1
|
Chen X, Huang Y, Yang S, Wang S, Chen L, Yu X, Gan N, Huang S. In-situ nanozyme catalytic amplification coupled with a universal antibody orientation strategy based electrochemical immunosensor for AD-related biomarker. Biosens Bioelectron 2024; 266:116738. [PMID: 39241336 DOI: 10.1016/j.bios.2024.116738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
An in-situ nanozyme signal tag combined with a DNA-mediated universal antibody-oriented strategy was proposed to establish a high-performance immunosensing platform for Alzheimer's disease (AD)-related biomarker detection. Briefly, a Zr-based metal-organic framework (MOF) with peroxidase (POD)-like activity was synthesized to encapsulating the electroactive molecule methylene blue (MB), and subsequently modified with a layer of gold nanoparticles on its surface. This led to the creation of double POD-like activity nanozymes surrounding the MB molecule to form a nanozyme signal tag. A large number of hydroxyl radicals were generated by the nanozyme signal tag with the help of H2O2, which catalyzed MB molecules in situ to achieve efficient signal amplification. Subsequently, a DNA-aptamer-mediated universal antibody-oriented strategy was proposed to enhance the binding efficiency for the antigen (target). Meanwhile, a poly adenine was incorporated at the end of the aptamer, facilitating binding to the gold electrode and providing anti-fouling properties due to the hydrophilicity of the phosphate group. Under optimal conditions, this platform was successfully employed for highly sensitive detection of AD-associated tau protein and BACE1, achieving limits of detection with concentrations of 3.34 fg/mL and 1.67 fg/mL, respectively. It is worth mentioning that in the tau immunosensing mode, 20 clinical samples from volunteers of varying ages were analyzed, revealing significantly higher tau expression levels in the blood samples of elderly volunteers compared to young volunteers. This suggests that the developed strategy holds great promise for early AD diagnosis.
Collapse
Affiliation(s)
- Xiyu Chen
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yang Huang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuo Yang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng Wang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lin Chen
- Department of Pharmacy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, China
| | - Xiyong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China.
| | - Shengfeng Huang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
2
|
Du J, Sun J, Ding Q, Shi F, Chen C, Li C, Dong B, Wang L, Kim JS, Xu L. Dual oxidative stress biomarkers co-recognition in periodontal microenvironment: A flexible and low-power consumption nanozyme sensing platform. Biosens Bioelectron 2024; 265:116688. [PMID: 39213818 DOI: 10.1016/j.bios.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Sensing platforms with high interference immunity and low power consumption are crucial for the co-detection of dual oxidative stress biomarkers and clinical diagnosis of periodontitis. Herein, we constructed a bifunctional nanozyme to identify hydrogen peroxide (H2O2) and ascorbic acid (AA) with low crosstalk at zero or low bias voltage. To target H2O2 and AA, Fe(III) meso-tetra(4-carboxyphenyl) porphine (TCPP(Fe)) and Pt nanoclusters were selected as active sites respectively, and titanium carbide nanosheets were additionally introduced as a sensitizer. Due to their highly efficient catalytic properties, self-powered detection of H2O2 without bias voltage and distinguishable AA detection at 0.45 V were successfully achieved. Density functional theory calculations further confirmed the binding sites for target molecules and elucidated the sensing mechanism. On this basis, a dual-channel screen-printed electrode was fabricated to further ensure the discriminative detection of dual biomarkers at the device level. The constructed flexible, low-power consumption sensing platform was successfully applied to raw clinical samples, effectively distinguishing between healthy individuals and patients with varying degrees of periodontitis. This work is expected to provide new insights into the design of highly specific nanozymes and low-power consumption electrochemical sensing systems, which will contribute to the accurate and convenient diagnosis of periodontitis.
