1
|
Song T, Cai X, Zhu Y. Hydrogen production catalysed by atomically precise metal clusters. NANOSCALE 2024; 16:13834-13846. [PMID: 38979742 DOI: 10.1039/d4nr01835d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Atomically precise metal clusters that possess the exact atom number, definitive composition, and tunable geometric and electronic structures have emerged as ideal model catalysts for many important chemical processes. Recently, metal clusters have been widely used as excellent catalysts for hydrogen production to explore the relationship between the structure and catalytic properties at the atomic level. In this review, we systematically summarize the significant developments concerning metal clusters as electrocatalysts and photocatalysts for hydrogen generation. This review also puts forward the challenges and perspectives of atomically precise metal clusters in electrocatalysis and photocatalysis in the hope of providing a valuable reference for the rational design of high-performance catalysts for hydrogen production.
Collapse
Affiliation(s)
- Tongxin Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Zhang XY, Xin BJ, Huang ZX, Gu ZY, Wang XT, Zheng SH, Ma MY, Liu Y, Cao JM, Li SY, Wu XL. Rare earth elements induced electronic engineering in Rh cluster toward efficient alkaline hydrogen evolution reaction. J Colloid Interface Sci 2024; 666:346-354. [PMID: 38603877 DOI: 10.1016/j.jcis.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
The unique electronic and crystal structures of rare earth metals (RE) offer promising opportunities for enhancing the hydrogen evolution reaction (HER) properties of materials. In this work, a series of RE (Sm, Nd, Pr and Ho)-doped Rh@NSPC (NSPC stands for N, S co-doped porous carbon nanosheets) with sizes less than 2 nm are prepared, utilizing a simple, rapid and solvent-free joule-heat pyrolysis method for the first time. The optimized Sm-Rh@NSPC achieves HER performance. The high-catalytic performance and stability of Sm-Rh@NSPC are attributed to the synergistic electronic interactions between Sm and Rh clusters, leading to an increase in the electron cloud density of Rh, which promotes the adsorption of H+, the dissociation of Rh-H bonds and the release of H2. Notably, the overpotential of the Sm-Rh@NSPC catalyst is a mere 18.1 mV at current density of 10 mAcm-2, with a Tafel slope of only 15.2 mV dec-1. Furthermore, it exhibits stable operation in a 1.0 M KOH electrolyte at 10 mA cm-2 for more than 100 h. This study provides new insights into the synthesis of composite RE hybrid cluster nanocatalysts and their RE-enhanced electrocatalytic performance. It also introduces fresh perspectives for the development of efficient electrocatalysts.
Collapse
Affiliation(s)
- Xin-Yi Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Ben-Jian Xin
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Zhi-Xiong Huang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Xiao-Tong Wang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Shuo-Hang Zheng
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Ming-Yang Ma
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Yue Liu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Jun-Ming Cao
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Shu-Ying Li
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| |
Collapse
|
3
|
Zang B, Liu X, Gu C, Chen J, Wang L, Zheng W. Design Strategies of Hydrogen Evolution Reaction Nano Electrocatalysts for High Current Density Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1172. [PMID: 39057849 PMCID: PMC11280403 DOI: 10.3390/nano14141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Hydrogen is now recognized as the primary alternative to fossil fuels due to its renewable, safe, high-energy density and environmentally friendly properties. Efficient hydrogen production through water splitting has laid the foundation for sustainable energy technologies. However, when hydrogen production is scaled up to industrial levels, operating at high current densities introduces unique challenges. It is necessary to design advanced electrocatalysts for hydrogen evolution reactions (HERs) under high current densities. This review will briefly introduce the challenges posed by high current densities on electrocatalysts, including catalytic activity, mass diffusion, and catalyst stability. In an attempt to address these issues, various electrocatalyst design strategies are summarized in detail. In the end, our insights into future challenges for efficient large-scale industrial hydrogen production from water splitting are presented. This review is expected to guide the rational design of efficient high-current density water electrolysis electrocatalysts and promote the research progress of sustainable energy.
Collapse
Affiliation(s)
- Bao Zang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Xianya Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Chen Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Weihao Zheng
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
4
|
He Q, Han L, Lin C, Tao K. A review on defect modulated electrocatalysts for the oxygen evolution reaction. NANOSCALE 2024; 16:12368-12379. [PMID: 38873708 DOI: 10.1039/d4nr01805b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The oxygen evolution reaction (OER) is crucial for applications such as water splitting and rechargeable metal-air batteries. Recent research has focused on improving the activity and stability of OER electrocatalysts through various strategies including structural innovation, heteroatom doping, and conductivity enhancement. Among these, defect engineering has proved particularly effective, allowing precise modulation of the materials' electronic structure at the atomic level. This review addresses defect-rich materials that exhibit superior electrochemical properties for OER applications, with a particular focus on developments from the past five years. The discussion starts with an overview of the OER catalytic mechanism and then delves into the types of defects, synthesis methods, and their impact on electrochemical performance. This review concludes with insights into the rational design and synthesis of advanced electrocatalysts, aiming to improve efficiency and extend operational longevity. The objective is to highlight approaches for creating high-performance OER electrocatalysts that outperform noble-metal based systems in both activity and stability.
Collapse
Affiliation(s)
- Qianyun He
- School of New Energy, Ningbo University of Technology, Ningbo, 315336 China.
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chao Lin
- School of New Energy, Ningbo University of Technology, Ningbo, 315336 China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
5
|
Ying J, Yin R, Zhao Z, Zhang X, Feng W, Peng J, Liang C. Hierarchical porous carbon materials for lithium storage: preparation, modification, and applications. NANOTECHNOLOGY 2024; 35:332003. [PMID: 38744256 DOI: 10.1088/1361-6528/ad4b21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Secondary battery as an efficient energy conversion device has been highly attractive for alleviating the energy crisis and environmental pollution. Hierarchical porous carbon (HPC) materials with multiple sizes pore channels are considered as promising materials for energy conversion and storage applications, due to their high specific surface area and excellent electrical conductivity. Although many reviews have reported on carbon materials for different fields, systematic summaries about HPC materials for lithium storage are still rare. In this review, we first summarize the main preparation methods of HPC materials, including hard template method, soft template method, and template-free method. The modification methods including porosity and morphology tuning, heteroatom doping, and multiphase composites are introduced systematically. Then, the recent advances in HPC materials on lithium storage are summarized. Finally, we outline the challenges and future perspectives for the application of HPC materials in lithium storage.
