1
|
Halimski I, Karpicz R, Dementjev A, Jankunec M, Chmeliov J, Macernis M, Abramavicius D, Valkunas L. trans-Stilbene aggregates and crystallites in polystyrene films: microscopy and spectroscopy studies. Phys Chem Chem Phys 2024; 26:23692-23702. [PMID: 39224941 DOI: 10.1039/d4cp02291b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Solid and liquid stilbene forms were characterized using a range of techniques, including atomic force microscopy, coherent anti-Stokes Raman scattering microspectroscopy and optical spectroscopy. The obtained experimental results were analyzed by means of quantum chemical calculations and using a non-negative matrix factorization algorithm. It was confirmed that pure cis-stilbene formed a homogeneous fluid film on a glass substrate, whereas pure trans-stilbene formed crystals. Mixtures of trans-stilbene and polystyrene were shown to form stable solid films, which were non-homogeneous on the microscopic scale: stilbene molecules self-organized into microcrystals, which floated on the surface of polystyrene glass.
Collapse
Affiliation(s)
- Ivan Halimski
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.
| | - Renata Karpicz
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.
| | - Andrej Dementjev
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.
| | - Marija Jankunec
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-10257, Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Mindaugas Macernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Darius Abramavicius
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Leonas Valkunas
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
2
|
Zeiske S, Zarrabi N, Sandberg OJ, Gielen S, Maes W, Meredith P, Armin A. Enhanced SWIR Light Detection in Organic Semiconductor Photodetectors through Up-Conversion of Mid-Gap Trap States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405061. [PMID: 39044625 DOI: 10.1002/adma.202405061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Indexed: 07/25/2024]
Abstract
Shortwave-infrared (SWIR) photodetectors are vital for many scientific and industrial applications including surveillance, quality control and inspection. In recent decades, photodetectors based on organic semiconductors have emerged, demonstrating potential to add real value to broadband and narrowband imaging and sensing scenarios, where factors such as thermal budget sensitivity, large area aperture necessity, cost considerations, and lightweight and conformal flexibility demands are prioritized. It is now recognized that the performance of organic photodetectors (OPDs), notably their specific detectivity, is ultimately limited by trap states, universally present in disordered semiconductors. This work adopts an approach of utilizing these mid-gap states to specifically create a SWIR photo-response. To this end, this work introduces a somewhat counter-intuitive approach of "trap-doping" in bulk heterojunction (BHJs) photodiodes, where small quantities of a guest organic molecule are intentionally incorporated into a semiconducting donor:acceptor host system. Following this approach, this work demonstrates a proof-of-concept for a visible-to-SWIR broadband OPD, approaching (and, to some extent, even exceeding) state-of-the-art performance across critical photodetector metrics. The trap-doping approach is, even though only a proof-of-concept currently, broadly applicable to various spectral windows. It represents a new modality for engineering photodetection using the unconventional strategy of turning a limitation into a feature.
Collapse
Affiliation(s)
- Stefan Zeiske
- Sustainable Advanced Materials (Sêr-SAM), Centre for Integrative Semiconductor Materials and Department of Physics, Swansea University Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Nasim Zarrabi
- Sustainable Advanced Materials (Sêr-SAM), Centre for Integrative Semiconductor Materials and Department of Physics, Swansea University Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| | - Oskar J Sandberg
- Sustainable Advanced Materials (Sêr-SAM), Centre for Integrative Semiconductor Materials and Department of Physics, Swansea University Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
- Physics, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
| | - Sam Gielen
- Institute for Materials Research (IMO), Hasselt University, Agoralaan 1, Diepenbeek, B-3590, Belgium
- IMEC, Associated Lab IMOMEC, Wetenschapspark 1, Diepenbeek, B-3590, Belgium
| | - Wouter Maes
- Institute for Materials Research (IMO), Hasselt University, Agoralaan 1, Diepenbeek, B-3590, Belgium
- IMEC, Associated Lab IMOMEC, Wetenschapspark 1, Diepenbeek, B-3590, Belgium
| | - Paul Meredith
- Sustainable Advanced Materials (Sêr-SAM), Centre for Integrative Semiconductor Materials and Department of Physics, Swansea University Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| | - Ardalan Armin
- Sustainable Advanced Materials (Sêr-SAM), Centre for Integrative Semiconductor Materials and Department of Physics, Swansea University Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| |
Collapse
|
3
|
Chen Y, Zheng Y, Wang J, Zhao X, Liu G, Lin Y, Yang Y, Wang L, Tang Z, Wang Y, Fang Y, Zhang W, Zhu X. Ultranarrow-bandgap small-molecule acceptor enables sensitive SWIR detection and dynamic upconversion imaging. SCIENCE ADVANCES 2024; 10:eadm9631. [PMID: 38838154 DOI: 10.1126/sciadv.adm9631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Short-wavelength infrared (SWIR) light detection plays a key role in modern technologies. Emerging solution-processed organic semiconductors are promising for cost-effective, flexible, and large-area SWIR organic photodiodes (OPDs). However, the spectral responsivity (R) and specific detectivity (D*) of SWIR OPDs are restricted by insufficient exciton dissociation and high noise current. In this work, we synthesized an SWIR small molecule with a spectral coverage of 0.3 to 1.3 micrometers peaking at 1100 nanometers. The photodiode, with optimized exciton dissociation, charge injection, and SWIR transmittance, achieves a record high R of 0.53 ampere per watt and D* of 1.71 × 1013 Jones at 1110 nanometers under zero bias. The D* at 1 to 1.2 micrometers surpasses that of the uncooled commercial InGaAs photodiode. Furthermore, large-area semitransparent all-organic upconversion devices integrating the SWIR photodiode realized static and dynamic SWIR-to-visible imaging, along with excellent upconversion efficiency and spatial resolution. This work provides alternative insights for developing sensitive organic SWIR detection.