Collapse
Affiliation(s)
- Juanrui Du
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Jiao Sun
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Fangyu Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Cong Chen
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Zhou DW, Yin M, Shen Y, Wang XX, Wang CY, Chen KZ, Fang Q, Qiao SL. LDHzyme-assisted high-performance on-site tracking of levodopa pharmacokinetics for Parkinson's disease management. Biosens Bioelectron 2024; 268:116926. [PMID: 39536419 DOI: 10.1016/j.bios.2024.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder marked by the loss of dopaminergic neurons and the consequent decline in motor and cognitive functions. The primary therapeutic agent levodopa necessitates precise dosing due to its narrow therapeutic window and complex pharmacokinetics. This study presents the development of a novel CuCoFe-LDHzyme-based sweat sensor for real-time monitoring of levodopa concentration in PD patients. Employing differential pulse voltammetry (DPV) technique, the sensor demonstrates high sensitivity and selectivity, achieving a detection limit of 28.1 nM. The sensor's design allows for non-invasive, continuous monitoring, significantly enhancing patient convenience compared to traditional blood sampling methods. Through pH correction, precise quantification of levodopa in sweat is accomplished, and a strong correlation (Pearson coefficient = 0.833) with blood levodopa levels is established. The pharmacokinetic profile of levodopa is reconstructed in real-time, offering a promising tool for optimizing PD treatment regimens. This study highlights the potential of CuCoFe-LDHzyme sensors to advance personalized treatment strategies, aiming to improve the quality of life for PD patients by providing clinicians with real-time data for medication adjustments.
Collapse
Affiliation(s)
- Da-Wei Zhou
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, PR China
| | - Meng Yin
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, PR China
| | - Yun Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Xiao-Xue Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, PR China
| | - Chen-Yu Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, PR China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, PR China
| | - Qi Fang
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, PR China.
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, PR China.
| |
Collapse
|
4
|
Song Y, Wang Z, Liao J, Zhang X, Yan J, Luo H, Huang KJ, Tan X, Ya Y. Dual-electrode signal amplification self-powered biosensing platform based on nanozyme boosting target-induced DNA nanospace array for ultrasensitive detection of sugarcane Pokkah Boeng disease pathogenic bacteria. Int J Biol Macromol 2024; 281:136423. [PMID: 39393731 DOI: 10.1016/j.ijbiomac.2024.136423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Sugarcane is a crop with significant economic importance worldwide. However, pokkah boeng disease poses a serious threat to its production and the sustainable development. There is a pressing necessity for precise and portable detection methods. We develop a dual-electrode signal amplification biosensing platform, for highly sensitive detection of sugarcane pokkah boeng disease pathogenic bacteria. This innovative platform integrates highly catalytic AuNPs/Mn3O4 nanozymes with N-GDY, along with a target-induced development of DNA nanostructure arrays. AuNPs/N-GDY serves as dual electrode substrates, and AuNPs/Mn3O4 nanozymes are surface-loaded as the bioanode. The biocathode is constructed by introducing DNA nanospace arrays onto the electrode through target-induced methods. [Ru(NH3)6]3+ is embedded into the nucleic acid double-helix scaffold via electrostatic adsorption, generating an EOCV signal that is strongly correlated with the target concentration. To further enhance sensitivity, the detection platform is combined with a capacitor to amplify the detection signal, utilizing its high power density, which results in a 22.5-fold increase in sensitivity. The method offers a linear detection range of 0.0001 to 10,000 pM and an detection limit of 32.5 aM (S/N = 3). This method supplies a novel approach for real-time monitoring and competent oversight of pokkah boeng disease pathogenic bacteria.