Collapse
Affiliation(s)
- Jiaping Ying
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ruilian Yin
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zixu Zhao
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaoyu Zhang
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wen Feng
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Chu Liang
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
6
|
Wang X, Li D, Dai J, Xue Q, Yang C, Xia L, Qi X, Bao B, Yang S, Xu Y, Yuan C, Luo W, Cabot A, Dai L. Blocking Metal Nanocluster Growth through Ligand Coordination and Subsequent Polymerization: The Case of Ruthenium Nanoclusters as Robust Hydrogen Evolution Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309176. [PMID: 38150625 DOI: 10.1002/smll.202309176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Metal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co-doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N-rich 4'-(4-aminophenyl)-2,2:6',2''-terpyridine (TPY-NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg-1 Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d-band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost-effective and robust electrocatalysts based on carbon-supported transition metal nanoclusters for future energy technologies.
Collapse
Affiliation(s)
- Xiaohong Wang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - DongXu Li
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Juguo Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
| | - Qian Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chunying Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Long Xia
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Xueqiang Qi
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Bingtao Bao
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Siyu Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Yiting Xu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Conghui Yuan
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Weiang Luo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Catalonia, 08010, Spain
| | - Lizong Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Zhou B, Ding H, Jin W, Zhang Y, Wu Z, Wang L. Oxygen-deficient tungsten oxide inducing electron and proton transfer: Activating ruthenium sites for hydrogen evolution in wide pH and alkaline seawater. J Colloid Interface Sci 2024; 660:321-333. [PMID: 38244499 DOI: 10.1016/j.jcis.2024.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The design of electrocatalysts for the hydrogen evolution reaction (HER) that perform effectively across a broad pH spectrum is paramount. The efficiency of hydrogen evolution at ruthenium (Ru) active sites, often hindered by the kinetics of water dissociation in alkaline or neutral conditions, requires further enhancement. Metal oxides, due to superior electron dynamics facilitated by oxygen vacancies (OVS) and shifts in the Fermi level, surpass carbon-based materials. In particular, tungsten oxide (WO3) promotes the directed migration of electrons and protons which significantly activates the Ru sites. Ru/WO3-OV is prepared through a simple hydrothermal and low-temperature annealing process. The prepared catalyst achieves 10 mA cm-2 at overpotentials of 23 mV (1 M KOH), 36 mV (0.5 M H2SO4), 62 mV (1 M PBS), and 38 mV (1 M KOH + seawater). At an overpotential corresponding to 10 mA cm-2 in 1 M KOH and 1 M KOH + seawater, the mass activity of Ru/WO3-OV is about 7.7 and 7.86 times that of 20 wt% Pt/C. The improvement in activity and stability arises from electronic modifications attributed to metal-support interaction. This work offers novel insights for modulating the HER activity of Ru sites across a wide pH range.
Collapse
Affiliation(s)
- Bowen Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Hao Ding
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology 53 Zhengzhou Road, 266042 Qingdao, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology 53 Zhengzhou Road, 266042 Qingdao, PR China.
| |
Collapse
|
8
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Liu M, Fan X, Cui X, Zheng W, Singh DJ. Amorphous RuPd bimetallene for hydrogen evolution reaction in acidic and alkaline conditions: a first-principles study. Phys Chem Chem Phys 2024; 26:7896-7906. [PMID: 38376501 DOI: 10.1039/d3cp05512d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Metallene materials can provide a large number of active catalytic sites for the efficient use of noble metals as catalysts for hydrogen evolution reaction (HER), whereas the intrinsic activity on the surface is insufficient in crystal phase. The amorphous phase with an inherent long-range disorder can offer a rich coordinate environment and charge polarization on the surface is proposed for promoting the intrinsic catalytic activity on the surface of noble metals. Herein, we designed an amorphous RuPd (am-RuPd) structure by the first principles molecular dynamics method. The performance of the acidic HER on am-RuPd can have a huge enhancement due to the free energy change of hydrogen adsorption close to zero. In alkaline conditions, the H2O dissociation energy barrier on am-RuPd is just 0.49 eV, and it is predicted that the alkaline HER performance of am-RuPd will largely exceed that of Pt nanocrystalline sheets. This work provides a strategy for enhancing the intrinsic catalytic activity on the surface and a way to design an efficient HER catalyst based on metallene materials used in both acidic and alkaline conditions.
Collapse
Affiliation(s)
- Manman Liu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China.
| | - Xiaofeng Fan
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China.
| | - Xiaoqiang Cui
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China.
| | - Weitao Zheng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China.
| | - David J Singh
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China.
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211-7010, USA
| |
Collapse
|
10
|
Liu X, McPherson JN, Andersen CE, Jørgensen MSB, Larsen RW, Yutronkie NJ, Wilhelm F, Rogalev A, Giménez-Marqués M, Mínguez Espallargas G, Göb CR, Pedersen KS. A zero-valent palladium cluster-organic framework. Nat Commun 2024; 15:1177. [PMID: 38331922 PMCID: PMC10853280 DOI: 10.1038/s41467-024-45363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Acquiring spatial control of nanoscopic metal clusters is central to their function as efficient multi-electron catalysts. However, dispersing metal clusters on surfaces or in porous hosts is accompanied by an intrinsic heterogeneity that hampers detailed understanding of the chemical structure and its relation to reactivities. Tethering pre-assembled molecular metal clusters into polymeric, crystalline 2D or 3D networks constitutes an unproven approach to realizing ordered arrays of chemically well-defined metal clusters. Herein, we report the facile synthesis of a {Pd3} cluster-based organometallic framework from a molecular triangulo-Pd3(CNXyl)6 (Xyl = xylyl; Pd3) cluster under chemically mild conditions. The formally zero-valent Pd3 cluster readily engages in a complete ligand exchange when exposed to a similar, ditopic isocyanide ligand, resulting in polymerization into a 2D coordination network (Pd3-MOF). The structure of Pd3-MOF could be unambiguously determined by continuous rotation 3D electron diffraction (3D-ED) experiments to a resolution of ~1.0 Å (>99% completeness), showcasing the applicability of 3D-ED to nanocrystalline, organometallic polymers. Pd3-MOF displays Pd03 cluster nodes, which possess significant thermal and aerobic stability, and activity towards hydrogenation catalysis. Importantly, the realization of Pd3-MOF paves the way for the exploitation of metal clusters as building blocks for rigidly interlocked metal nanoparticles at the molecular limit.