Collapse
Affiliation(s)
- Yongjie Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Yingqi Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Haidian District, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Jing Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xuan Zhao
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Guanhao Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Haidian District, Beijing, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yi Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yubo Yang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Lixiang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Haidian District, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Haidian District, Beijing, China
| |
Collapse
|
4
|
Huang YC, Wang TY, Huang ZH, Santiago SRMS. Advancing Detectivity and Stability of Near-Infrared Organic Photodetectors via a Facile and Efficient Cathode Interlayer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27576-27586. [PMID: 38722948 DOI: 10.1021/acsami.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Near-infrared (NIR) organic photodetectors (OPDs) are pivotal in numerous technological applications due to their excellent responsivity within the NIR region. Polyethylenimine ethoxylated (PEIE) has conventionally been employed as an electron transport layer (hole-blocking layer) to suppress dark current (JD) and enhance charge transport. However, the limitations of PEIE in chemical stability, processing conditions, environmental impact, and absorption range have spurred the development of alternative materials. In this study, we introduced a novel solution: a hybrid of sol-gel zinc oxide (ZnO) and N,N'-bis(N,N-dimethylpropan-1-amine oxide)perylene-3,4,9,10-tetracarboxylic diimide (PDINO) as the electron transport layer for NIR-OPDs. Our fabricated OPD exhibited significantly improved responsivity, reduced internal traps, and enhanced charge transfer efficiency. The detectivity, spanning from 400 to 1100 nm, surpassed ∼5 × 1012 Jones, reaching ∼1.1 × 1012 Jones at 1000 nm, accompanied by an increased responsivity of 0.47 A/W. Also, the unpackaged OPD remarkedly demonstrated stable JD and external quantum efficiency (EQE) over 1000 h under dark storage conditions. This innovative approach not only addresses the drawbacks of conventional PEIE-based OPDs but also offers promising avenues for the development of high-performance OPDs in the future.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Yuan Wang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Zhi-Hao Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | | |
Collapse
|
5
|
Aniés F, Hamilton I, De Castro CSP, Furlan F, Marsh AV, Xu W, Pirela V, Patel A, Pompilio M, Cacialli F, Martín J, Durrant JR, Laquai F, Gasparini N, Bradley DDC, Heeney M. A Conjugated Carboranyl Main Chain Polymer with Aggregation-Induced Emission in the Near-Infrared. J Am Chem Soc 2024; 146:13607-13616. [PMID: 38709316 PMCID: PMC11100012 DOI: 10.1021/jacs.4c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Materials exhibiting aggregation-induced emission (AIE) are both highly emissive in the solid state and prompt a strongly red-shifted emission and should therefore pose as good candidates toward emerging near-infrared (NIR) applications of organic semiconductors (OSCs). Despite this, very few AIE materials have been reported with significant emissivity past 700 nm. In this work, we elucidate the potential of ortho-carborane as an AIE-active component in the design of NIR-emitting OSCs. By incorporating ortho-carborane in the backbone of a conjugated polymer, a remarkable solid-state photoluminescence quantum yield of 13.4% is achieved, with a photoluminescence maximum of 734 nm. In contrast, the corresponding para and meta isomers exhibited aggregation-caused quenching. The materials are demonstrated for electronic applications through the fabrication of nondoped polymer light-emitting diodes. Devices employing the ortho isomer achieved nearly pure NIR emission, with 86% of emission at wavelengths longer than 700 nm and an electroluminescence maximum at 761 nm, producing a significant light output of 1.37 W sr-1 m-2.
Collapse
Affiliation(s)
- Filip Aniés
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
| | - Iain Hamilton
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Catherine S. P. De Castro
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Francesco Furlan
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
| | - Adam V. Marsh
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Weidong Xu
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
| | - Valentina Pirela
- POLYMAT
University of the Basque Country UPV/EHU, Av. de Tolosa 72, Donostia-San
Sebastián, 20018, Spain
| | - Adil Patel
- Department
of Physics and Astronomy, London Centre for Nanotechnology, University College London, London, WC1E 6BT, U.K.
| | - Michele Pompilio
- Department
of Physics and Astronomy, London Centre for Nanotechnology, University College London, London, WC1E 6BT, U.K.
| | - Franco Cacialli
- Department
of Physics and Astronomy, London Centre for Nanotechnology, University College London, London, WC1E 6BT, U.K.
