1
|
Liu D, Ge H, Song M, Jiang Y, Gong X, You T, Fu L, Fu Z, Zhang Y. Machine Learning Driven Optimization of Electrolyte for Highly Reversible Zn-Air Batteries with Superior Long-Term Cycling Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2417161. [PMID: 39711237 DOI: 10.1002/adma.202417161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Aqueous alkaline Zn-air batteries (ZABs) have garnered widespread attention due to their high energy density and safety, however, the poor electrochemical reversibility of Zn and low battery round-trip efficiency strongly limit their further development. The manipulation of an intricate microscopic balance among anode/electrolyte/cathode, to enhance the performance of ZABs, critically relies on the formula of electrolytes. Herein, the Bayesian optimization approach is employed to achieve the effective design of optimal compositions of multicomponent electrolytes, resulting in the remarkable enhancement of ZAB performance. Notably, ethylene glycol has been successfully employed as both electrolyte additive and fuel, playing key roles in changing the reaction pathways of ZABs, especially the storage form of discharge products from ZnO deposition on the anode to Zn2+-based hybrid particle colloids in the electrolyte. As a result, the as-obtained novel ZABs can deliver superior battery reversibility and stability (1700 h at 2 mA cm-2 and 1400 h at 20 mA cm-2), greatly improved round-trip efficiency as high as 76.3%, and even continuous discharge until complete Zn anode depletion. This work has demonstrated enormous potential for long-term energy storage applications and holds promise for bringing new opportunities to the development of ZABs.
Collapse
Affiliation(s)
- Dapeng Liu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Huaiyun Ge
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingming Song
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ying Jiang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiangrui Gong
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tingting You
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lichao Fu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zerui Fu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yu Zhang
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
Li F, Wang X, Li X, Fu Y, Sun Z, Zhao K, Zhu C, Xu X. Construction of Fully Integrated and Energy Self-Sufficient NO 2 Gas Sensors Utilizing Zinc-Air Batteries. ACS Sens 2024; 9:4037-4046. [PMID: 39039775 DOI: 10.1021/acssensors.4c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Exploration of novel self-powered gas sensors free of external energy supply restrictions, such as light illumination and mechanical vibration, for flexible and wearable applications is in urgent need. Herein, this work constructs a flexible and self-powered NO2 gas sensor based on zinc-air batteries (ZABs) with the cathode of the ZABs also acting as the gas-sensitive layer. Furthermore, the SiO2 coating film, serving as a hydrophobic layer, increases the three-phase interfaces for the NO2 reduction reaction. The constructed sensors exhibit a high sensing response (0.3 V @ 5 ppm), an ultralow detection limit (61 ppb), a fast sensing process (129 and 103 s), and excellent selectivity. Moreover, the sensors also possess a wide working temperature range and a low working temperature tolerance (0.34 V at -15 °C). Simulations indicate that the hydrophobic surface at the cathode-hydrogel interface will accommodate more NO2 gas molecules at the reaction sites and prevent the influence of inner water evaporation and direct dissolution of NO2 in the electrolyte, which is beneficial to the enhanced gas sensing abilities. Finally, the self-powered sensing device is incorporated into a smart sensing system for practical applications. This work will pave a new insight into the construction of integrated and energy self-sufficient smart gas sensing systems.