Collapse
Affiliation(s)
- YuJie Song
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - ZePing Wang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jie Liao
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiaoqiu Zhang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jun Yan
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Yu Ya
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
5
|
Solangi NH, Karri RR, Mubarak NM, Mazari SA, Sharma BP. Holistic insights into carbon nanotubes and MXenes as a promising route to bio-sensing applications. NANOSCALE 2024. [PMID: 39470605 DOI: 10.1039/d4nr03008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Essential biosensor use has become increasingly important in drug discovery and recognition, biomedicine, food safety, security, and environmental research. It directly contributed to the development of specialized, reliable diagnostic instruments known as biosensors, which use biological sensing components. Traditional biosensors have poor performance, so scientists need to develop advanced biosensors with promising selectivity, sensitivity, stability, and reusability. These are all parameter modifications associated with the characteristics of the sensing material. Carbon nanotubes (CNTs) and MXenes are promising as targeted sensing agents in advanced functional materials because of their promising chemical and physical properties and limited toxic effects. Based on available data and sensing performance, MXene is better for biosensing applications than CNTs. Because of their large specific surface area (SSA), superior electrical conductivity, and adaptable surface chemistry that facilitates simple functionalization and robust interactions with biomolecules, MXenes are typically regarded as the superior option for biosensors. Additionally, because of their hydrophilic nature, they are more suited to biological settings, which increases their sensitivity and efficacy in identifying biological targets. MXenes are more suitable for biosensing applications due to their versatility and compatibility with aquatic environments, even if CNTs have demonstrated stability and muscular mechanical strength. However, MXenes offer better thermal stability, which is crucial for applications in diverse temperature environments. This study reviews and compares the biosensing capabilities, synthesis methods, unique properties, and toxicity of CNTs and MXenes. Both nanomaterials effectively detect various pollutants in food, biological substances, and human bodies, making them invaluable in environmental monitoring and medical diagnostics. In conclusion, CNTs work better for biosensors that must be strong, flexible, and long-lasting under different conditions. MXenes, on the other hand, work better when chemical flexibility and compatibility with wet environments are essential.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- State Key Laboratory of Chemical Resource Engineering and College of Chemistry, Beijing University of Chemical Technology, P. Box 98, Beisanhuan East Road 15, Beijing 100029, PR China
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- Faculty of Engineering, INTI International University, 71800, Nilai, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan.
| | - Bharat Prasad Sharma
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Zhou X, Shao Z, Yan S, Lin Y, Liu Y, Feng X, Sha J, Ding L, Wang K. Coencapsulating TMB Probes and Bimetallic MOF Nanozymes in a Hydrogel Patch for Fabricating Reusable Visual VC Sensors. Anal Chem 2024; 96:17310-17318. [PMID: 39412411 DOI: 10.1021/acs.analchem.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
As a typical chromogenic probe, 3,3',5,5'-tetramethylbenzidine (TMB) has been widely applied in the field of visual detection due to its low toxicity and highly sensitive response. Due to the hydrophobic nature of TMB, encapsulating it into a hydrogel, which serves as an ideal matrix for wearable sensors, presents significant challenges that complicate the fabrication of visual wearable devices. Herein, the TMB probe and bimetallic MOF nanozymes are coencapsulated in a hydrogel patch for the fabrication of reusable visual sensors. Hydrophobic TMB is oxidized to hydrophilic ox-TMB by a bimetallic MOF (CuFe-MOF), allowing its diffusion into a hydrophilic agarose hydrogel patch, where it is reduced back to TMB. This process allows the coimmobilization and coencapsulation of CuFe-MOF and TMB within the hydrogel patch. Leveraging the color change between TMB and ox-TMB, as a proof-of-concept application, a reusable visual "On-Off-On" sensor is simply constructed and successfully applied to detect vitamin C in human sweat. Color changes can be quickly read by the naked eye or by smart devices without the need for external equipment. Meanwhile, based on the reversible conversion relationship between TMB and ox-TMB, a reusable sensor construction strategy is proposed. This approach not only facilitates the use of a TMB probe in hydrogel applications but also offers inspiration for the development of point-of-care testing equipment, demonstrating significant application potential.
