1
|
Ahmed I, Prakash K, Mobin SM. Lead-free perovskites for solar cell applications: recent progress, ongoing challenges, and strategic approaches. Chem Commun (Camb) 2025. [PMID: 40241537 DOI: 10.1039/d4cc06835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The growing perovskite solar cells (PSC) have reached a power conversion efficiency of up to 25% within a decade and demonstrated the potential to replace traditional silicon-based solar cells. However, a major issue with perovskite solar cells regarding their practical application and commercialization is their lead-based toxicity, which has harmful effects on human health and ecological systems. Thus, lead-free perovskite solar cells have emerged as one of the most promising prospects in perovskite solar cell technology due to their non-toxic nature, optimal stability, and durability. Since their discovery, lead-free perovskite solar cells have achieved a maximum power conversion efficiency of ∼15% and still require further development. In this feature article, we review the recent developments in the field of lead-free perovskite solar cells. We emphasize the advantages and limitations of Pb-free perovskites and the current state of lead-free perovskite solar cells. Furthermore, we discuss the impact of cation and anion sites on the stability and efficiency of lead-free PSCs and provide an update on the progress of lead-free perovskites for photovoltaic applications. Designing environmentally friendly lead-free perovskite devices is an imperative goal, though it comes with significant challenges. This article provides a brief analysis of the challenges and strategies required to improve the stability and efficiency of lead-free perovskites. Finally, we summarize the review to offer a better understanding of lead-free PSCs and outline the direction for further exploration.
Collapse
Affiliation(s)
- Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology Indore, Simrol Khandwa Road, 433552, India.
| | - Kamal Prakash
- Department of Chemistry, Indian Institute of Technology Indore, Simrol Khandwa Road, 433552, India.
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol Khandwa Road, 433552, India.
- Center for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol Khandwa Road, 433552, India
- Center for Electric Vehicle and Intelligent Transport System (CEVITS), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
2
|
Fan J, Li H, Liu W, Ouyang G. Fabrication Strategies of Mn 2+-Based Scintillation Screens for X-Ray Detection and Imaging. Angew Chem Int Ed Engl 2025; 64:e202425661. [PMID: 39969493 DOI: 10.1002/anie.202425661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
Scintillators play a pivotal role in multiple fields such as medical imaging, radioactive contaminant detection, non-destructive testing, high-energy physics and homeland security. However, the traditional inorganic scintillators are faced with the shortcomings of high fabrication cost and low light yield. In recent years, organic-inorganic hybrid metal halides have become the promising alternatives for their excellent luminescence properties, favorable air and irradiation stability, and low-cost preparation. Among them, organic-inorganic hybrid Mn(II) halides (OIMnHs) have attracted wide attention due to their particular flexible molecular structure design, easy synthesis and low toxicity. This minireview summarizes the latest progress in high performance Mn2+-Based scintillation screens. Herein, the scintillation mechanism of OIMnHs scintillators is firstly discussed. Then, the different synthesis methods of OIMnHs scintillators are briefly described, including solvent diffusion, cooling crystallization, evaporative crystallization and solid-state mechanochemical synthesis. After that, the recent strategies of OIMnHs for forming scintillation screens applying to X-ray imaging are emphatically reviewed, which are growing large single crystals, fabricating to glass or ceramic and blending with polymers. The fabrication progress and applications of OIMnHs-based scintillation screens were introduced and the structure-property relationship of these screens was discussed. Finally, the challenges of this new scintillator material are summarized, and the potential research directions for future exploration are proposed.