Collapse
Affiliation(s)
- Feifei Li
- Laboratory of Functional Micro-Nano Materials and Devices, School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan 250022, Shandong, P. R. China
| | - Xiao Wang
- Laboratory of Functional Micro-Nano Materials and Devices, School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan 250022, Shandong, P. R. China
| | - Xixi Li
- Laboratory of Functional Micro-Nano Materials and Devices, School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan 250022, Shandong, P. R. China
| | - Yao Fu
- Laboratory of Functional Micro-Nano Materials and Devices, School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan 250022, Shandong, P. R. China
| | - Zhaokun Sun
- Laboratory of Functional Micro-Nano Materials and Devices, School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan 250022, Shandong, P. R. China
| | - Keyang Zhao
- Laboratory of Functional Micro-Nano Materials and Devices, School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan 250022, Shandong, P. R. China
| | - Cunguang Zhu
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xijin Xu
- Laboratory of Functional Micro-Nano Materials and Devices, School of Physics and Technology, University of Jinan, 336 Nanxin Zhuang West Road, Jinan 250022, Shandong, P. R. China
| |
Collapse
|
3
|
Niu S, Yue D, Wang H, Ma Z, Li Q. Cu Regulating the Bifunctional Activity of Co-O Sites for the High-Performance Rechargeable Zinc-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36295-36303. [PMID: 38973617 DOI: 10.1021/acsami.4c04853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The rational design of cost-effective and highly active electrocatalysts becomes the crucial energy storage technology to boost the kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), which hinders the large-scale application of metal-air batteries under the situation of increasingly pressing energy anxiety. Herein, the Co-based ZIF introduced the moderate amount of Cu2+-derived Cu/Co metal nanoparticles (NPs) embedded in carbon frameworks after high-temperature calcination. The Co-O bond on the surface of Co nanoparticles is modulated by adjacent Cu nanoparticles with the surface Cu-O bonds. The resulted increase of the Co2+/Co3+ ratio in 0.1CuCo-NC enhances the ORR/OER bifunctional catalytic kinetics along with the ΔE of 0.639 V. In situ Raman spectra of the catalyst on the three-electrode system as well as in the driven zinc-air battery (ZAB) show that the Co-O active sites regulated by Cu nanoparticles with Cu-O bonds maintain a periodic lattice expansion and compression during discharging and charging. The zinc-air battery based on 0.1CuCo-NC has a peak power density of up to 198.3 mW cm-2, a mass-specific capacity of 798.2 mAh g-1, and a cycling stability of 923 h at room temperature. This work makes up the research gap of a Co-based metal-organic framework (MOF)-derived catalyst regulated by a transition metal.
Collapse
Affiliation(s)
- Shaoyang Niu
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dandan Yue
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhaoling Ma
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
4
|
Wang Q, Kaushik S, Xiao X, Xu Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem Soc Rev 2023; 52:6139-6190. [PMID: 37565571 DOI: 10.1039/d2cs00684g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Sustainable zinc-air batteries (ZABs) are considered promising energy storage devices owing to their inherent safety, high energy density, wide operating temperature window, environmental friendliness, etc., showing great prospect for future large-scale applications. Thus, tremendous efforts have been devoted to addressing the critical challenges associated with sustainable ZABs, aiming to significantly improve their energy efficiency and prolong their operation lifespan. The growing interest in sustainable ZABs requires in-depth research on oxygen electrocatalysts, electrolytes, and Zn anodes, which have not been systematically reviewed to date. In this review, the fundamentals of ZABs, oxygen electrocatalysts for air cathodes, physicochemical properties of ZAB electrolytes, and issues and strategies for the stabilization of Zn anodes are systematically summarized from the perspective of fundamental characteristics and design principles. Meanwhile, significant advances in the in situ/operando characterization of ZABs are highlighted to provide insights into the reaction mechanism and dynamic evolution of the electrolyte|electrode interface. Finally, several critical thoughts and perspectives are provided regarding the challenges and opportunities for sustainable ZABs. Therefore, this review provides a thorough understanding of the advanced sustainable ZAB chemistry, hoping that this timely and comprehensive review can shed light on the upcoming research horizons of this prosperous area.
Collapse
Affiliation(s)
- Qichen Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Shubham Kaushik
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
5
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
6
|
Zhang D, Hu W. Improving Cycle Life of Zinc-Air Batteries with Calcium Ion Additive in Electrolyte or Separator. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1864. [PMID: 37368294 DOI: 10.3390/nano13121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
The electrolyte carbonation and the resulting air electrode plugging are the primary factors limiting the cycle life of aqueous alkaline zinc-air batteries (ZABs). In this work, calcium ion (Ca2+) additives were introduced into the electrolyte and the separator to resolve the above issues. Galvanostatic charge-discharge cycle tests were carried out to verify the effect of Ca2+ on electrolyte carbonation. With the modified electrolyte and separator, the cycle life of ZABs was improved by 22.2% and 24.7%, respectively. Ca2+ was introduced into the ZAB system to preferentially react with CO32- rather than K+ and then precipitated granular CaCO3 prior to K2CO3, which was deposited on the surface of the Zn anode and air cathode to form a flower-like CaCO3 layer, thereby prolonging its cycle life.