- Department
of Engineering, Free University of Bozen-Bolzano, Università 5, Bolzano, I-39100, Italy
| | - Jaime Martín
- Universidade
da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol, 15471, Spain
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
| | - Frédéric Laquai
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nicola Gasparini
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
| | - Donal D. C. Bradley
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- NEOM
Education, Research, and Innovation Foundation and University Neom, Al Khuraybah, Tabuk 49643-9136, Saudi Arabia
| | - Martin Heeney
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Yu X, Ji Y, Shen X, Le X. Progress in Advanced Infrared Optoelectronic Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:845. [PMID: 38786801 PMCID: PMC11123936 DOI: 10.3390/nano14100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Infrared optoelectronic sensors have attracted considerable research interest over the past few decades due to their wide-ranging applications in military, healthcare, environmental monitoring, industrial inspection, and human-computer interaction systems. A comprehensive understanding of infrared optoelectronic sensors is of great importance for achieving their future optimization. This paper comprehensively reviews the recent advancements in infrared optoelectronic sensors. Firstly, their working mechanisms are elucidated. Then, the key metrics for evaluating an infrared optoelectronic sensor are introduced. Subsequently, an overview of promising materials and nanostructures for high-performance infrared optoelectronic sensors, along with the performances of state-of-the-art devices, is presented. Finally, the challenges facing infrared optoelectronic sensors are posed, and some perspectives for the optimization of infrared optoelectronic sensors are discussed, thereby paving the way for the development of future infrared optoelectronic sensors.
Collapse
Affiliation(s)
- Xiang Yu
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Yun Ji
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Xinyi Shen
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Xiaoyun Le
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
7
|
Yin B, Zhou X, Li Y, Hu G, Wei W, Yang M, Jeong S, Deng W, Wu B, Cao Y, Huang B, Pan L, Yang X, Fu Z, Fang Y, Shen L, Yang C, Wu H, Lan L, Huang F, Cao Y, Duan C. Sensitive Organic Photodetectors With Spectral Response up to 1.3 µm Using a Quinoidal Molecular Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310811. [PMID: 38358297 DOI: 10.1002/adma.202310811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Detecting short-wavelength infrared (SWIR) light has underpinned several emerging technologies. However, the development of highly sensitive organic photodetectors (OPDs) operating in the SWIR region is hindered by their poor external quantum efficiencies (EQEs) and high dark currents. Herein, the development of high-sensitivity SWIR-OPDs with an efficient photoelectric response extending up to 1.3 µm is reported. These OPDs utilize a new ultralow-bandgap molecular semiconductor featuring a quinoidal tricyclic electron-deficient central unit and multiple non-covalent conformation locks. The SWIR-OPD achieves an unprecedented EQE of 26% under zero bias and an even more impressive EQE of up to 41% under a -4 V bias at 1.10 µm, effectively pushing the detection limit of silicon photodetectors. Additionally, the low energetic disorder and trap density in the active layer lead to significant suppression of thermal-generation carriers and dark current, resulting in excellent detectivity (Dsh *) exceeding 1013 Jones from 0.50 to 1.21 µm and surpassing 1012 Jones even at 1.30 µm under zero bias, marking the highest achievements for OPDs beyond the silicon limit to date. Validation with photoplethysmography measurements, a spectrometer prototype in the 0.35-1.25 µm range, and image capture under 1.20 µm irradiation demonstrate the extensive applications of this SWIR-OPD.
Collapse
Affiliation(s)
- Bingyan Yin
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xia Zhou
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
| | - Yuyang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Gangjian Hu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130015, P. R. China
| | - Wenkui Wei
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Mingqun Yang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Seonghun Jeong
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Baoqi Wu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yunhao Cao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bo Huang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Langheng Pan
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaoru Yang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhenyu Fu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yanjun Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130015, P. R. China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Linfeng Lan
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
8
|
Huang YT, Nodari D, Furlan F, Zhang Y, Rusu M, Dai L, Andaji-Garmaroudi Z, Darvill D, Guo X, Rimmele M, Unold T, Heeney M, Stranks SD, Sirringhaus H, Rao A, Gasparini N, Hoye RLZ. Fast Near-Infrared Photodetectors Based on Nontoxic and Solution-Processable AgBiS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310199. [PMID: 38063859 DOI: 10.1002/smll.202310199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/17/2023] [Indexed: 05/03/2024]
Abstract
Solution-processable near-infrared (NIR) photodetectors are urgently needed for a wide range of next-generation electronics, including sensors, optical communications and bioimaging. However, it is rare to find photodetectors with >300 kHz cut-off frequencies, especially in the NIR region, and many of the emerging inorganic materials explored are comprised of toxic elements, such as lead. Herein, solution-processed AgBiS2 photodetectors with high cut-off frequencies under both white light (>1 MHz) and NIR (approaching 500 kHz) illumination are developed. These high cut-off frequencies are due to the short transit distances of charge-carriers in the ultrathin photoactive layer of AgBiS2 photodetectors, which arise from the strong light absorption of this material, such that film thicknesses well below 120 nm are sufficient to absorb >65% of NIR to visible light. It is also revealed that ion migration plays a critical role in the photo-response speed of these devices, and its detrimental effects can be mitigated by finely tuning the thickness of the photoactive layer, which is important for achieving low dark current densities as well. These outstanding characteristics enable the realization of air-stable, real-time heartbeat sensors based on NIR AgBiS2 photodetectors, which strongly motivates their future integration in high-throughput systems.