Collapse
Affiliation(s)
- Jiali Fan
- School of Chemical Engineering and Technology, Sun Yat-sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, P. R. China
| | - Haibo Li
- School of Chemical Engineering and Technology, Sun Yat-sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, P. R. China
| | - Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, P. R. China
| |
Collapse
|
3
|
Li Y, Zhou Z, Xing Z, Ko PK, Wong KS, Sung HHY, Williams ID, Halpert JE. Solvent-Induced Bright Emission in Lead-Free Organic-Inorganic Antimony Bromides with Reversible Transformation. SMALL METHODS 2025; 9:e2400003. [PMID: 38552251 PMCID: PMC11843410 DOI: 10.1002/smtd.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Indexed: 02/22/2025]
Abstract
Lead-free low-dimensional organic-inorganic metal halides have gained increasing attention in a wide range of applications due to their low toxicity, outstanding optical performance, and structural tunability. In this work, a general method of incorporating organic molecule into sodium antimony bromides is introduced. The 1D Na3SbBr6(C2H6OS)6 and Na3SbBr6(C4H8OS)6 single crystals exhibit bright yellow and orange emission with PL peaks at 610 and 664 nm, and high photoluminescence quantum yields (PLQYs) of 85% and 60%, respectively. These two compounds can be reversibly converted into each other by the removal and addition of the organic components. Their exceptional luminescent performance enables them to be used as solid-state phosphors for the fabrication of yellow and orange down-conversion LEDs. A white LED with a high color rendering index (CRI) of 95 is also fabricated by using Na3SbBr6(C2H6OS)6 as the yellow phosphor. The universality of this method is demonstrated by synthesizing other members of this family with diverse A-groups, including methylammonium (MA) and formamidinium (FA). This work provides an effective strategy for the development of diverse lead-free and high-performance organic-inorganic hybrid materials and indicates these organic-inorganic hybrid compounds are promising luminescent materials for lighting or displays.
Collapse
Affiliation(s)
- Yanyan Li
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Zhicong Zhou
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Zengshan Xing
- Department of PhysicsThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| | - Pui Kei Ko
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Kam Sing Wong
- Department of PhysicsThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| | - Herman H. Y. Sung
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Ian D. Williams
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Jonathan E. Halpert
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| |
Collapse
|
4
|
Tan R, Liu Z, Zang Z, Zhao S. Opportunities and challenges of lead-free metal halide perovskites for luminescence. Chem Sci 2025; 16:2136-2153. [PMID: 39811002 PMCID: PMC11726061 DOI: 10.1039/d4sc04119d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/23/2024] [Indexed: 01/16/2025] Open
Abstract
Metal halide perovskites (MHPs) have been developed rapidly for application in light-emitting diodes (LEDs), lasers, solar cells, photodetectors and other fields in recent years due to their excellent photoelectronic properties, and they have attracted the attention of many researchers. Perovskite LEDs (PeLEDs) show great promise for next-generation lighting and display technologies, and the external quantum efficiency (EQE) values of polycrystalline thin-film PeLEDs exceed 20%, which is undoubtedly a big breakthrough in lighting and display fields. However, the toxicity and instabilities of lead-based MHPs remain major obstacles limiting their further commercial applications. The exploration and development of lead-free MHPs (LFMHPs) are regarded as the most facile strategies to solve these problems. Compared with lead-based perovskites, LFMHPs exhibit better stabilities and broadband emission. With continuous development of LFMHPs, their photoluminescence quantum yields (PLQYs) have reached 99%, facilitating their use as ideal emitters. In this review, the structures and features of LFMHPs are analyzed, and the preparation methods of LFMHPs with various structures and configurations are discussed. Then, the mechanisms and strategies for improving the emission performance of white LEDs based on LFMHPs are demonstrated. Finally, their challenges in commercial production and perspectives are prospected.