Collapse
Affiliation(s)
- Xiyue Liu
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark
| | - James N McPherson
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark.
| | - Carl Emil Andersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark
| | - Mike S B Jørgensen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark
| | - René Wugt Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark
| | - Nathan J Yutronkie
- European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble Cedex 9, France
| | - Fabrice Wilhelm
- European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble Cedex 9, France
| | - Andrei Rogalev
- European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble Cedex 9, France
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, 46980, Valencia, Spain
| | | | - Christian R Göb
- Rigaku Europe SE, Hugenottenallee 167, 63263, Neu-Isenburg, Germany
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
11
|
Devi A, Minhas H, Sahoo L, Rashi, Gratious S, Das A, Mandal S, Pathak B, Patra A. Insights of the efficient hydrogen evolution reaction performance in bimetallic Au 4Cu 2 nanoclusters. NANOSCALE 2024; 16:1758-1769. [PMID: 38167690 DOI: 10.1039/d3nr05445d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The design of efficient electrocatalysts for improving hydrogen evolution reaction (HER) performance using atomically precise metal nanoclusters (NCs) is an emerging area of research. Here, we have studied the HER electrocatalytic performance of monometallic Cu6 and Au6 nanoclusters and bimetallic Au4Cu2 nanoclusters. A bimetallic Au4Cu2/MoS2 composite exhibits excellent HER catalytic activity with an overpotential (η10) of 155 mV vs. reversible hydrogen electrode observed at 10 mA cm-2 current density. The improved HER performance in Au4Cu2 is due to the increased electrochemically active surface area (ECSA), and Au4Cu2 NCs exhibits better stability than Cu6 and Au6 systems and bare MoS2. This augmentation offers a greater number of active sites for the favorable adsorption of reaction intermediates. Furthermore, by employing X-ray photoelectron spectroscopy (XPS) and Raman analysis, the kinetics of HER in the Au4Cu2/MoS2 composite were elucidated, attributing the favorable performance to better electronic interactions occurring at the interface between Au4Cu2 NCs and the MoS2 substrate. Theoretical analysis reveals that the inherent catalytic enhancement in Au4Cu2/MoS2 is due to favorable H atom adsorption over it and the smallest ΔGH* value. The downshift in the d-band of the Au4Cu2/MoS2 composite influences the binding energy of intermediate catalytic species. This new catalyst sheds light on the structure-property relationship for improving electrocatalytic performance at the atomic level.
Collapse
Affiliation(s)
- Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 14036, India
| | - Harpriya Minhas
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India.
| | - Lipipuspa Sahoo
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 14036, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 14036, India
| | - Saniya Gratious
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala-695551, India
| | - Amitabha Das
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India.
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala-695551, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India.
| | - Amitava Patra
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 14036, India
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
12
|
Yang H, Wu P, Pei J, Peng B, Liu Q. Isolated Ni-atom catalyst supported on Ti 3C 2T x with an asymmetrical C-Ni-N structure for the hydrogen evolution reaction. Chem Commun (Camb) 2024; 60:718-721. [PMID: 38108441 DOI: 10.1039/d3cc04930b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Single-atom catalysts (SACs), distinguished by their exceptional atomic efficiency and modifiable coordination structures, find wide-ranging applicability, notably in the context of the hydrogen evolution reaction (HER). Herein, we synthesized a Ti3C2Tx-based Ni single-atom catalyst (Ni SA@N-Ti3C2Tx) by immersing a single Ni atom into the Ti vacancies of Ti3C2Tx and using a N-doping strategy. X-Ray adsorption fine structure revealed the formation of local Ni-N1C1 and an unsaturated C-Ni-N bridge configuration for isolated Ni species. Moreover, Ni SA@N-Ti3C2Tx exhibited an excellent HER performance with an overpotential of 63 mV at 10 mV cm-2. This work could enable use of MXene-based SACs in the HER.
Collapse
Affiliation(s)
- Haosen Yang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Pengfei Wu
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Jiajing Pei
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Peng
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, Laboratory of Chemical and Biological Transforming Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, China
| | - Qingqing Liu
- School of Physics, Beihang University, Beijing, 100191, China
| |
Collapse
|
13
|
Lu Z, Yang H, Liu Q, Luo J, Feng L, Chu L, Liu X. Nb 2 AlC MAX Nanosheets Supported Ru Nanocrystals as Efficient Catalysts for Boosting pH-Universal Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305434. [PMID: 38126941 DOI: 10.1002/smll.202305434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Indexed: 12/23/2023]
Abstract
MAX phase combines both ceramic and metallic properties, which exhibits widespread application prospects. 2D MAX nanosheets have more abundant surface-active sites, being anticipated to improve the performance of surface-related applications. Herein, for the first time, 2D Nb2 AlC nanosheets (NSs) as novel supports anchored with Ru catalysts for overall water splitting are developed. The optimized catalyst of Ru@Nb2 AlC NSs exhibit Pt-comparable kinetics and superior catalytic activity toward hydrogen evolution reaction (HER) (low overpotentials of 61 and 169 mV at 10 and 100 mA cm-2 , respectively) with excellent durability (5000 cycles or 80 h) in alkaline media. In particular, Ru@Nb2 AlC NSs achieve a mass activity of ≈4.8 times larger than the commercial Pt/C (20 wt.%) catalyst. The post-oxidation resultant catalyst of RuO2 @Nb2 AlC NSs also exhibit boosting HER and oxygen evolution reaction activities and ≈100% Faraday efficiency for overall water splitting with a cell voltage of 1.61 V to achieve 10 mA cm-2 . Therefore, the novel category of 2D MAX supports anchored with Ru nanocrystals offers a novel strategy for designing a wide range of MAX-supported metal catalysts for the renewable energy field.