Collapse
Affiliation(s)
- Yi-Teng Huang
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK
| | - Davide Nodari
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Francesco Furlan
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Youcheng Zhang
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK
| | - Marin Rusu
- Struktur und Dynamik von Energiematerialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK
| | | | - Daniel Darvill
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Xiaoyu Guo
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Martina Rimmele
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Thomas Unold
- Struktur und Dynamik von Energiematerialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Henning Sirringhaus
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
9
|
Yang G, Zhang D, Wang R, Wu M, Yu J. Flexible Broadband Organic Photodetectors with Ternary Planar-Mixed Heterojunction Semiconductors and Solution-Processed Polymeric Electrode. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659248 DOI: 10.1021/acsami.3c18894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Flexible organic photodetectors (OPDs) hold immense promise in health monitoring sensors, flexible imaging sensors, and portable optical communication. Nevertheless, the actualization of high-performance flexible electronics has been hindered by rigid electrodes such as metals or metal oxides. In this work, we constructed a flexible broadband organic photodetector using a solution-processed polymeric electrode, which exhibits flexibility surpassing that of conventional indium tin oxide (ITO) electrodes. Additionally, we employed a planar-mixed heterojunction (PMHJ) through a sequential deposition method and introduced PC71BM as the third constituent into the PM6/Y6 binary active layer, resulting in enhanced photodetection performance and a broadend spectral range. The optimized OPDs demonstrated remarkable detectivity (D*) exceeding 1012 Jones in brodband from 300 to 900 nm, with a champion D* of 6.31 × 1012 Jones at 790 nm. Furthermore, after undergoing 500 cycles of bending, the D* retained approximately 78% of its original performance, highlighting the outstanding mechanical stability. This work presents a promising pathway toward the development of flexible broadband OPDs using a straightforward method, offering enhanced compatibility in diverse application scenarios and propelling the frontier of flexible optoelectronic research.
Collapse
Affiliation(s)
- Genjie Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Dayong Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Rui Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Mengge Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| |
Collapse
|
10
|
Lee S, Lee J, Sim HR, So C, Chung DS. Shortwave Infrared Organic Photodiodes Realized by Polaron Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310250. [PMID: 38016048 DOI: 10.1002/adma.202310250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Indexed: 11/30/2023]
Abstract
A novel approach for developing shortwave IR (SWIR) organic photodiodes (OPDs) using doped polymers is presented. SWIR OPDs are challenging to produce because of the limitations in extending the absorption of conjugated molecules and the high dark currents of SWIR-absorbing materials. Herein, it is shown that the conversion of bound polarons to free polarons by light energy can be utilized as an SWIR photodetection mechanism. To maximize the bound-polaron density and bound-to-free polaron ratio of the doped polymer film, the doping process is engineered and dopant molecules are diffused into the crystalline domain of the polymer matrix and a direct correlation between the bound-to-free polaron ratio and device performance is confirmed. The optimized double-doped SWIR OPD exhibits a high external quantum efficiency of 77 100% and specific detectivity of 1.11 × 1011 Jones against SWIR. These findings demonstrate the application potential of polarons as alternatives for Frenkel excitons in SWIR OPDs.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Juhyeok Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hye Ryun Sim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chan So
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
11
|
Khanam S, Akram SJ, Khera RA, Zohra ST, Shawky AM, Alatawi NS, Ibrahim MAA, Rashid EU. Exploration of charge transfer analysis and photovoltaics properties of A-D-A type non-fullerene phenazine based molecules to enhance the organic solar cell properties. J Mol Graph Model 2023; 125:108580. [PMID: 37544020 DOI: 10.1016/j.jmgm.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
To intensify the photovoltaic properties of organic solar cells, density functional theory (DFT) based computational techniques were implemented on six non-fullerene A-D-A type small molecules (N1-N6) modified from reference molecule (R) which consists of phenazine fused with 1,4- Dimethyl-4H-3,7-dithia-4-aza- cyclopenta [α] pentalene on both sides with one of its phenyl rings acting as the central donor unit, further attached with 2-(5,6-Difluoro-2-methylene-3-oxo-indan-1-ylidene)-malononitrile acceptor groups at terminal sites. All proposed compounds have a phenazine base modified with a variety of substituents at the terminals. Transition density matrix, density of states, frontier molecular orbitals, intramolecular charge transfer abilities and optoelectronic properties of these compounds were investigated using B3LYP/6-31G (d, p) and B3LYP/6-31G++ (d,p) level of theory. All six designed compounds exhibited a bathochromic sift in their λmax as compared to the R molecule. All designed molecules also have reduced band gap and smaller excitation energy than R. Among all, N6 exhibited highest λmax and lowest bandgap as compared to reference molecule indicating its promising photovoltaic properties. Decreased hole and electron reorganization energy in several of the suggested compounds is indicative of greater charge mobility in them. PTB7-Th donor was employed to calculate open circuit voltage of all investigated molecules. N1-N5 molecules had improved optoelectronic properties, significant probable power conversion efficiency as evident from their absorption aspects, high values of Voc, and fill factor, compared to R molecule. Designed A-D-A type NF based molecules make OSCs ideal for use in wearable devices, building-integrated photovoltaics and smart fabrics.