Collapse
Affiliation(s)
- Donghao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, No. 135 Yaguan Road, Tianjin 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, No. 135 Yaguan Road, Tianjin 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 135 Yaguan Road, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
7
|
Chang J, Yang Y. Recent advances in zinc-air batteries: self-standing inorganic nanoporous metal films as air cathodes. Chem Commun (Camb) 2023; 59:5823-5838. [PMID: 37096450 DOI: 10.1039/d3cc00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Zinc-air batteries (ZABs) have promising prospects as next-generation electrochemical energy systems due to their high safety, high power density, environmental friendliness, and low cost. However, the air cathodes used in ZABs still face many challenges, such as the low catalytic activity and poor stability of carbon-based materials at high current density/voltage. To achieve high activity and stability of rechargeable ZABs, chemically and electrochemically stable air cathodes with bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity, fast reaction rate with low platinum group metal (PGM) loading or PGM-free materials are required, which are difficult to achieve with common electrocatalysts. Meanwhile, inorganic nanoporous metal films (INMFs) have many advantages as self-standing air cathodes, such as high activity and stability for both the ORR/OER under highly alkaline conditions. The high surface area, three-dimensional channels, and porous structure with controllable crystal growth facet/direction make INMFs an ideal candidate as air cathodes for ZABs. In this review, we first revisit some critical descriptors to assess the performance of ZABs, and recommend the standard test and reported manner. We then summarize the recent progress of low-Pt, low-Pd, and PGM-free-based materials as air cathodes with low/non-PGM loading for rechargeable ZABs. The structure-composition-performance relationship between INMFs and ZABs is discussed in-depth. Finally, we provide our perspectives on the further development of INMFs towards rechargeable ZABs, as well as current issues that need to be addressed. This work will not only attract researchers' attention and guide them to assess and report the performance of ZABs more accurately, but also stimulate more innovative strategies to drive the practical application of INMFS for ZABs and other energy-related technologies.
Collapse
Affiliation(s)
- Jinfa Chang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
8
|
Jia X, Ma J, Zhang C, Zhang Z, Fu L, Wang G. Gel Polymer Electrolyte with Alkaline Aquatic Colloidal Graphene for Flexible and Rechargeable Zinc Air Batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Zhang D, Hu W. Study on failure mechanism on rechargeable alkaline zinc-Air battery during charge/discharge cycles at different depths of discharge. Front Chem 2023; 11:1121215. [PMID: 36742038 PMCID: PMC9895414 DOI: 10.3389/fchem.2023.1121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Background: Zinc-air battery (ZAB) is a promising candidate for energy storage, but the short cycle life severely restricts the wider practical applications. Up to date, no consensus on the dominant factors affecting ZABs cycle life was reached to help understanding how to prolong the ZAB's cycle life. Here, a series of replacement experiments based on the ZAB were conducted to confirm the pivotal factors that influence the cycle life at different depths of discharge (DOD). Method: The morphology and composition of the components of the battery were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and chemical titration analyses. Result: SEM images and XRD results revealed that the failure of the zinc anode gradually deepens with the increase of DOD, while the performance degradation of the tricobalt tetroxide/Carbon Black (Co3O4/CB) air cathode depends on the operating time. The concentration of CO3 2- depends on the charge/discharge cycle time. The replacement experiments results show that the dominant factors affecting the ZAB's cycle life is the reduction of active sites on the surface of Co3O4/CB air cathode at a shallow DOD, while that is the carbonation of the electrolyte at a deep DOD. The reduction of active sites on the surface of Co3O4/CB air cathode is caused by the coverage of K2CO3 precipitated by carbonation of the electrolyte, suggesting that the carbonation of the alkaline electrolyte limits ZAB's cycle life. Conclusion: Therefore, this work not only further discloses the failure mechanism of ZAB, but also provides some feasible guidance to design a ZAB with along cycle life.