Collapse
Affiliation(s)
- Run Tan
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University Chongqing 400044 China
| | - Zhenyu Liu
- CDGM Glass Company Limited Chengdu Sichuan China
| | - Zhigang Zang
- School of Information Science and Engineering, Yanshan University Qinhuangdao 066004 P. R. China
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University Chongqing 400044 China
| | - Shuangyi Zhao
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University Chongqing 400044 China
| |
Collapse
|
5
|
Zhang C, Wang H, Huang W, Zuo Y, Cheng J. A Systematical Study on Bands and Defects of CsBX 3 (B = Pb, Sn, Ge, X = Cl, Br, I) Perovskite Based on First Principles. Molecules 2024; 29:2479. [PMID: 38893354 PMCID: PMC11173484 DOI: 10.3390/molecules29112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Metal halide perovskites have attracted considerable attention as novel optoelectronic materials for their excellent optical and electrical properties. Inorganic perovskites (CsPbX3, X = Cl, Br, I) are now viable alternative candidates for third-generation photovoltaic technology because of their high photoelectric conversion efficiency, high carrier mobility, good defect tolerance, simple preparation method and many other advantages. However, the toxicity of lead is problematic for practical implementation. Thus, the fabrication of lead-free perovskite materials and devices has been actively conducted. In this work, the energy band and photoelectric properties of inorganic perovskites CsBX3 (B = Pb, Sn, Ge, X = Cl, Br, I) have been investigated with the first principles calculation, and the possible defect energy levels and their formation energies in different components, in particular, have been systematically studied. The advantages and disadvantages of Sn and Ge as replacement elements for Pb have been demonstrated from the perspective of defects. This study provides an important basis for the study of the properties and applications of lead-free perovskites.
Collapse
Affiliation(s)
- Chunqian Zhang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Hao Wang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Wenqi Huang
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Yuhua Zuo
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
| | - Jin Cheng
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| |
Collapse
|
6
|
Zhou W, Yu Y, Han P, Li C, Wu T, Ding Z, Liu R, Zhang R, Luo C, Li H, Zhao K, Han K, Lu R. Sb-Doped Cs 3 TbCl 6 Nanocrystals for Highly Efficient Narrow-Band Green Emission and X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302140. [PMID: 37801733 DOI: 10.1002/adma.202302140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Metal halide nanocrystals (NCs) with high photoluminescence quantum yield (PLQY) are desirable for lighting, display, and X-ray detection. Herein, the novel lanthanide-based halide NCs are committed to designing and optimizing the optical and scintillating properties, so as to unravel the PL origin, exciton dynamics, and optoelectronic applications. Sb-doped zero-dimensional (0D) Cs3 TbCl6 NCs exhibit a green emission with a narrow full width of half maximum of 8.6 nm, and the best PLQY of 48.1% is about three times higher than that of undoped NCs. Experiments and theoretical calculations indicate that 0D crystalline and electronic structures make the exciton highly localized on [TbCl6 ]3- octahedron, which boosts the Cl- -Tb3+ charge transfer process, thus resulting in bright Tb3+ emission. More importantly, the introduction of Sb3+ not only facilitates the photon absorption transition, but also builds an effective thermally boosting energy transfer channel assisted by [SbCl6 ]3- -induced self-trapped state, which is responsible for the PL enhancement. The high luminescence efficiency and negligible self-absorption of the Cs3 TbCl6 : Sb nanoscintillator enable a more sensitive X-ray detection response compared with undoped sample. The study opens a new perspective to deeply understand the excited state dynamics of metal halide NCs, which helps to design high-performance luminescent lanthanide-based nanomaterials.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yang Yu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Peigeng Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Cheng Li
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Tong Wu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhiling Ding
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Runze Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Cheng Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Hui Li
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Kun Zhao
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Keli Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Ruifeng Lu
- Institute of Ultrafast Optical Physics, Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
7
|
Yun X, Nie J, Hu H, Zhong H, Xu D, Shi Y, Li H. Zero-Dimensional Tellurium-Based Organic-Inorganic Hybrid Halide Single Crystal with Yellow-Orange Emission from Self-Trapped Excitons. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:46. [PMID: 38202501 PMCID: PMC10780417 DOI: 10.3390/nano14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Organic-inorganic hybrid halides and their analogs that exhibit efficient broadband emission from self-trapped excitons (STEs) offers an unique pathway towards realization of highly efficient white light sources for lighting applications. An appropriate dilution of ns2 ions into a halide host is essential to produce auxiliary emissions. However, the realization of ns2 cation-based halides phosphor that can be excited by blue light-emitting diode (LED) is still rarely reported. In this study, a zero-dimensional Te-based single crystal (C8H20N)2TeCl6 was synthesized, which exhibits a yellow-orange emission centered at 600 nm with a full width at half maximum of 130 nm upon excitation under 437 nm. Intense electron-phonon coupling was confirmed in the (C8H20N)2TeCl6 single crystal and the light emitting mechanism is comprehensively discussed. The results of this study are pertinent to the emissive mechanism of Te-based hybrid halides and can facilitate discovery of unidentified metal halides with broadband excitation features.