Collapse
Affiliation(s)
- Sabiha Khanam
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan; Theoretical Physics IV, University of Bayreuth, Universität straße 30, 95447, Bayreuth, Germany
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Sadia Tul Zohra
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
12
|
Wu S, Zeng L, Zhai Y, Shin C, Eedugurala N, Azoulay JD, Ng TN. Retinomorphic Motion Detector Fabricated with Organic Infrared Semiconductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304688. [PMID: 37672884 PMCID: PMC10625071 DOI: 10.1002/advs.202304688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Indexed: 09/08/2023]
Abstract
Organic retinomorphic sensors offer the advantage of in-sensor processing to filter out redundant static backgrounds and are well suited for motion detection. To improve this promising structure, here, the key role of interfacial energetics in promoting charge accumulation to raise the inherent photoresponse of the light-sensitive capacitor is studied. Specifically, incorporating appropriate interfacial layers around the photoactive layer is crucial to extend the carrier lifetime, as confirmed by intensity-modulated photovoltage spectroscopy. Compared to its photodiode counterpart, the retinomorphic sensor shows better detectivity and response speed due to the additional insulating layer, which reduces the dark current and the RC time constant. Lastly, three retinomorphic sensors are integrated into a line array to demonstrate the detection of movement speed and direction, showing the potential of retinomorphic designs for efficient motion tracking.
Collapse
Affiliation(s)
- Shuo‐En Wu
- Materials Science and Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Longhui Zeng
- Department of Electrical and Computer EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Yichen Zhai
- Department of Mechanical EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Chanho Shin
- Materials Science and Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Naresh Eedugurala
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Jason D. Azoulay
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Tse Nga Ng
- Materials Science and Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
- Department of Electrical and Computer EngineeringUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
13
|
Xu J, Zhang Y, Liu J, Wang L. NIR-II Absorbing Monodispersed Oligomers Based on N-B←N Unit. Angew Chem Int Ed Engl 2023; 62:e202310838. [PMID: 37635075 DOI: 10.1002/anie.202310838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Organic molecules with near-infrared II (NIR II) light absorption are essential for many biological and opto-electronic applications. Herein, we report monodispersed oligomers as NIR II light absorber using a new molecular design strategy of resonant N-B←N unit, i.e. balanced resonant boron-nitrogen covalent bond (B-N) and boron-nitrogen coordination bond (B←N). We synthesize a series of monodispersed oligomers with thiophene-fused 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (TB), which contains resonant N-B←N unit, as the repeating unit. The TB pentamer exhibits the maximum absorption wavelength of 1169 nm, which is the longest for oligomers reported so far. Organic photodetectors (OPDs) with the TB tetramer as the electron acceptor shows the specific detectivity of 2.98×1011 Jones at 1180 nm under zero bias. This performance is among the best for NIR II OPDs. These results indicate a new kind of NIR II absorbing molecules as excellent opto-electronic materials.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingze Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
14
|
Ha JW, Lee AY, Eun HJ, Kim JH, Ahn H, Park S, Lee C, Seo DW, Heo J, Yoon SC, Ko SJ, Kim JH. High Detectivity Near Infrared Organic Photodetectors Using an Asymmetric Non-Fullerene Acceptor for Optimal Nanomorphology and Suppressed Dark Current. ACS NANO 2023; 17:18792-18804. [PMID: 37781927 DOI: 10.1021/acsnano.3c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Recently, the development of non-fullerene acceptors (NFAs) for near-infrared (NIR) organic photodetectors (OPDs) has attracted great interest due to their excellent NIR light absorption properties. Herein, we developed NFAs by substituting an electron-donating moiety (branched alkoxy thiophene (BAT)) asymmetrically (YOR1) and symmetrically (YOR2) for the Y6 framework. YOR1 exhibited nanoscale phase separation in a film blended with PTB7-Th. Moreover, substituting the BAT unit effectively extended the absorption wavelengths of YOR1 over 1000 nm by efficient intramolecular charge transfer and extension of the conjugation length. Consequently, YOR1-OPD exhibited significantly reduced dark current and improved responsivity by simultaneously satisfying optimal nanomorphology and significant suppression of charge recombination, resulting in 1.98 × 1013 and 3.38 × 1012 Jones specific detectivity at 950 and 1000 nm, respectively. Moreover, we successfully demonstrated the application of YOR1-OPD in highly sensitive photoplethysmography sensors using NIR light. This study suggests a strategic approach for boosting the overall performance of NIR OPDs targeting a 1000 nm light signal using an all-in-one (optimal morphology, suppressed dark current, and extended NIR absorption wavelength) NFA.
Collapse
Affiliation(s)
- Jong-Woon Ha
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ah Young Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyeong Ju Eun
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae-Hyun Kim
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Changjin Lee
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Deok Won Seo
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Junseok Heo
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sung Cheol Yoon
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Seo-Jin Ko
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
15
|
Luo G, Shi J, Deng W, Chang Z, Lu Z, Zhang Y, Pan R, Jie J, Zhang X, Zhang X. Boosting the Performance of Organic Photodetectors with a Solution-Processed Integration Circuit toward Ubiquitous Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301020. [PMID: 37452606 DOI: 10.1002/adma.202301020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Organic photodetectors, as an emerging wearable photoplethysmographic (PPG) technology, offer exciting opportunities for next-generation photonic healthcare electronics. However, the mutual restraints among photoresponse, structure complexity, and fabrication cost have intrinsically limited the development of organic photodetectors for ubiquitous health monitoring in daily activities. Here, an effective route to dramatically boost the performance of organic photodetectors with a solution-processed integration circuit for health monitoring application is reported. Through creating an ideal metal-semiconductor junction interface that minimizes the trap states within the device, solution-printed organic field-effect transistors (OFETs) are achieved with an ultrahigh signal amplification efficiency of 37.1 S A-1 , approaching the theoretical thermionic limit. Consequently, monolithic integration of the OFET with an organic photoconductor enables the remarkable amplification of photoresponse signal-to-noise ratio by more than four orders of magnitude from 5.5 to 4.6 × 105 , which is able to meet the demand for accurately extracting physiological information from the PPG waveforms. This work offers an effective and versatile approach to greatly enhance the photodetector performance, promising to revolutionize health monitoring technologies.