Collapse
Affiliation(s)
- Donghao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, China,Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, China,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China,*Correspondence: Wenbin Hu,
| |
Collapse
|
10
|
Dong Q, Ji S, Wang H, Linkov V, Wang R. Oxygen Spillover Effect at Cu/Fe 2O 3 Heterointerfaces to Enhance Oxygen Electrocatalytic Reactions for Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51222-51233. [PMID: 36326106 DOI: 10.1021/acsami.2c15769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rational design and synthesis of high-performance electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are critical for practical application of Zn-air batteries (ZABs). In this work, the bifunctional composite Cu-Fe2O3/PNC was prepared by a simple and effective wet-hydrothermal coupled dry-annealing synthesis strategy. The Cu-Fe2O3/PNC displayed excellent catalytic activity in ORR and OER with a potential difference of 0.63 V. More importantly, the ZAB assembled with Cu-Fe2O3/PNC exhibited a high-power density of 138.00 mW cm-2 and an excellent long-term cyclability. X-ray photoelectron spectroscopy (XPS) demonstrated that the excellent performance is due to the strong electronic interaction between Cu and Fe2O3 that arises as a result of the fast electron transfer through the Cu-O-Fe bond and the higher concentration of surface oxygen vacancies. Meanwhile, the spillover factor Bsp/2zF of Cu/PNC and Cu-Fe2O3/PNC obtained by the rotating disk experiment was 1.00 × 10-7 and 1.10 × 10-7 cm2·s-1, respectively, indicating that the oxygen spillover effect between Cu and Fe2O3 lowers the energy barrier, increases the number of active sites, and alters the rate-determining reaction step. This work demonstrated the significant potential of Cu-Fe2O3/PNC in energy conversion and storage applications, providing a new perspective for the rational design of bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Shan Ji
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing314001, China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Vladimir Linkov
- South African Institute for Advanced Material Chemistry, University of the Western Cape, Cape Town7535, South Africa
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| |
Collapse
|
11
|
Liu Y, Lu J, Xu S, Zhang W, Gao D. Carbon-based composites for rechargeable zinc-air batteries: A mini review. Front Chem 2022; 10. [PMID: 36465872 PMCID: PMC9709201 DOI: 10.3389/fchem.2022.1074984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Rechargeable zinc-air batteries (ZABs) have gained a significant amount of attention as next-generation energy conversion and storage devices owing to their high energy density and environmental friendliness, as well as their safety and low cost. The performance of ZABs is dominated by oxygen electrocatalysis, which includes the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Therefore, it is crucial to develop effective bifunctional oxygen electrocatalysts that are both highly active and stable. Carbon-based materials are regarded as reliable candidates because of their superior electrical conductivity, low price, and high durability. In this Review, we briefly introduce the configuration of ZABs and the reaction mechanism of bifunctional ORR/OER catalysts. Then, the most recent developments in carbon-based bifunctional catalysts are summarized in terms of carbon-based metal composites, carbon-based metal oxide composites, and other carbon-based composites. In the final section, we go through the significant obstacles and potential future developments for carbon-based bifunctional oxygen catalysts for ZABs.
Collapse
|
12
|
Liang J, Chen J, Wang G, Liu J, Wang N, Shi Z. Hydrogel-Derived Co 3ZnC/Co Nanoparticles with Heterojunctions Supported on N-Doped Porous Carbon and Carbon Nanotubes for the Highly Efficient Oxygen Reduction Reaction in Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48789-48800. [PMID: 36255288 DOI: 10.1021/acsami.2c14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is crucial for metal-air batteries and fuel cells to design non-precious-metal catalysts instead of platinum-based materials to boost the sluggish oxygen reduction reaction (ORR). Herein, Co3ZnC/Co nanoparticles with heterojunctions supported on N-doped porous carbon and carbon nanotubes (CNTs) are fabricated by pyrolyzing the hydrogel prepared from melamine and citric acid chelated with Co2+/Zn2+ ions. This hybrid shows strong ORR catalytic activity as its half-wave potential reaches 0.88 V (vs reversible hydrogen electrode (RHE)) in 0.1 M KOH and Zn-air batteries with the catalyst have higher discharge plateaus and capacity than those employing Pt/C. The hybrid mixed with RuO2 can also be used as an efficient bifunctional catalyst for rechargeable Zn-air batteries. The excellent performance is primarily derived from the Co3ZnC/Co heterojunctions, the electron transfer of which boosts the ORR catalysis. Moreover, the suitable ratio of Co/Zn in precursors results in the epitaxial growth of hollow CNTs and abundant mesopores, hence promoting the adsorption of oxygen and the transport of ORR-related species.