Collapse
Affiliation(s)
- Xilong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhiying Shao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Sihan Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuhang Lin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanhao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xujing Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Junling Sha
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
7
|
Jiang X, Yao T, Shi X, Han H, Ma Z. Fast tailoring the ZIF-8 surface microenvironment at ambient temperature to boost glucose oxidase-like activity of AuNPs for biosensing. Colloids Surf B Biointerfaces 2024; 245:114331. [PMID: 39489987 DOI: 10.1016/j.colsurfb.2024.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Rational design and tailoring of the surface microenvironment surrounding the catalytic sites, such as noble metal nanoparticles, is an effective way to enhance the catalytic activity of mimicking enzymes. However, it remains on-going challenges to regulate the microenvironment of the catalytic sites due to the lack of tunable variability in structural precision of conventional solid catalysts. Herein, three types of zeolitic imidazolate framework-8 (ZIF-8) with different major crystal facet orientations, i.e., cubic with (100) facets (denoted ZIF-8c), truncated dodecahedral with (100), (110) facets (denoted ZIF-8tr), and dodecahedral with (110) facets (denoted ZIF-8r), were developed facilely using an electrochemical method by switching the potential at ambient temperature. Because the Zn2+ nodes were predominantly exposed on the (100) facets of ZIF-8, while the ligands were mainly exposed on the (110) facets. Hence, gold nanoparticles (AuNPs) showed differential glucose oxidase (GOx)-like activities when anchored in situ on different crystal facets of ZIF-8 and obeyed the following order ZIF-8c/Au>ZIF-8tr/Au>ZIF-8r/Au. Notably, both the metal nodes and aromatic linkers of ZIF-8 interacted with AuNPs through coordination and π-π interactions. The Zn2+ nodes facilitated the formation of the electron-deficient Au species. The electron transfer from AuNPs to Zn2+ sites effectively boosted the catalytic activity. It was known that directly tailoring the microenvironment at the supporting sites of noble metal catalysts to boost catalysis through a facile electrochemical method was not reported. Based on the favorable GOx-like activity and long-term stability of ZIF-8tr/Au, a highly sensitive electrochemical biosensing platform for assaying squamous cell carcinoma antigen (SCCA) was developed. It enabled fg-level detection of cancer marker.
Collapse
Affiliation(s)
- Xianrui Jiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Tao Yao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xingxin Shi
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
8
|
Dong H, Huang R, Yang D, Zhao J, Lin B, Pan Y, Lin X, Yang Y, Guo Z, Li N, Zhuang J. Just-in-Time Generation of Nanolabels via In Situ Biomineralization of ZIF-8 Enabling Ultrasensitive MicroRNA Detection on Unmodified Electrodes. Anal Chem 2024; 96:16793-16801. [PMID: 39391952 DOI: 10.1021/acs.analchem.4c03434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Nanolabels can enhance the detection performance of electrochemical biosensing methods, yet their practical application is hindered by complex preparation, batch-to-batch variability, and poor long-term storage stability. Herein, we present a novel electrochemical method for miRNA detection based on the just-in-time generation of zeolitic imidazolate framework-8 (ZIF-8) nanolabels initiated by nucleic acids. In this design, the target miRNA-21 is captured with magnetic beads and polyadenylated by Escherichia coli Poly(A) polymerase (EPP), producing miRNA-21 molecules with poly(A) tails (miR-21-poly(A)). These molecules are then adsorbed onto a bare gold electrode (AuE) surface via adenine-gold affinity interactions, serving as nucleation sites for the rapid in situ formation of ZIF-8 nanoparticles. The ZIF-8 nanoparticles function as signal labels, impeding electron transfer at the electrode interfaces and thereby generating a notable electrochemical signal. The developed method demonstrated exceptional sensitivity, with a detection limit (LOD) as low as 2.3 aM and a linear detection range from 10 aM to 1000 fM. The practical application of the developed method was validated by using it to evaluate miRNA-21 expression levels in various biological samples, including cell lines, tumor tissues, and clinical blood samples from non-small cell lung cancer (NSCLC) patients. This approach simplifies the detection process by eliminating the need for presynthesized nanomaterials and premodified electrodes. Its simplicity and high sensitivity make this method a promising tool for point-of-care testing and a wide range of biomedical research applications.