Collapse
Affiliation(s)
- Xiangyan Yun
- Department of Physics, Beijing Technology and Business University, Beijing 100048, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jingheng Nie
- Guangdong Rare Earth Photofunctional Materials Engineering Technology Research Center, School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518060, China
| | - Haizhe Zhong
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Denghui Xu
- Department of Physics, Beijing Technology and Business University, Beijing 100048, China
| | - Yumeng Shi
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Henan Li
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
8
|
Geng X, Chen Y, Li Y, Ren J, Dun G, Qin K, Lin Z, Peng J, Tian H, Yang Y, Xie D, Ren T. Lead-Free Halide Perovskites for Direct X-Ray Detectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300256. [PMID: 37232232 PMCID: PMC10427383 DOI: 10.1002/advs.202300256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Lead halide perovskites have made remarkable progress in the field of radiation detection owing to the excellent and unique optoelectronic properties. However, the instability and the toxicity of lead-based perovskites have greatly hindered its practical applications. Alternatively, lead-free perovskites with high stability and environmental friendliness thus have fascinated significant research attention for direct X-ray detection. In this review, the current research progress of X-ray detectors based on lead-free halide perovskites is focused. First, the synthesis methods of lead-free perovskites including single crystals and films are discussed. In addition, the properties of these materials and the detectors, which can provide a better understanding and designing satisfactory devices are also presented. Finally, the challenge and outlook for developing high-performance lead-free perovskite X-ray detectors are also provided.
Collapse
Affiliation(s)
- Xiangshun Geng
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yu‐Ang Chen
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yuan‐Yuan Li
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Jun Ren
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Guan‐Hua Dun
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Ken Qin
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Zhu Lin
- Beijing National Research Center for Information Science and TechnologyTsinghua UniversityBeijing100084P. R. China
| | - Jiali Peng
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - He Tian
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yi Yang
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Dan Xie
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Tian‐Ling Ren
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
9
|
Hossain MK, Toki GFI, Samajdar DP, Mushtaq M, Rubel MHK, Pandey R, Madan J, Mohammed MKA, Islam MR, Rahman MF, Bencherif H. Deep Insights into the Coupled Optoelectronic and Photovoltaic Analysis of Lead-Free CsSnI 3 Perovskite-Based Solar Cell Using DFT Calculations and SCAPS-1D Simulations. ACS OMEGA 2023; 8:22466-22485. [PMID: 37396227 PMCID: PMC10308408 DOI: 10.1021/acsomega.3c00306] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/10/2023] [Indexed: 07/04/2023]
Abstract
CsSnI3 is considered to be a viable alternative to lead (Pb)-based perovskite solar cells (PSCs) due to its suitable optoelectronic properties. The photovoltaic (PV) potential of CsSnI3 has not yet been fully explored due to its inherent difficulties in realizing defect-free device construction owing to the nonoptimized alignment of the electron transport layer (ETL), hole transport layer (HTL), efficient device architecture, and stability issues. In this work, initially, the structural, optical, and electronic properties of the CsSnI3 perovskite absorber layer were evaluated using the CASTEP program within the framework of the density functional theory (DFT) approach. The band structure analysis revealed that CsSnI3 is a direct band gap semiconductor with a band gap of 0.95 eV, whose band edges are dominated by Sn 5s/5p electrons After performing the DFT analysis, we investigated the PV performance of a variety of CsSnI3-based solar cell configurations utilizing a one-dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs such as IGZO, WS2, CeO2, TiO2, ZnO, PCBM, and C60. Simulation results revealed that the device architecture comprising ITO/ETL/CsSnI3/CuI/Au exhibited better photoconversion efficiency among more than 70 different configurations. The effect of the variation in the absorber, ETL, and HTL thickness on PV performance was analyzed for the above-mentioned configuration thoroughly. Additionally, the impact of series and shunt resistance, operating temperature, capacitance, Mott-Schottky, generation, and recombination rate on the six superior configurations were evaluated. The J-V characteristics and the quantum efficiency plots for these devices are systematically investigated for in-depth analysis. Consequently, this extensive simulation with validation results established the true potential of CsSnI3 absorber with suitable ETLs including ZnO, IGZO, WS2, PCBM, CeO2, and C60 ETLs and CuI as HTL, paving a constructive research path for the photovoltaic industry to fabricate cost-effective, high-efficiency, and nontoxic CsSnI3 PSCs.