Collapse
Affiliation(s)
- Jianwen Liang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou510006, China
| | - Jinpeng Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou510006, China
| | - Guilong Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou510006, China
| | - Jingjing Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou510006, China
| | - Naiguang Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou510006, China
| | - Zhicong Shi
- School of Materials and Energy, Guangdong University of Technology, Guangzhou510006, China
| |
Collapse
|
13
|
Kim M, Firestein KL, Fernando JFS, Xu X, Lim H, Golberg DV, Na J, Kim J, Nara H, Tang J, Yamauchi Y. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics. Chem Sci 2022; 13:10836-10845. [PMID: 36320690 PMCID: PMC9491178 DOI: 10.1039/d2sc02726g] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we present microporous carbon (MPC), hollow microporous carbon (HMC) and hierarchically porous carbon (HPC) to demonstrate the importance of strategical designing of nanoarchitectures in achieving advanced catalyst (or electrode) materials, especially in the context of oxygen reduction reaction (ORR). Based on the electrochemical impedance spectroscopy and ORR studies, we identify a marked structural effect depending on the porosity. Specifically, mesopores are found to have the most profound influence by significantly improving electrochemical wettability and accessibility. We also identify that macropore contributes to the rate capability of the porous carbons. The results of the rotating ring disk electrode (RRDE) method also demonstrate the advantages of strategically designed double-shelled nanoarchitecture of HPC to increase the overall electron transfer number (n) closer to four by offering a higher chance of the double two-electron pathways. Next, selective doping of highly active Fe-N x sites on HPC is obtained by increasing the nitrogen content in HPC. As a result, the optimized Fe and N co-doped HPC demonstrate high ORR catalytic activity comparable to the commercial 20 wt% Pt/C in alkaline electrolyte. Our findings, therefore, strongly advocate the importance of a strategic design of advanced catalyst (or electrode) materials, especially in light of both structural and doping effects, from the perspective of nanoarchitectonics.
Collapse
Affiliation(s)
- Minjun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), School of Chemical Engineering, The University of Queensland Brisbane Queensland 4072 Australia
| | - Konstantin L Firestein
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane Queensland 4000 Australia
| | - Joseph F S Fernando
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane Queensland 4000 Australia
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Hyunsoo Lim
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI) 25, Saenari-ro, Bundang-gu Seongnam-si Gyeonggi-do 13509 Republic of Korea
| | - Dmitri V Golberg
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane Queensland 4000 Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), School of Chemical Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- Materials Architecturing Research Center, Korea Institute of Science and Technology 5 Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Jihyun Kim
- Solar Energy R&D Department, Green Energy Institute Mokpo Jeollanamdo 58656 Republic of Korea
| | - Hiroki Nara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jing Tang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), School of Chemical Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
14
|
Gond R, Singh S, Zhao X, Singh D, Ahuja R, Fichtner M, Barpanda P. Pyrophosphate Na 2CoP 2O 7 Polymorphs as Efficient Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40761-40770. [PMID: 36065996 DOI: 10.1021/acsami.2c06944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing earth-abundant low-cost bifunctional oxygen electrocatalysts is a key approach to realizing efficient energy storage and conversion. By exploring Co-based sodium battery materials, here we have unveiled nanostructured pyrophosphate Na2CoP2O7 polymorphs displaying efficient bifunctional electrocatalytic activity. While the orthorhombic polymorph (o-NCPy) has superior oxygen evolution reaction (OER) activity, the triclinic polymorph (t-NCPy) delivers better oxygen reduction reaction (ORR) activity. Simply by tuning the annealing condition, these pyrophosphate polymorphs can be easily prepared at temperatures as low as 500 °C. The electrocatalytic activity is rooted in the Co redox center with the (100) active surface and stable structural framework as per ab initio calculations. It marks the first case of phospho-anionic systems with both polymorphs showing stable bifunctional activity with low combined overpotential (ca. ∼0.7 V) comparable to that of reported state-of-the-art catalysts. These nanoscale cobalt pyrophosphates can be implemented in rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Ritambhara Gond