Collapse
Affiliation(s)
- Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Rong Huang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Dayun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jia Zhao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Baoquan Lin
- Department of Cardio thoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian 350025, China
| | - Yingxin Pan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Xi Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| | - Yang Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Zhao Guo
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Junyang Zhuang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
9
|
Annadurai H, Vengudusamy R, Chen SM, Kao CR. Facile stoichiometric interfacial surface bonded cerium oxide and graphene oxide heterostructure for efficient electrochemical non-enzymatic detection of dopamine. J Mater Chem B 2024; 12:9979-9990. [PMID: 39229782 DOI: 10.1039/d4tb01729c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Emerging technology in the new era of sensors to detect and quantify neurological reaction-based research has demanded the development of sensors for the neurotransmitter dopamine (DA). In recent decades, electrochemical sensors have offered rapid and sensitive detection of DA, but the presence of interfering compounds, such as uric acid (UA) and ascorbic acid (AA), poses a great threat to the development of DA sensors. Additionally, reusing traditional methods leads to challenges like prolonged preparation and expensive instruments. This research work offers a nanohybrid two-dimensional (2D) paper-like graphene oxide (GO) and three-dimensional (3D) cerium oxide nanosphere (CeONS) heterostructure composite (G-CeONS) created via stoichiometric synthesis for the non-enzymatic detection of DA oxidation in the presence of other complex biological compounds. The constructed G-CeONS nanohybrid composite enables enhanced selectivity and sensitivity towards DA detection through its interfacial engineering. The heterostructure formation of a 2D nanosheet draped over 3D nanospheres exhibits a wide linear concentration range of 100-30 800 nM with a low detection limit of 20.98 nM. Further investigation of the real-time performance on human saliva and DA injections afforded prominent results. In addition, the synergetic effect of G-CeONS improves DA detection accuracy and reliability towards enabling transformational neurochemical and medicinal applications.
Collapse
Affiliation(s)
- Hemarani Annadurai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Renganathan Vengudusamy
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan.
| | - C R Kao
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
10
|
Wu Q, Wang Y, Wang L, Su Y, He G, Chen X, Hou L, Zhang W, Wang YY. A Portable Electrochemical Biosensor Based on an Amino-Modified Ionic Metal-Organic Framework for the One-Site Detection of Multiple Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39363450 DOI: 10.1021/acsami.4c13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Constructing stable, portable sensors and revealing their mechanisms is challenging. Ion metal-organic frameworks (IMOFs) are poised to serve as highly effective electrochemical sensors for detecting organophosphorus pesticides (OPs), leveraging their unique charge properties. In this work, an amino-modified IMOF was constructed and combined with near-field communication (NFC) technology to develop a portable, touchless, and battery-free electrochemical biosensor NH2-IMOF@CS@AChE. -NH2 in NH2-IMOF gives the framework a higher electropositivity compared to IMOF, enhancing the electrostatic attraction with acetylcholinesterase (AChE), which is beneficial for immobilizing AChE. Furthermore, the uncoordinated O atoms and the (CH3)2NH2+ groups in NH2-IMOF help to form stronger bonds with AChE through hydrogen bonds. The results showed a wide linear response range of 1 × 10-15 to 1 × 10-9 M and a low detection limit of 1.24 × 10-13 M for glyphosate (Gly) in the practical detection of OPs. Additionally, electrochemical biosensor arrays were constructed to effectively identify and distinguish multiple OPs on the basis of their unique differential pulse voltammetry (DPV) electrochemical signals. This work provides a simple and effective solution for on-site OP analysis and can be widely applied in food safety and water quality monitoring.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yifei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Linxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yu Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Guorong He
- International Joint Research Centre for the Battery-Free Internet of Things, Advanced Battery-Free Sensing and Computing Technology International Science and Technology Cooperation Base, Northwest University, Xi'an 710127, PR China
| | - Xiaojiang Chen
- International Joint Research Centre for the Battery-Free Internet of Things, Advanced Battery-Free Sensing and Computing Technology International Science and Technology Cooperation Base, Northwest University, Xi'an 710127, PR China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Wenyan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| |
Collapse
|
11
|
Khan AS, Sahu SK, Dash SK, Mishra T, Padhan AR, Padhan D, Dash SL, Sarangi MK. The Exploration of Nanozymes for Biosensing of Pathological States Tailored to Clinical Theranostics. Chem Biodivers 2024; 21:e202401326. [PMID: 39041292 DOI: 10.1002/cbdv.202401326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The nanozymes (NZs) are the artificial catalyst deployed for biosensing with their uniqueness (high robustness, surface tenability, inexpensive, and stability) for obtaining a better response/miniaturization of the varied sensors than their traditional ancestors. Nowadays, nanomaterials with their broadened scale such as metal-organic frameworks (MOFs), and metals/metal oxides are widely engaged in generating NZ-based biosensors (BS). Diverse strategies like fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), and electrochemical sensing principles were implemented for signal transduction of NZs. Despite broad advantages, numerous encounters (like specificity, feasibility, stability, and issues in scale-up) are affecting the potentialities of NZs-based BS, and thus need prior attention for a promising exploration for a revolutionary outcome in advanced theranostics. This review includes different types of NZs, and the progress of numerous NZs tailored bio-sensing techniques in detecting abundant bio analytes for theranostic purposes. Further, the discussion highlighted some recent challenges along with their progressive way of possibly overcoming followed by commercial outbreaks.