Collapse
Affiliation(s)
- M. Khalid Hossain
- Institute
of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Department
of Advanced Energy Engineering Science, Interdisciplinary Graduate
School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
| | - G. F. Ishraque Toki
- College
of Materials Science and Engineering, Donghua
University, Shanghai 201620, China
| | - D. P. Samajdar
- Department
of ECE, Indian Institute of Information
Technology, Design & Manufacturing, Jabalpur 482005, Madhya Pradesh, India
| | - Muhammad Mushtaq
- Department
of Physics, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
| | - M. H. K. Rubel
- Department
of Materials Science and Engineering, University
of Rajshahi, Rajshahi 6205, Bangladesh
| | - Rahul Pandey
- VLSI
Centre of Excellence, Chitkara University Institute of Engineering
and Technology, Chitkara University, Punjab 140401, India
| | - Jaya Madan
- VLSI
Centre of Excellence, Chitkara University Institute of Engineering
and Technology, Chitkara University, Punjab 140401, India
| | - Mustafa K. A. Mohammed
- Radiological
Techniques Department, Al-Mustaqbal University
College, 51001 Hillah, Babylon, Iraq
| | - Md. Rasidul Islam
- Department
of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur 2012, Bangladesh
| | - Md. Ferdous Rahman
- Department
of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - H. Bencherif
- LEREESI, Higher
National School of Renewable Energies, Environment
and Sustainable Development, Batna 05078, Algeria
| |
Collapse
|
10
|
Zhang J, Sun KQ, Zhang ZH, Wang RC, Lin ZH, Lei XW, Wang YY, Ju P, He YC. Enhanced stability and tunable photoluminescence in Mn 2+-doped one-dimensional hybrid lead halide perovskites for high-performance white light emitting diodes. RSC Adv 2023; 13:19039-19045. [PMID: 37362341 PMCID: PMC10286562 DOI: 10.1039/d3ra02813e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Organic-inorganic hybrid low-dimensional lead halides have garnered significant interest in the realm of solid-state optical materials due to their unique properties and potential applications. In this study, we report the synthesis, characterization and application of Mn2+-doped one-dimensional (1D) [AEP]PbCl5·H2O hybrid lead halide perovskites with tunable photoluminescence properties. The Mn2+ doping leads to a redshift of the dominant emission wavelength from 463 nm to 630 nm, with the optimal doping concentration resulting in an enhanced photoluminescence quantum yield (PLQY) from less than 1% to 8.96%. The structural and optical stability of these doped perovskites have been thoroughly investigated revealing excellent performance under humid and high-temperature conditions. Perovskite-PVP composite films exhibit high crystallization and bright orange-red emission under UV excitation. Furthermore, we demonstrate the successful fabrication of a white LED device using the Mn2+-doped perovskite in combination with commercial green and blue phosphors. The fabricated LED exhibits a high color rendering index (CRI) of 87.2 and stable electroluminescence performance under various operating currents and extended operation times. Our findings highlight the potential of Mn2+-doped 1D hybrid lead halide perovskites as efficient and stable phosphors for high-performance white light emitting diodes and other optoelectronic applications.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
- Department of Chemistry and Chemical Engineering, Jining University Qufu Shandong 273155 P. R. China
| | - Kai-Qi Sun
- Department of Chemistry and Chemical Engineering, Jining University Qufu Shandong 273155 P. R. China
| | - Zhong-Hui Zhang