Collapse
Affiliation(s)
- Zhensui Lu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun Luo
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Ligang Feng
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Liang Chu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
14
|
Yang M, Meng G, Li H, Wei T, Liu Q, He J, Feng L, Sun X, Liu X. Bifunctional bimetallic oxide nanowires for high-efficiency electrosynthesis of 2,5-furandicarboxylic acid and ammonia. J Colloid Interface Sci 2023; 652:155-163. [PMID: 37591077 DOI: 10.1016/j.jcis.2023.08.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
It is an appealing avenue for electrosyntheis of high-valued chemicals at both anode and cathode by coupling 5-hydroxymethylfurfural (HMF) oxidation and nitrate reduction reactions simultaneously, while the development such bifunctional electrocatalysts is still in its infancy with dissatisfied selectivity and low yield rate. Here, we first report that Zn-doped Co3O4 nanowires array can be served as an efficient and robust dual-functional catalyst for HMF oxidation and nitrate reduction at ambient conditions. Specifically, the catalyst shows a faradaic efficiency of 91 % and a yield rate of 241.2 μmol h-1 cm-2 for 2,5-furandicarboxylic acid formation together with a high conversion of nearly 100 % at a potential of 1.40 V. It also displays good cycling stability. Besides, the catalyst is capable of catalyzing the reduction of nitrate to NH3, giving a maximal faradaic efficiency of 92 % and a peak NH3 yield rate of 4.65 mg h-1 cm-2 at a potential of -0.70 V. These results surpass those obtained using pristine Co3O4 and are comparable to those of state-of-the-art electrocatalysts. Moreover, the catalyst is further employed as the cathode catalyst to assemble a Zn-nitrate battery, giving a peak power density of 5.24 mW cm-2 and a high yield rate of 0.72 mg h-1 cm-2. Theoretical simulations further reveal that Zn-doping favors the adsorption and dissociation of nitrate and HMF species and reduces the energy barrier as well. Our work demonstrates the potential interest of Co3O4-based materials for the highly selective production of valuable feedstocks via ambient electrolysis.
Collapse
Affiliation(s)
- Miaosen Yang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; Nanchang Institute of Technology, Nanchang 330044, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Hongyi Li
- Xinjiang University State Key Laboratory of Chemistry & Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830046, Xinjiang, China; Guangzhou Panyu Polytechnic, Guangzhou 511483, Guangdong, China.
| | - Tianran Wei
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jia He
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
15
|
Li Y, He N, Chen X, Fang B, Liu X, Li H, Gong Z, Lu T, Pan L. Interface regulation of Zr-MOF/Ni 2P@nickel foam as high-efficient electrocatalyst for pH-universal hydrogen evolution reaction. J Colloid Interface Sci 2023; 656:289-296. [PMID: 37995399 DOI: 10.1016/j.jcis.2023.11.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Currently, the development of economical and effective non-noble metal electrocatalysts is vital for advancing hydrogen evolution reaction (HER) and enabling its widespread applications. The customizable pore structure and enormous surface area of metal-organic frameworks (MOFs) have made them to become promising non-noble metal electrocatalysts for HER. However, MOFs have some challenges, including low conductivity and instability, which can result in them having high overpotentials and slow reaction kinetics in electrocatalytic processes. In this work, we present an innovative approach for synthesizing cost-effective and high-efficient Zr-MOF-derived pH-universal electrocatalysts for HER. It entails creating the interfaces of the electrocatalysts with suitable proportions of phosphide nanostructures. Zr-MOF/Ni2P@nickel foam (NF) electrodes with interface regulated by Ni2P nanostructures were successfully developed for high-efficient pH-universal HER electrocatalysts. The presence of Ni2P nanostructures with abundant active sites at the Zr-MOFs@NF interfaces boosted the electronic conductivity and local charge density of the hybrid electrocatalysts. This helped to improve their reaction kinetics and electrocatalytic activity. By optimizing the Ni2P amount, Zr-MOF/Ni2P@NF demonstrated impressive stability and superior HER activities, with a low overpotential of 149 mV (acidic electrolytes) and 143 mV (alkaline electrolytes) at 10 mA cm-2. The proven strategy in this work can be expanded to many types of MOF-based materials for wider practical applications.
Collapse
Affiliation(s)
- Yue Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Nannan He
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xiaohong Chen
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Bo Fang
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Haibo Li
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
| | - Zhiwei Gong
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P.R. China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
16
|
Zhao S, Ran S, Shi N, Liu M, Sun W, Yu Y, Zhu Z. Structural Design Induced Electronic Optimization in Single-Phase MoCoP Nanocrystal for Boosting Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302414. [PMID: 37420333 DOI: 10.1002/smll.202302414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Indexed: 07/09/2023]
Abstract
Structural and compositional design of multifunctional materials is critical for electrocatalysis, but their rational modulation and effective synthesis remain a challenge. Herein, a controllable one-pot synthesis for construction of trifunctional sites and preparation of porous structures is adopted for synthesizing dispersed MoCoP sites on N, P codoped carbonized substance. This tunable synthetic strategy also endorses the exploration of the electrochemical activities of Mo (Co)-based unitary, Mo/Co-based dual and MoCo-based binary metallic sites. Eventually benefiting from the structural regulation, MoCoP-NPC shows excellent oxygen reduction abilities with a half-wave potential of 0.880 V, and outstanding oxygen evolution and hydrogen evolution performance with an overpotential of 316 mV and 91 mV, respectively. MoCoP-NPC-based Zn-air battery achieves excellent cycle stability for 300 h and a high open-circuit voltage of 1.50 V. When assembled in a water-splitting device, MoCoP-NPC reaches 10 mA cm-2 at 1.65 V. Theoretical calculations demonstrate that the Co atom in the single-phase MoCoP has a low energy barrier for oxygen evolution reaction (OER) owing to the migration of Co 3d orbital toward the Fermi level. This work shows a simplified method for controllable preparation of prominent trifunctional catalysts.