Collapse
Affiliation(s)
- Abdul Sayeed Khan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Sudhir Kumar Sahu
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Santosh Kumar Dash
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Tankadhar Mishra
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Amiya Ranjan Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Damodar Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | | | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| |
Collapse
|
12
|
Yang Z, Wang L, Zhang X, Zhang J, Ren N, Ding L, Wang A, Liu J, Liu H, Yu X. Nitrogen Vacancy Modulation of Tungsten Nitride Peroxidase-Mimetic Activity for Bacterial Infection Therapy. ACS NANO 2024; 18:24469-24483. [PMID: 39172806 DOI: 10.1021/acsnano.4c07856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Bacterial infections claim millions of lives every year, with the escalating menace of microbial antibiotic resistance compounding this global crisis. Nanozymes, poised as prospective substitutes for antibiotics, present a significant frontier in antibacterial therapy, yet their precise enzymatic origins remain elusive. With the continuous development of nanozymes, the applications of elemental N-modulated nanozymes have spanned multiple fields, including sensing and detection, infection therapy, cancer treatment, and pollutant degradation. The introduction of nitrogen into nanozymes not only broadens their application range but also holds significant importance for the design of catalysts in biomedical research. The synergistic interplay between W and N induces pivotal alterations in electronic configurations, endowing tungsten nitride (WN) with a peroxidase-like functionality. Furthermore, the introduction of N vacancies augments the nanozyme activity, thus amplifying the catalytic potential of WN nanostructures. Rigorous theoretical modeling and empirical validation corroborate the genesis of the enzyme activity. The meticulously engineered WN nanoflower architecture exhibits an exceptional ability in traversing bacterial surfaces, exerting potent bactericidal effects through direct physical interactions. Additionally, the topological intricacies of these nanostructures facilitate precise targeting of generated radicals on bacterial surfaces, culminating in exceptional bactericidal efficacy against both Gram-negative and Gram-positive bacterial strains along with notable inhibition of bacterial biofilm formation. Importantly, assessments using a skin infection model underscore the proficiency of WN nanoflowers in effectively clearing bacterial infections and fostering wound healing. This pioneering research illuminates the realm of pseudoenzyme activity and bacterial capture-killing strategies, promising a fertile ground for the development of innovative, high-performance artificial peroxidases.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Xiaoyu Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jian Zhang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| | - Na Ren
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Aizhu Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
13
|
Xiong Y, Mi B, Liu G, Zhao Y. Microenvironment-sensitive nanozymes for tissue regeneration. Biomaterials 2024; 309:122585. [PMID: 38692147 DOI: 10.1016/j.biomaterials.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Tissue defect is one of the significant challenges encountered in clinical practice. Nanomaterials, including nanoparticles, nanofibers, and metal-organic frameworks, have demonstrated an extensive potential in tissue regeneration, offering a promising avenue for future clinical applications. Nonetheless, the intricate landscape of the inflammatory tissue microenvironment has engendered challenges to the efficacy of nanomaterial-based therapies. This quandary has spurred researchers to pivot towards advanced nanotechnological remedies for overcoming these therapeutic constraints. Among these solutions, microenvironment-sensitive nanozymes have emerged as a compelling instrument with the capacity to reshape the tissue microenvironment and enhance the intricate process of tissue regeneration. In this review, we summarize the microenvironmental characteristics of damaged tissues, offer insights into the rationale guiding the design and engineering of microenvironment-sensitive nanozymes, and explore the underlying mechanisms that underpin these nanozymes' responsiveness. This analysis includes their roles in orchestrating cellular signaling, modulating immune responses, and promoting the delicate process of tissue remodeling. Furthermore, we discuss the diverse applications of microenvironment-sensitive nanozymes in tissue regeneration, including bone, soft tissue, and cartilage regeneration. Finally, we shed our sights on envisioning the forthcoming milestones in this field, prospecting a future where microenvironment-sensitive nanozymes contribute significantly to the development of tissue regeneration and improved clinical outcomes.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bobin Mi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