- Faraday Materials Laboratory (FaMaL), Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Shashwat Singh
- Faraday Materials Laboratory (FaMaL), Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Normandie University, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14000 Caen, France
| | - Xiaofeng Zhao
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Maximilian Fichtner
- Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, Ulm 89081, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76021, Germany
| | - Prabeer Barpanda
- Faraday Materials Laboratory (FaMaL), Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, Ulm 89081, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76021, Germany
| |
Collapse
|
15
|
Guo Y, Wu D, Li M, Wang K, Zhang S, He G, Yin H, Huang C, Yang B, Zhang J. Coordination Engineering of Ultra‐Uniform Ruthenium Nanoclusters as Efficient Multifunctional Catalysts for Zinc–Air Batteries. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yingying Guo
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Donghai Wu
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Minhan Li
- College of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Kaixi Wang
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Guangli He
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Hengbo Yin
- College of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Chenyu Huang
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Jianan Zhang
- College of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
16
|
Lei H, Cui M, Huang Y. S-Doping Promotes Pyridine Nitrogen Conversion and Lattice Defects of Carbon Nitride to Enhance the Performance of Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34793-34801. [PMID: 35867903 DOI: 10.1021/acsami.2c09019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The efficient operation of Zn-air batteries (ZABs) requires highly active and stable reversible air catalysts. Studies have shown that heteroatom-doped carbonaceous nanomaterials are effective metal-free electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). Herein, we design a facile and scalable catalyst doping scheme to manufacture S-doped carbon nitride (S-C3N4). Surprisingly, this metal-free catalyst exhibits excellent OER and ORR electrocatalytic activities in alkaline electrolytes, being comparable to those of commercial Pt/C. For the first time, it is proved by experiments that S doping can not only effectively increase the lattice defects of C3N4 but also promote the conversion of pyrrolic nitrogen to pyridine nitrogen, thereby enhancing the bifunctional catalytic activity (OER and ORR). When the catalyst is used as an air electrode for rechargeable ZABs, its performance is obviously better than that provided by commercial Pt/C. Our findings and material design strategies are expected to provide new ideas for the synthesis of various high-performance carbon-based electrocatalysts.
Collapse
Affiliation(s)
- Hao Lei
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mangwei Cui
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yan Huang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
17
|
Yan D, Xia C, He C, Liu Q, Chen G, Guo W, Xia BY. A Substrate-Induced Fabrication of Active Free-Standing Nanocarbon Film as Air Cathode in Rechargeable Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106606. [PMID: 34874623 DOI: 10.1002/smll.202106606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Designing cost-effective and high-efficiency bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) occurred at air electrodes is vitally significant yet challenging for Zn-air batteries (ZABs). In this work, a zinc substrate induced fabrication is reported of free-standing nanocarbon hybrid film which shows good bifunctional activity and can be directly used as the air electrode in the rechargeable ZABs. The designed nanocarbon film in Zn-air battery provides a satisfactory power density of 185 mW cm-2 and cycling stability for 1200 h under the current density of 10 mA cm-2 . This hybrid film also gives a solid-state ZAB excellent flexibility with a power density of 160 mW cm-2 . The free-standing hybrid with abundant cobalt-nitrogen-carbon species coupled with porous architecture would be the original factor for its satisfactory performance of rechargeable ZABs. This work would pave an ideal way to design integrated electrode with high electrocatalytic performance towards electrochemical energy technologies.