Collapse
Affiliation(s)
- Songlin Zhao
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Siyi Ran
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ning Shi
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Maolin Liu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of, Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Ying Yu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhihong Zhu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
17
|
Zhang H, Meng G, Liu Q, Luo Y, Niederberger M, Feng L, Luo J, Liu X. Metal Phosphorous Chalcogenide: A Promising Material for Advanced Energy Storage Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303165. [PMID: 37541297 DOI: 10.1002/smll.202303165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Indexed: 08/06/2023]
Abstract
The development of efficient and affordable electrode materials is crucial for clean energy storage systems, which are considered a promising strategy for addressing energy crises and environmental issues. Metal phosphorous chalcogenides (MPX3 ) are a fascinating class of two-dimensional materials with a tunable layered structure and high ion conductivity, making them particularly attractive for energy storage applications. This review article aims to comprehensively summarize the latest research progress on MPX3 materials, with a focus on their preparation methods and modulation strategies. Additionally, the diverse applications of these novel materials in alkali metal ion batteries, metal-air batteries, and all-solid-state batteries are highlighted. Finally, the challenges and opportunities of MPX3 materials are presented to inspire their better potential in energy storage applications. This review provides valuable insights into the promising future of MPX3 materials in clean energy storage systems.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yang Luo
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
18
|
Yang X, Shu Y, Takada R, Taniguchi Y, Miyake K, Uchida Y, Nishiyama N. Facile and Cost-effective Synthesis of CoP@N-doped Carbon with High Catalytic Performance for Electrochemical Hydrogen Evolution Reaction. Chem Asian J 2023; 18:e202300534. [PMID: 37545336 DOI: 10.1002/asia.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
The manufacture of efficient and low-cost hydrogen evolution reaction (HER) catalysts is regarded as a critical solution to achieve carbon neutrality. Herein, we developed an economical method to synthesize a CoP-anchored N-doped carbon catalyst via one-step pyrolysis using inexpensive starting materials (cobalt ion salt, phytic acid, and glycine). The size of the CoP nanoparticles was controlled by adjusting the Co/P ratio of the catalysts. Nanoscale CoP particles with adequate exposure to active sites were uniformly anchored on the surface of the conductive nitrogen-doped carbon substrate, ensuring the rapid transfer of electrons and species. When Co/P=0.89, the as-made catalyst exhibited outstanding HER activity, with an extraordinarily low overpotential of 202 mV at 10 mA cm-2 and long-term stability.
Collapse
Affiliation(s)
- Xinran Yang
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Yasuhiro Shu
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Ryuji Takada
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Yurika Taniguchi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Koji Miyake
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| | - Yoshiaki Uchida
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Jia L, Xue H, Xian F, Sugahara Y, Sakai N, Nan J, Yamauchi Y, Sasaki T, Ma R. Porous and Partially Dehydrogenated Fe 2+ -Containing Iron Oxyhydroxide Nanosheets for Efficient Electrochemical Nitrogen Reduction Reaction (ENRR). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303221. [PMID: 37330649 DOI: 10.1002/smll.202303221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Indexed: 06/19/2023]
Abstract
The design and development of efficient catalysts for electrochemical nitrogen reduction reaction (ENRR) under ambient conditions are critical for the alternative ammonia (NH3 ) synthesis from N2 and H2 O, wherein iron-based electrocatalysts exhibit outstanding NH3 formation rate and Faradaic efficiency (FE). Here, the synthesis of porous and positively charged iron oxyhydroxide nanosheets by using layered ferrous hydroxide as a starting precursor, which undergoes topochemical oxidation, partial dehydrogenated reaction, and final delamination, is reported. As the electrocatalyst of ENRR, the obtained nanosheets with a monolayer thickness and 10-nm mesopores display exceptional NH3 yield rate (28.5 µg h-1 mgcat. -1 ) and FE (13.2%) at a potential of -0.4 V versus RHE in a phosphate buffered saline (PBS) electrolyte. The values are much higher than those of the undelaminated bulk iron oxyhydroxide. The larger specific surface area and positive charge of the nanosheets are beneficial for providing more exposed reactive sites as well as retarding hydrogen evolution reaction. This study highlights the rational control on the electronic structure and morphology of porous iron oxyhydroxide nanosheets, expanding the scope of developing non-precious iron-based highly efficient ENRR electrocatalysts.
Collapse
Affiliation(s)
- Lulu Jia
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hairong Xue
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Fang Xian
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yoshiyuki Sugahara
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishi-waseda, Shinjuku-ku, Tokyo, 169-0051, Japan
| | - Nobuyuki Sakai
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingbo Nan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yusuke Yamauchi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishi-waseda, Shinjuku-ku, Tokyo, 169-0051, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Takayoshi Sasaki
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
20
|
Wang K, He S, Zhang B, Cao Z, Zhou T, He J, Chu G. Self-Supported 3D PtPdCu Nanowires Networks for Superior Glucose Electro-Oxidation Performance. Molecules 2023; 28:5834. [PMID: 37570804 PMCID: PMC10421379 DOI: 10.3390/molecules28155834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The development of non-enzymatic and highly active electrocatalysts for glucose oxidation with excellent durability for blood glucose sensors has aroused widespread concern. In this work, we report a fast, simple, and low-cost NaBH4 reduction method for preparing ultrafine ternary PtPdCu alloy nanowires (NWs) with a 3D network nanostructure. The PtPdCu NWs catalyst presents significant efficiency for glucose oxidation-reduction (GOR), reaching an oxidative peak-specific activity of 0.69 mA/cm2, 2.6 times that of the Pt/C catalyst (0.27 mA/cm2). Further reaction mechanism investigations show that the NWs have better conductivity and smaller electron transfer resistance. Density functional theory (DFT) calculations reveal that the alloying effect of PtPdCu could effectively enhance the adsorption energy of glucose and reduce the activation energy of GOR. The obtained NWs also show excellent stability over 3600 s through a chronoamperometry test. These self-supported ultrafine PtPdCu NWs with 3D networks provide a new functional material for building blood glucose sensors and direct glucose fuel cells.