Collapse
Affiliation(s)
- Gan Luo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jialin Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhizhen Chang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhengjun Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yujian Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Rui Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
16
|
Huang J, Luong HM, Lee J, Chae S, Yi A, Qu ZZ, Du Z, Choi DG, Kim HJ, Nguyen TQ. Green-Solvent-Processed High-Performance Broadband Organic Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37748-37755. [PMID: 37505202 DOI: 10.1021/acsami.3c09391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Solution-processed organic photodetectors with broadband activity have been demonstrated with an environmentally benign solvent, ortho-xylene (o-xylene), as the processing solvent. The organic photodetectors employ a wide band gap polymer donor PBDB-T and a narrow band gap small-molecule non-fullerene acceptor CO1-4F, both dissolvable in o-xylene at a controlled temperature. The o-xylene-processed devices have shown external quantum efficiency of up to 70%, surpassing the counterpart processed with chlorobenzene. With a well-suppressed dark current, the device can also present a high specific detectivity of over 1012 Jones at -2 V within practical operation frequencies and is applicable for photoplethysmography with its fast response. These results further highlight the potential of green-solvent-processed organic photodetectors as a high-performing alternative to their counterparts processed in toxic chlorinated solvents without compromising the excellent photosensing performance.
Collapse
Affiliation(s)
- Jianfei Huang
- Center for Polymers and Organic Solids, University of California, Santa Barbara, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Hoang Mai Luong
- Center for Polymers and Organic Solids, University of California, Santa Barbara, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Sangmin Chae
- Center for Polymers and Organic Solids, University of California, Santa Barbara, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Ahra Yi
- Center for Polymers and Organic Solids, University of California, Santa Barbara, University of California, Santa Barbara, California 93106, United States
- Department of Organic Material Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Zhong-Ze Qu
- Center for Polymers and Organic Solids, University of California, Santa Barbara, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Zhifang Du
- Center for Polymers and Organic Solids, University of California, Santa Barbara, University of California, Santa Barbara, California 93106, United States
| | - Dylan G Choi
- Center for Polymers and Organic Solids, University of California, Santa Barbara, University of California, Santa Barbara, California 93106, United States
| | - Hyo Jung Kim
- Department of Organic Material Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, University of California, Santa Barbara, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Chang Z, Deng W, Ren X, Liu X, Luo G, Tan Y, Zhang X, Jie J. High-Speed Printing of Narrow-Band-Gap Sn-Pb Perovskite Layers toward Cost-Effective Manufacturing of Optoelectronic Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37339244 DOI: 10.1021/acsami.3c06098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Narrow-band-gap Sn-Pb perovskites have emerged as one of the most promising solution-processed near-infrared (NIR) light-detection technologies, with the key figure-of-merit parameters already rivaling those of commercial inorganic devices, but maximizing the cost advantage of solution-processed optoelectronic devices depends on the ability to fast-speed production. However, weak surface wettability to perovskite inks and evaporation-induced dewetting dynamics have limited the solution printing of uniform and compact perovskite films at a high speed. Here, we report a universal and effective methodology for fast printing of high-quality Sn-Pb mixed perovskite films at an unprecedented speed of 90 m h-1 by altering the wetting and dewetting dynamics of perovskite inks with the underlying substrate. A line-structured SU-8 pattern surface to trigger spontaneous ink spreading and fight ink shrinkage is designed to achieve complete wetting with a near-zero contact angle and a uniform dragged-out liquid film. The high-speed printed Sn-Pb perovskite films have both large perovskite grains (>100 μm) and excellent optoelectronic properties, yielding highly efficient self-driven NIR photodetectors with a large voltage responsivity over 4 orders of magnitude. Finally, the potential application of the self-driven NIR photodetector in health monitoring is demonstrated. The fast printing methodology provides a new possibility to extend the manufacturing of perovskite optoelectronic devices to industrial production lines.
Collapse
Affiliation(s)
- Zhizhen Chang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaobin Ren
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinyue Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Gan Luo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuan Tan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiansheng Jie
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
18
|
Jacoutot P, Scaccabarozzi AD, Nodari D, Panidi J, Qiao Z, Schiza A, Nega AD, Dimitrakopoulou-Strauss A, Gregoriou VG, Heeney M, Chochos CL, Bakulin AA, Gasparini N. Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure. SCIENCE ADVANCES 2023; 9:eadh2694. [PMID: 37285428 DOI: 10.1126/sciadv.adh2694] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023]
Abstract
One of the key challenges facing organic photodiodes (OPDs) is increasing the detection into the infrared region. Organic semiconductor polymers provide a platform for tuning the bandgap and optoelectronic response to go beyond the traditional 1000-nanometer benchmark. In this work, we present a near-infrared (NIR) polymer with absorption up to 1500 nanometers. The polymer-based OPD delivers a high specific detectivity D* of 1.03 × 1010 Jones (-2 volts) at 1200 nanometers and a dark current Jd of just 2.3 × 10-6 ampere per square centimeter at -2 volts. We demonstrate a strong improvement of all OPD metrics in the NIR region compared to previously reported NIR OPD due to the enhanced crystallinity and optimized energy alignment, which leads to reduced charge recombination. The high D* value in the 1100-to-1300-nanometer region is particularly promising for biosensing applications. We demonstrate the OPD as a pulse oximeter under NIR illumination, delivering heart rate and blood oxygen saturation readings in real time without signal amplification.
