and symmetry in conductance change during long-term potentiation/depression processes. A simulated artificial neural network based on our synaptic device achieves a high accuracy of ∼88% in MNIST pattern recognition. Our work provides a simple and effective approach for integrating high-k dielectrics into 2D material-based memory and synaptic devices.
Collapse
Affiliation(s)
- Tengyu Jin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Yue Zheng
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jing Gao
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Yanan Wang
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Enlong Li
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, P. R. China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, P. R. China
| | - Xuan Pan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis 138634, Singapore
| | - Wei Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, P. R. China
| |
Collapse
|