14
|
Chen B, He J, Tian K, Qu J, Hong L, Lin Q, Yang K, Ma L, Xu X. Research Progress on Detection of Pathogens in Medical Wastewater by Electrochemical Biosensors. Molecules 2024; 29:3534. [PMID: 39124939 PMCID: PMC11314202 DOI: 10.3390/molecules29153534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The detection of pathogens in medical wastewater is crucial due to the high content of pathogenic microorganisms that pose significant risks to public health and the environment. Medical wastewater, which includes waste from infectious disease and tuberculosis facilities, as well as comprehensive medical institutions, contains a variety of pathogens such as bacteria, viruses, fungi, and parasites. Traditional detection methods like nucleic acid detection and immunological assays, while effective, are often time-consuming, expensive, and not suitable for rapid detection in underdeveloped areas. Electrochemical biosensors offer a promising alternative with advantages including simplicity, rapid response, portability, and low cost. This paper reviews the sources of pathogens in medical wastewater, highlighting specific bacteria (e.g., E. coli, Salmonella, Staphylococcus aureus), viruses (e.g., enterovirus, respiratory viruses, hepatitis virus), parasites, and fungi. It also discusses various electrochemical biosensing techniques such as voltammetry, conductometry, impedance, photoelectrochemical, and electrochemiluminescent biosensors. These technologies facilitate the rapid, sensitive, and specific detection of pathogens, thereby supporting public health and environmental safety. Future research may should pay more attention on enhancing sensor sensitivity and specificity, developing portable and cost-effective devices, and innovating detection methods for diverse pathogens to improve public health protection and environmental monitoring.
Collapse
Affiliation(s)
- Bangyao Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Jiahuan He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Kewei Tian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Jie Qu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Lihui Hong
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Qin Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing College of New Materials and Chemical Engineering, Institute of Petrochemical Technology, Beijing 102617, China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| |
Collapse
|
15
|
Lin X, Zhou P, Li Q, Pang Y. "Three-in-One" Plasmonic Au@PtOs Nanocluster Driven Lateral Flow Assay for Multimodal Cancer Exosome Biosensing. Anal Chem 2024; 96:10686-10695. [PMID: 38885608 DOI: 10.1021/acs.analchem.4c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Exploiting the multiple properties of nanozymes for the multimode lateral flow assay (LFA) is urgently required to improve the accuracy and versatility. Herein, we developed a novel plasmonic Au nanostar@PtOs nanocluster (Au@PtOs) as a multimode signal tag for LFA detection. Based on the PtOs bimetallic nanocluster doping strategy, Au@PtOs can indicate both excellent SERS enhancement and nanozyme catalytic activity. Meanwhile, Au@PtOs displays a better photothermal effect than that of Au nanostars. Therefore, catalytic colorimetric/SERS/temperature three-mode signals can be read out based on the Au@PtOs nanocomposite. The Au@PtOs was combined with LFA and applied for breast cancer exosome detection. The detection limit for the colorimetric/SERS/temperature mode was 2.6 × 103/4.1 × 101/4.6 × 102 exosomes/μL, respectively, which was much superior to the common Au nanoparticles LFA (∼105 exosomes/μL). Moreover, based on the fingerprint molecular recognition ability of the SERS mode, exosome phenotypes derived from different breast cancer cell lines can be discriminated easily. Based on the convenient visual colorimetric mode and sensitive SERS/temperature quantitative modes, Au@PtOs driven LFA can satisfy the requirements of accurate and flexible multimodal sensing in different application scenarios.