Collapse
Affiliation(s)
- Polina Jacoutot
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK
| | - Alberto D Scaccabarozzi
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Raffaele Rubattino 81, Milano 20134, Italy
| | - Davide Nodari
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK
| | - Julianna Panidi
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK
| | - Zhuoran Qiao
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK
| | - Andriana Schiza
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Alkmini D Nega
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Vasilis G Gregoriou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
- Advent Technologies SA, Stadiou Street, Platani, Rio, Patras 26504, Greece
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Christos L Chochos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
- Advent Technologies SA, Stadiou Street, Platani, Rio, Patras 26504, Greece
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
19
|
Yu X, Lin H, He Z, Du X, Chen Z, Yang G, Zheng C, Tao S. Efficient Near-Infrared Organic Photodetectors with Spectral Response up to 1600 nm for Accurate Alcohol Concentration Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16918-16929. [PMID: 36947683 DOI: 10.1021/acsami.2c22724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of near-infrared organic photodetectors (NIR-OPDs) in 1000-1700 nm is essential for medical monitoring, food quality inspection, machine vision, and biomedical imaging. However, when solving the high dark current density (JD) in bulk-heterojunction (BHJ) NIR-OPDs based on narrow-bandgap systems, it is often accompanied by photocurrent loss, which is a great challenge in achieving high-performance NIR-OPDs. Here, an ideal hybrid pseudo-PHJ (planar-heterojunction)/BHJ structure is proposed to overcome this challenge, which is introducing the N2200 layer between the cathode and BHJ. The introduction of the N2200 raises the external charge injection barrier and reduces the trap density, thus achieving significant suppression of JD (6.22 × 10-7 A cm-2 at -0.2 V bias, about 2 orders of magnitude lower compared to the BHJ NIR-OPDs). Meanwhile, the hybrid structure combines the advantages of PHJ and BHJ, thus maintaining a high photocurrent, resulting in responsivity and detectivity of 18.71 mA W-1 and 4.19 × 1010 Jones, respectively, at 1400 nm at -0.2 V bias, which is superior to the performance of BHJ NIR-OPDs. And the hybrid structured NIR-OPDs are proven to rapidly quantify the alcohol content of mixtures to within 2% accuracy, which exhibits great potential for application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xin Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Hui Lin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Zeyu He
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Xiaoyang Du
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Zhenhua Chen
- Shanghai Synchrotron Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Gang Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Caijun Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Silu Tao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
20
|
Thachoth Chandran H, Tang H, Liu T, Mahadevan S, Liu K, Lu Z, Huang J, Ren Z, Liao F, Chai Y, Fong PW, Tsang SW, Lu S, Li G. Architecturally simple organic photodiodes with highly competitive figures of merit via a facile self-assembly strategy. MATERIALS HORIZONS 2023; 10:918-927. [PMID: 36546551 DOI: 10.1039/d2mh01164f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photodetectors (PDs) based on organic materials exhibit potential advantages such as low-temperature processing, and superior mechanical properties and form factors. They have seen rapid strides toward achieving performance metrics comparable to inorganic counterparts. Here, a simplified device architecture is employed to realize stable and high-performance organic PDs (OPDs) while further easing the device fabrication process. In contrast to the sequential deposition of the hole blocking layer (HBL) and active layer (conventional 'two-step' processing), the proposed strategy forms a self-assembled HBL and active layer in a 'single-step' process. A high-performance UV-Vis-NIR OPD based on the PM6:BTP-eC9 system is demonstrated using this cost-effective processing strategy. The green solvent processed proof-of-concept device exhibits remarkable responsivity of ∼0.5 A W-1, lower noise current than conventional two-step OPD, ultrafast rise/fall times of 1.4/1.6 μs (comparable to commercial silicon diode), and a broad linear dynamic range of 140 dB. Importantly, highly stable (light and heat) devices compared to those processed by the conventional method are realized. The broad application potential of this elegant strategy is proven by demonstrating the concept in three representative systems with broadband sensing competence.
Collapse
Affiliation(s)
- Hrisheekesh Thachoth Chandran
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
| | - Hua Tang
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Taili Liu
- College of Physics and Electronic Information, Yunnan Normal University, Yunnan Kunming 650500, China
- Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Yunnan Kunming 650500, China
| | - Sudhi Mahadevan
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Kuan Liu
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
| | - Zhen Lu
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
| | - Jiaming Huang
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
| | - Zhiwei Ren
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
| | - Fuyou Liao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Patrick Wk Fong
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
| | - Sai-Wing Tsang
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Shirong Lu
- Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
21
|
Shan T, Hou X, Yin X, Guo X. Organic photodiodes: device engineering and applications. FRONTIERS OF OPTOELECTRONICS 2022; 15:49. [PMID: 36637681 PMCID: PMC9763529 DOI: 10.1007/s12200-022-00049-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 06/17/2023]
Abstract
Organic photodiodes (OPDs) have shown great promise for potential applications in optical imaging, sensing, and communication due to their wide-range tunable photoelectrical properties, low-temperature facile processes, and excellent mechanical flexibility. Extensive research work has been carried out on exploring materials, device structures, physical mechanisms, and processing approaches to improve the performance of OPDs to the level of their inorganic counterparts. In addition, various system prototypes have been built based on the exhibited and attractive features of OPDs. It is vital to link the device optimal design and engineering to the system requirements and examine the existing deficiencies of OPDs towards practical applications, so this review starts from discussions on the required key performance metrics for different envisioned applications. Then the fundamentals of the OPD device structures and operation mechanisms are briefly introduced, and the latest development of OPDs for improving the key performance merits is reviewed. Finally, the trials of OPDs for various applications including wearable medical diagnostics, optical imagers, spectrometers, and light communications are reviewed, and both the promises and challenges are revealed.