Collapse
Affiliation(s)
- Kaili Wang
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844008, China; (K.W.); (B.Z.)
- College Chemistry & Chemistry Engineering, Weifang University, Weifang 261061, China; (Z.C.); (T.Z.)
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shuang He
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China;
| | - Bowen Zhang
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844008, China; (K.W.); (B.Z.)
| | - Zhen Cao
- College Chemistry & Chemistry Engineering, Weifang University, Weifang 261061, China; (Z.C.); (T.Z.)
| | - Tingting Zhou
- College Chemistry & Chemistry Engineering, Weifang University, Weifang 261061, China; (Z.C.); (T.Z.)
| | - Jia He
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ganghui Chu
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844008, China; (K.W.); (B.Z.)
| |
Collapse
|
21
|
Kagkoura A, Ojeda-Galván HJ, Quintana M, Tagmatarchis N. Carbon Dots Strongly Immobilized onto Carbon Nanohorns as Non-Metal Heterostructure with High Electrocatalytic Activity towards Protons Reduction in Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208285. [PMID: 36866461 DOI: 10.1002/smll.202208285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Indexed: 08/04/2023]
Abstract
Highly performing, non-metal inexpensive electrocatalysts for the production of hydrogen via electrochemical water splitting are called for the replacement of current platinum-based ones. In order to speed up the electrocatalytic hydrogen evolution, abundant active sites but also efficient charge transfer is needed. In this context, 0D carbon dots (CDs) with large specific surface area, low cost, high conductivity, and rich functional groups emerge as promising non-metal electrocatalysts. Additionally, the use of conductive substrates provides an effective strategy to boost their electrocatalytic performance. Herein, the unique 3D superstructure of carbon nanohorns (CNHs), as well as without any metal content in their structure, is used to provide a conductive support of high porosity, large specific surface area, and good electrical conductivity, for the in situ growth and immobilization of CDs, via a simple hydrothermal method. The direct contact of CDs with the 3D conductive network of CNHs promotes charge transfer, accelerating hydrogen evolution. The all-carbon non-metal CDs/CNHs nanoensembleshows an onset potential close to the one of Pt/C, low charge transfer resistance, and excellent stability.
Collapse
Affiliation(s)
- Antonia Kagkoura
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Hiram Joazet Ojeda-Galván
- High Resolution Microscopy-CICSaB and Faculty of Science, Universidad Autonóma de San Luis Potosi, Av. Sierra Leona 550, Lomas de San Luis Potosi, SLP, 78210, Mexico
| | - Mildred Quintana
- High Resolution Microscopy-CICSaB and Faculty of Science, Universidad Autonóma de San Luis Potosi, Av. Sierra Leona 550, Lomas de San Luis Potosi, SLP, 78210, Mexico
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| |
Collapse
|
22
|
Akir S, Azadmanjiri J, Antonatos N, Děkanovský L, Roy PK, Mazánek V, Lontio Fomekong R, Regner J, Sofer Z. Atomic-layered V 2C MXene containing bismuth elements: 2D/0D and 2D/2D nanoarchitectonics for hydrogen evolution and nitrogen reduction reaction. NANOSCALE 2023. [PMID: 37464871 DOI: 10.1039/d3nr01144e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The exploitation of two-dimensional (2D) vanadium carbide (V2CTx, denoted as V2C) in electrocatalytic hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR) is still in the stage of theoretical study with limited experimental exploration. Here, we present the experimental studies of V2C MXene-based materials containing two different bismuth compounds to confirm the possibility of using V2C as a potential electrocatalyst for HER and NRR. In this context, for the first time, we employed two different methods to synthesize 2D/0D and 2D/2D nanostructures. The 2D/2D V2C/BVO consisted of BiVO4 (denoted BVO) nanosheets wrapped in layers of V2C which were synthesized by a facile hydrothermal method, whereas the 2D/0D V2C/Bi consisted of spherical particles of Bi (Bi NPs) anchored on V2C MXenes using the solid-state annealing method. The resultant V2C/BVO catalyst was proven to be beneficial for HER in 0.5 M H2SO4 compared to pristine V2C. We demonstrated that the 2D/2D V2C/BVO structure can favor the higher specific surface area, exposure of more accessible catalytic active sites, and promote electron transfer which can be responsible for optimizing the HER activity. Moreover, V2C/BVO has superior stability in an acidic environment. Whilst we observed that the 2D/0D V2C/Bi could be highly efficient for electrocatalytic NRR purposes. Our results show that the ammonia (NH3) production and faradaic efficiency (FE) of V2C/Bi can reach 88.6 μg h-1 cm-2 and 8% at -0.5 V vs. RHE, respectively. Also V2C/Bi exhibited excellent long-term stability. These achievements present a high performance in terms of the highest generated NH3 compared to recent investigations of MXenes-based electrocatalysts. Such excellent NRR of V2C/Bi activity can be attributed to the effective suppression of HER which is the main competitive reaction of the NRR.
Collapse
Affiliation(s)
- Sana Akir
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Lukáš Děkanovský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Pradip Kumar Roy
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Roussin Lontio Fomekong
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
23
|
Shen H, Wei T, Ding J, Liu X. Copper Phosphide Nanowires as High-Performance Catalysts for Urea-Assisted Hydrogen Evolution in Alkaline Medium. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114169. [PMID: 37297303 DOI: 10.3390/ma16114169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Water electrolysis represented a promising avenue for the large-scale production of high-purity hydrogen. However, the high overpotential and sluggish reaction rates associated with the anodic oxygen evolution reaction (OER) posed significant obstacles to efficient water splitting. To tackle these challenges, the urea oxidation reaction (UOR) emerged as a more favorable thermodynamic alternative to OER, offering both the energy-efficient hydrogen evolution reaction (HER) and the potential for the treating of urea-rich wastewater. In this work, a two-step methodology comprising nanowire growth and phosphating treatment was employed to fabricate Cu3P nanowires on Cu foam (Cu3P-NW/CF) catalysts. These novel catalytic architectures exhibited notable efficiencies in facilitating both the UOR and HER in alkaline solutions. Specifically, within urea-containing electrolytes, the UOR manifested desirable operational potentials of 1.43 V and 1.65 V versus the reversible hydrogen electrode (vs. RHE) to reach the current densities of 10 and 100 mA cm-2, respectively. Concurrently, the catalyst displayed a meager overpotential of 60 mV for the HER at a current density of 10 mA cm-2. Remarkably, the two-electrode urea electrolysis system, exploiting the designed catalyst as both the cathode and anode, demonstrated an outstanding performance, attaining a low cell voltage of 1.79 V to achieve a current density of 100 mA cm-2. Importantly, this voltage is preferable to the conventional water electrolysis threshold in the absence of urea molecules. Moreover, our study shed light on the potential of innovative Cu-based materials for the scalable fabrication of electrocatalysts, energy-efficient hydrogen generation, and the treatment of urea-rich wastewater.