Collapse
Affiliation(s)
- Dafeng Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chaohui He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Qingqing Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Guangda Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
18
|
Chen Y, Huang J, Chen Z, Shi C, Yang H, Tang Y, Cen Z, Liu S, Fu R, Wu D. Molecular Engineering toward High-Crystallinity Yet High-Surface-Area Porous Carbon Nanosheets for Enhanced Electrocatalytic Oxygen Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103477. [PMID: 34784117 PMCID: PMC8787383 DOI: 10.1002/advs.202103477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Indexed: 06/01/2023]
Abstract
Carbon-based nanomaterials have been regarded as promising non-noble metal catalysts for renewable energy conversion system (e.g., fuel cells and metal-air batteries). In general, graphitic skeleton and porous structure are both critical for the performances of carbon-based catalysts. However, the pursuit of high surface area while maintaining high graphitization degree remains an arduous challenge because of the trade-off relationship between these two key characteristics. Herein, a simple yet efficient approach is demonstrated to fabricate a class of 2D N-doped graphitized porous carbon nanosheets (GPCNSs) featuring both high crystallinity and high specific surface area by utilizing amine aromatic organoalkoxysilane as an all-in-one precursor and FeCl3 ·6H2 O as an active salt template. The highly porous structure of the as-obtained GPCNSs is mainly attributed to the alkoxysilane-derived SiOx nanodomains that function as micro/mesopore templates; meanwhile, the highly crystalline graphitic skeleton is synergistically contributed by the aromatic nucleus of the precursor and FeCl3 ·6H2 O. The unusual integration of graphitic skeleton with porous structure endows GPCNSs with superior catalytic activity and long-term stability when used as electrocatalysts for oxygen reduction reaction and Zn-air batteries. These findings will shed new light on the facile fabrication of highly porous carbon materials with desired graphitic structure for numerous applications.
Collapse
Affiliation(s)
- Yongqi Chen
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Junlong Huang
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Zirun Chen
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Chenguang Shi
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Haozhen Yang
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Youchen Tang
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Zongheng Cen
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Shaohong Liu
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Ruowen Fu
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Dingcai Wu
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| |
Collapse
|
19
|
Zhang Z, Wang Y, Guan J, Zhang T, Li P, Yin H, Duan L, Niu Z, Liu J. Direct Conversion of Solid g-C3N4 into Metal-ended N-doped Carbon Nanotubes for Rechargeable Zn-Air Batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00010e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing low-cost and bifunctional electrocatalysts with activity for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is great desirable for metal-air battery. Herein, we demonstrate an approach to realize...
Collapse
|
20
|
Wang G, Chang J, Koul S, Kushima A, Yang Y. CO 2 Bubble-Assisted Pt Exposure in PtFeNi Porous Film for High-Performance Zinc-Air Battery. J Am Chem Soc 2021; 143:11595-11601. [PMID: 34269572 DOI: 10.1021/jacs.1c04339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fine-tuning the exposed active sites of platinum group metal (PGM)-based materials is an efficient way to improve their electrocatalytic performance toward large-scale applications in renewable energy devices such as Zn-air batteries (ZABs). However, traditional synthetic methods trade off durability for the high activity of PGM-based catalysts. Herein, a novel dynamic CO2-bubble template (DCBT) approach was established to electrochemically fine-tuning the exposed Pt active sites in PtFeNi (PFN) porous films (PFs). Particularly, CO2 bubbles were intentionally generated as gas-phase templates by methanol electrooxidation. The generation, adsorption, residing, and desorption of CO2 bubbles on the surface of PFN alloys were explored and controlled by adjusting the frequency of applied triangular-wave voltage. Thereby, the surface morphology and Pt exposure of PFN PFs were controllably regulated by tuning the surface coverage of CO2 bubbles. Consequently, the Pt1.1%Fe8.8%Ni PF with homogeneous nanoporous structure and sufficiently exposed Pt active sites was obtained, showing preeminent activities with a half-wave potential (E1/2) of 0.87 V and onset overpotential (ηonset) of 288 mV at 10 mA cm-2 for oxygen reduction and evolution reactions (ORR and OER), respectively, at an ultralow Pt loading of 0.01 mg cm-2. When tested in ZABs, a high power density of 175.0 mW cm-2 and a narrow voltage gap of 0.64 V were achieved for the long cycling tests over 500 h (750 cycles), indicating that the proposed approach can efficiently improve the activity of PGM catalysts by fine-tuning the microstructure without compromising the durability.
Collapse
Affiliation(s)
- Guanzhi Wang
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32826, United States
| | - Jinfa Chang
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Supriya Koul
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32826, United States.,Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Akihiro Kushima
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32826, United States.,Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32826, United States.,Department of Chemistry, University of Central Florida, Orlando, Florida 32826, United States.,Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|