Collapse
Affiliation(s)
- Tong Shan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Hou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaokuan Yin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojun Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
22
|
Liu Q, Zeiske S, Jiang X, Desta D, Mertens S, Gielen S, Shanivarasanthe R, Boyen HG, Armin A, Vandewal K. Electron-donating amine-interlayer induced n-type doping of polymer:nonfullerene blends for efficient narrowband near-infrared photo-detection. Nat Commun 2022; 13:5194. [PMID: 36057674 DOI: 10.1038/s41467-022-32845-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/21/2022] [Indexed: 11/09/2022] Open
Abstract
Inherently narrowband near-infrared organic photodetectors are highly desired for many applications, including biological imaging and surveillance. However, they suffer from a low photon-to-charge conversion efficiencies and utilize spectral narrowing techniques which strongly rely on the used material or on a nano-photonic device architecture. Here, we demonstrate a general and facile approach towards wavelength-selective near-infrared phtotodetection through intentionally n-doping 500-600 nm-thick nonfullerene blends. We show that an electron-donating amine-interlayer can induce n-doping, resulting in a localized electric field near the anode and selective collection of photo-generated carriers in this region. As only weakly absorbed photons reach this region, the devices have a narrowband response at wavelengths close to the absorption onset of the blends with a high spectral rejection ratio. These spectrally selective photodetectors exhibit zero-bias external quantum efficiencies of ~20-30% at wavelengths of 900-1100 nm, with a full-width-at-half-maximum of ≤50 nm, as well as detectivities of >1012 Jones.
Collapse
Affiliation(s)
- Quan Liu
- Hasselt University, Agoralaan 1, 3590, Diepenbeek, Belgium. .,IMOMEC Division, IMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium.
| | - Stefan Zeiske
- Department of Physics, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Xueshi Jiang
- Hasselt University, Agoralaan 1, 3590, Diepenbeek, Belgium.,IMOMEC Division, IMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Derese Desta
- Hasselt University, Agoralaan 1, 3590, Diepenbeek, Belgium.,IMOMEC Division, IMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Sigurd Mertens
- Hasselt University, Agoralaan 1, 3590, Diepenbeek, Belgium.,IMOMEC Division, IMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Sam Gielen
- Hasselt University, Agoralaan 1, 3590, Diepenbeek, Belgium.,IMOMEC Division, IMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Rachith Shanivarasanthe
- Hasselt University, Agoralaan 1, 3590, Diepenbeek, Belgium.,IMOMEC Division, IMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Hans-Gerd Boyen
- Hasselt University, Agoralaan 1, 3590, Diepenbeek, Belgium.,IMOMEC Division, IMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Ardalan Armin
- Department of Physics, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Koen Vandewal
- Hasselt University, Agoralaan 1, 3590, Diepenbeek, Belgium. .,IMOMEC Division, IMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium.
| |
Collapse
|
23
|
Kim J, Kang J, Jung IH. Synthesis and characterization of a copper(
II
) phthalocyanine‐based dye for organic photodetectors. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junho Kim
- Department of Energy Engineering Hanyang University Seoul Republic of Korea
| | - Jinhyeon Kang
- Department of Organic and Nano Engineering, and Human‐Tech Convergence Program Hanyang University Seoul Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering, and Human‐Tech Convergence Program Hanyang University Seoul Republic of Korea
| |
Collapse
|
24
|
Du X, He Z, Cao L, Yu X, Tao S. Dual-acceptor alloy model delivers high detection performance of organic NIR detectors for real-time arterial pulse monitoring. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Near-infrared organic photodetectors (NIR-OPDs) have significant potential in the fields of human sign monitoring, industrial defect detection, and military. We propose a method to construct high-performance NIR-OPDs by introducing narrow-band acceptor materials with very similar structures in bulk heterojunctions (BHJs) so that they form an alloy model during the film formation process, which in turn promotes the generation and dissociation of photogenerated excitons to achieve high-performance NIR detectors. Here, we choose the narrow-band materials IEICO-4F and IEICO-4Cl as dual-acceptors and PTB7-Th as the donor to construct NIR-OPDs. Benefiting from the alloy model formation, the dark current of the device is significantly suppressed compared with the binary control, while the photocurrent of the device is enhanced. The optimized NIR-OPD achieved a detectivity of more than 2.6×1012 Jones at -0.1V bias. With the optimized device performance, we can clearly monitor the human arterial pulse information, and the phases of the cardiac cycle of the heart can be accurately identified. This work demonstrates a new method for constructing highperformance NIR-OPDs and shows great potential for contactless human arterial pulse monitoring.
Collapse
|