Collapse
Affiliation(s)
- Hui Shen
- School of Bioengineering, Hefei Technology College, Hefei 230012, China
| | - Tianran Wei
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Junyang Ding
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
24
|
Zhang Q, Lian K, Liu Q, Qi G, Zhang S, Luo J, Liu X. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J Colloid Interface Sci 2023; 646:844-854. [PMID: 37235930 DOI: 10.1016/j.jcis.2023.05.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
High entropy alloys (HEAs) are those metallic materials that consist of five or more elements. Compared with conventional alloys, they have much more catalytic active sites due to unique structural characteristics such as high entropy effect and lattice distortion, endowing them with promising applications in the region of hydrolysis catalysts. Herein, we successfully loaded high-entropy alloys onto carbon nanotubes (FeNiCoMnRu@CNT) by hydrothermal means. It exhibits excellent HER and OER properties in alkaline seawater. To accomplish two-electrode total water splitting when constructed into Zn air cells, it only needed 1.6 V, and the timing voltage curve showed a steady current density of 10 mA cm-2 during constant electrolysis for more than 30 h in alkaline seawater. The remarkably high HER and OER activity of FeNiCoMnRu@CNT HEAs NPS indicates the potentially broad application prospect of HEAs for Zn air battery.
Collapse
Affiliation(s)
- Quan Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kang Lian
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Gaocan Qi
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
25
|
Zhang H, Wei T, Qiu Y, Zhang S, Liu Q, Hu G, Luo J, Liu X. Recent Progress in Metal Phosphorous Chalcogenides: Potential High-Performance Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207249. [PMID: 36605005 DOI: 10.1002/smll.202207249] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Since the discovery of graphene, research on the family of 2D materials has been a thriving field. Metal phosphorous chalcogenides (MPX3 ) have attracted renewed attention due to their distinctive physical and chemical properties. The advantages of MPX3 , such as tunable layered structures, unique electronic properties, thermodynamically appropriate band alignments and abundant catalytic active sites on the surface, make MPX3 material great potential in electrocatalysis. In this review, the applications of MPX3 electrocatalysts in recent years, including hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction, are summarized. Structural regulation, chemical doping and multi-material composite that are often effective and practical research methods to further optimize the catalytic properties of these materials, are introduced. Finally, the challenges and opportunities for electrocatalytic applications of MPX3 materials are discussed. This report aims to advance future efforts to develop MPX3 and related materials for electrocatalysis.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tianran Wei
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| | - Yuan Qiu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Guangzhi Hu
- School of Chemical Science and Technology, School of Energy, Yunnan University, Kunming, 650091, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
26
|
Zhang H, Qi S, Zhu K, Wang H, Zhang G, Ma W, Zong X. Ultrafast Synthesis of Mo2C-Based Catalyst by Joule Heating towards Electrocatalytic Hydrogen Evolution Reaction. Symmetry (Basel) 2023. [DOI: 10.3390/sym15040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Developing earth-abundant electrocatalysts useful for hydrogen evolution reactions (HER) is critical for electrocatalytic water splitting driven by renewable energy. Molybdenum carbide (Mo2C) with the crystal structure of hexagonal symmetry has been identified to be an excellent HER catalyst due to its platinum-like electronic structure while the synthesis of Mo2C is generally time consuming and energy intensive. Herein, we demonstrated the ultrafast synthesis of a Mo2C-based electrocatalyst with Joule heating at 1473 K for only 6 s. Benefitting from several advantages including efficient catalytic kinetics, enhanced charge transport kinetics and high intrinsic activity, the as-prepared catalyst exhibited drastically enhanced HER performance compared with commercial Mo2C. It showed an overpotential of 288 mV for achieving a current density of −50 mA cm−2 and good stability, which highlighted the feasibility of the Joule heating method towards preparing efficient electrocatalysts.
Collapse
|
27
|
Zhang S, Liu Q, Tang X, Zhou Z, Fan T, You Y, Zhang Q, Zhang S, Luo J, Liu X. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
28
|
Lu G, Wang Z, Zhang S, Ding J, Luo J, Liu X. Cathode materials for halide-based aqueous redox flow batteries: recent progress and future perspectives. NANOSCALE 2023; 15:4250-4260. [PMID: 36756795 DOI: 10.1039/d2nr07291b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As the population increases sharply around the globe, huge shortages are occurring in energy resources. Renewable resources are urgently required to be developed to satisfy human demands. Unlike the lithium-ion batteries with safety and cost issues, the redox flow battery (RFB) is economical, stable, and convenient for the development of large-scale stationary electrical energy storage applications. Especially, the aqueous redox flow battery (ARFB) further exhibits a promising potential in larger power grids owing to its unique structural features of storing energy by filling the tank with electrolytes. The ARFB is capable of modulating battery parameters by controlling the volume and concentration of the electro-active species (EAS). Further, halogens show excellent properties, such as low cost and appropriate potential as an EAS for ARFB, further showing an efficient, safe, and affordable energy storage system (ESS). Moreover, to attain the demands of strong activity, high sensitivity, convenience as well as practicality, further attention needs to be paid to material (electrode) design and adjustment. In this mini-review, novel electrode materials, including their potential internal mechanisms and effective regulatory means, are summarized and applied in the zinc-halogen, hydrogen-halogen, and polysulfide-halogen ARFB systems, promoting the development of valuable material systems and the innovation of the energy storage/conversion technologies.