Collapse
Affiliation(s)
- Xiaorui Lin
- Capital Medical University, Department of Toxicology, No. 10 Xitoutiao, You An Men, Beijing 100069, P. R. China
| | - Pengyou Zhou
- Capital Medical University, Department of Toxicology, No. 10 Xitoutiao, You An Men, Beijing 100069, P. R. China
| | - Qing Li
- Capital Medical University, Department of Toxicology, No. 10 Xitoutiao, You An Men, Beijing 100069, P. R. China
| | - Yuanfeng Pang
- Capital Medical University, Department of Toxicology, No. 10 Xitoutiao, You An Men, Beijing 100069, P. R. China
| |
Collapse
|
16
|
Wang R, Li Q, Wu P, Ren K, Li Y, Wang Y, Zhu H, Lv C. Fe-Capsaicin Nanozymes Attenuate Sepsis-Induced Acute Lung Injury via NF-κB Signaling. Int J Nanomedicine 2024; 19:73-90. [PMID: 38187907 PMCID: PMC10771734 DOI: 10.2147/ijn.s436271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024] Open
Abstract
Background In sepsis, the lungs are one of the most severely affected organs, usually resulting in acute lung injury (ALI). Capsaicin (CAP) is a natural compound found in chili peppers that has pain-relieving and anti-inflammatory properties. Here, we report that nanoparticles containing capsaicin and iron (Fe-CAP NPs) exhibited anti-inflammatory effects in the treatment of ALI. Methods The morphological characteristics of nanozymes were detected. RAW 264.7 cells were divided into four groups: control, lipopolysaccharide (LPS), CAP+LPS and Fe-CAP+LPS groups. The expression of inducible nitric oxide synthase (iNOS), transforming growth factor-β (TGF-β), and tumor necrosis factor-α (TNF-α) was assessed by immunofluorescence, Western blot, and enzyme-linked immunosorbent assay (ELISA). Nuclear factor kappa-B (NF-κB) expression was determined by Western blot. C57 mice were divided into control, LPS, CAP+LPS and Fe-CAP+LPS groups. Interleukin-6 (IL-6) and iNOS expression in the lung was detected by Western Blot. IL-6 and TNF-α expression in serum was detected by ELISA. Extravasated Evans blue, histopathological evaluation and wet-to-dry (W/D) weight ratio were used to assess pulmonary capillary permeability. The blood and major organs (heart, liver, spleen, lung and kidney) of mice were tested for the toxicity of Fe-CAP NPs. Results In the LPS group, TNF-α, iNOS, p-NF-κB and p-IKBα expression increased. However, their expression was significantly decreased in the Fe-CAP+LPS group. TGF-β expression showed the opposite trend. In vivo, IL-6 and iNOS expression was notably increased in the lungs of LPS group of mice but decreased with Fe-CAP pretreatment. Fe-CAP significantly ameliorated lung EB leakage, improved the histopathology of lung tissue and reduced the W/D weight ratio. The nanoparticles showed non-cytotoxicity, when studying these biological activities. Conclusion Fe-CAP NPs could alleviated inflammation by inhibiting the expression of pro-inflammatory factors in macrophages, increasing the expression of anti-inflammatory factors, and alleviating lung tissue damage.
Collapse
Affiliation(s)
- Ruijie Wang
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, People’s Republic of China
| | - Quan Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Pengxin Wu
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ke Ren
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yang Wang
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Huadong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chuanzhu Lv
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, People’s Republic of China
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, People’s Republic of China
| |
Collapse
|