Collapse
Affiliation(s)
- Guolong Lu
- Chemistry and chemical engineering, Guangxi University, Nanning 530004, China.
| | - Zhigui Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Junyang Ding
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- Chemistry and chemical engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
29
|
Wang W, Geng W, Zhang L, Zhao Z, Zhang Z, Ma T, Cheng C, Liu X, Zhang Y, Li S. Molybdenum Oxycarbide Supported Rh-Clusters with Modulated Interstitial C-O Microenvironments for Promoting Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206808. [PMID: 36539263 DOI: 10.1002/smll.202206808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Tuning the microenvironment and electronic structure of support materials is essential strategy to induce electron transfer between supports and active centers, which is of great importance in optimizing catalytic kinetics. In this study, the molybdenum oxycarbide supported Rh-clusters are synthesized with modulated interstitial C-O microenvironments (Rh/MoOC) for promoting efficient hydrogen evolution in water splitting. Both electronic structure characterizations and theoretical calculations uncover the apparent charge transfer from Rh to MoOC, which optimizes the d-band center, H2 O adsorption energy, and hydrogen binding energy, thus enhancing its intrinsic hydrogen-evolving activities. In addition, the co-occurrence of interstitial C and O atoms in MoOC supports plays a vital role in the dissociation reaction of water during the hydrogen-evolving process. Impressively, the Rh/MoOC exhibits excellent hydrogen-evolving activities in terms of exceptional turnover frequency values (11.4 and 39.41 H2 s-1 in alkaline and acidic media) and mass activities (21.3 and 73.87 A mg-1 in alkaline and acidic media) at an overpotential of 100 mV, which is more than 40 times higher than that of the benchmark commercial Rh/C catalysts. This work sheds new light on designing water dissociation materials that surpasses most of the reported catalysts.
Collapse
Affiliation(s)
- Weiwen Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lu Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhen Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
30
|
Hou X, Ding J, Liu W, Zhang S, Luo J, Liu X. Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO 2 Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020309. [PMID: 36678060 PMCID: PMC9866045 DOI: 10.3390/nano13020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 05/14/2023]
Abstract
Single-atom catalysts (SACs) have emerged as well-known catalysts in renewable energy storage and conversion systems. Several supports have been developed for stabilizing single-atom catalytic sites, e.g., organic-, metal-, and carbonaceous matrices. Noticeably, the metal species and their local atomic coordination environments have a strong influence on the electrocatalytic capabilities of metal atom active centers. In particular, asymmetric atom electrocatalysts exhibit unique properties and an unexpected carbon dioxide reduction reaction (CO2RR) performance different from those of traditional metal-N4 sites. This review summarizes the recent development of asymmetric atom sites for the CO2RR with emphasis on the coordination structure regulation strategies and their effects on CO2RR performance. Ultimately, several scientific possibilities are proffered with the aim of further expanding and deepening the advancement of asymmetric atom electrocatalysts for the CO2RR.
Collapse
Affiliation(s)
- Xianghua Hou
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Nanning 530004, China
| | - Junyang Ding
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Nanning 530004, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| |
Collapse
|
31
|
Wei T, Liu W, Zhang S, Liu Q, Luo J, Liu X. A dual-functional Bi-doped Co 3O 4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chem Commun (Camb) 2023; 59:442-445. [PMID: 36519313 DOI: 10.1039/d2cc05722k] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here, we report that a Bi-doped Co3O4 nanosheet array grown on Ni foam can selectively catalyze HMF-to-FDCA oxidation at ambient conditions. The catalyst shows a faradaic efficiency of 97.7%, a yield rate of 362.5 μmol h-1, and a conversion of nearly 100%, surpassing those of pristine Co3O4. Furthermore, when the catalyst was adopted as both the anode and cathode in a two-electrode system, H2 and FDCA can be produced simultaneously.
Collapse
Affiliation(s)
- Tianran Wei
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China.
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
32
|
Zeng W, Jiang Z, Gong X, Hu C, Luo X, Lei W, Yuan C. Atomic Magnetic Heating Effect Enhanced Hydrogen Evolution Reaction of Gd@MoS 2 Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206155. [PMID: 36437043 DOI: 10.1002/smll.202206155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Atomic heating on single atoms (SAs) to maximize the catalytic efficiency of each active site would be a fascinating solution to break the bottleneck for the performance improvement of single-atom catalysts (SACs) but highly challenging task. Here, based on the Gd@MoS2 SACs synthesized by a facile laser molecular beam epitaxy method, high-frequency alternating magnetic field (AMF) technology is employed to induce atomic magnetic heating on Gd SAs that is meanwhile demonstrated to be the catalytic active center. Significant improvement in catalytic kinetics under AMF excitation (3.9 mT) is achieved, yielding a remarkable enhancement of hydrogen evolution reaction magnetothermal-current by ≈924%. Through theoretical calculations and spin-related electrochemical experiments, such promotion in catalyst activity can be attributed to spin flip (or canting) in Gd SAs leading to the atomic magnetic heating effect on catalytic active center. Together with the embodied high stability, the implement of AMF to the SAs field is demonstrated in this work, and the precisely atomic magnetic heating on specific SAs offers unprecedented thinking for further improvement of SACs performance in the future.
Collapse
Affiliation(s)
- Wei Zeng
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Zhenzhen Jiang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Xunguo Gong
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Ce Hu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Xingfang Luo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Wen Lei
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
33
|
Fang W, Dang J, Hu Y, Wu Y, Xin S, Chen B, Zhao H, Li Z. Electronic distribution tuning of vanadium-cobalt bimetallic MOFs for highly efficient hydrazine-assisted energy-saving hydrogen production. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Chen H, Zhang S, Liu Q, Yu P, Luo J, Hu G, Liu X. CoSe2 nanocrystals embedded into carbon framework as efficient bifunctional catalyst for alkaline seawater splitting. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|