- Department of Chemistry and Chemical Engineering, Jining University Qufu Shandong 273155 P. R. China
| | - Ri-Cheng Wang
- Department of Chemistry and Chemical Engineering, Jining University Qufu Shandong 273155 P. R. China
| | - Zi-Han Lin
- Department of Chemistry and Chemical Engineering, Jining University Qufu Shandong 273155 P. R. China
| | - Xiao-Wu Lei
- Department of Chemistry and Chemical Engineering, Jining University Qufu Shandong 273155 P. R. China
| | - Yu-Yin Wang
- Department of Chemistry and Chemical Engineering, Jining University Qufu Shandong 273155 P. R. China
| | - Ping Ju
- College of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Yuan-Chun He
- College of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| |
Collapse
|
11
|
Zhou S, Chen Y, Li K, Liu X, Zhang T, Shen W, Li M, Zhou L, He R. Photophysical studies for Cu(i)-based halides: broad excitation bands and highly efficient single-component warm white-light-emitting diodes. Chem Sci 2023; 14:5415-5424. [PMID: 37234888 PMCID: PMC10208036 DOI: 10.1039/d3sc01762a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Designing and synthesizing cuprous halide phosphors unifying efficient low-energy emission and a broad excitation band is still a great challenge. Herein, by rational component design, three novel Cu(i)-based metal halides, DPCu4X6 [DP = (C6H10N2)4(H2PO2)6; X = Cl, Br, I], were synthesized by reacting p-phenylenediamine with cuprous halide (CuX), and they show similar structures, consisting of isolated [Cu4X6]2- units separated by organic layers. Photophysical studies uncover that the highly localized excitons and rigid environment give rise to highly efficient yellow-orange photoluminescence in all compounds with the excitation band spanning from 240 to 450 nm. The bright PL in DPCu4X6 (X = Cl, Br) originates from self-trapped excitons due to the strong electron-phonon coupling. Intriguingly, DPCu4I6 features a dual-band emissive characteristic, attributed to the synergistic effect of halide/metal-to-ligand charge-transfer (X/MLCT) and triplet cluster-centered (3CC) excited states. Benefiting from the broadband excitation, a high-performance white-light emitting diode (WLED) with a high color rendering index of 85.1 was achieved using single-component DPCu4I6 phosphor. This work not only unveils the role of halogens in the photophysical processes of cuprous halides, but also provides new design principles for high-performance single-component WLEDs.
Collapse
Affiliation(s)
- Shuigen Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yihao Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Kailei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Xiaowei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Ting Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Lei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
12
|
Jang C, Kim K, Nho HW, Lee SM, Mubarok H, Han JH, Kim H, Lee D, Jang Y, Lee MH, Kwon OH, Kwak SK, Im WB, Song MH, Park J. Synthesis of Thermally Stable and Highly Luminescent Cs 5 Cu 3 Cl 6 I 2 Nanocrystals with Nonlinear Optical Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206668. [PMID: 36703517 DOI: 10.1002/smll.202206668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Low-dimensional Cu(I)-based metal halide materials are gaining attention due to their low toxicity, high stability and unique luminescence mechanism, which is mediated by self-trapped excitons (STEs). Among them, Cs5 Cu3 Cl6 I2 , which emits blue light, is a promising candidate for applications as a next-generation blue-emitting material. In this article, an optimized colloidal process to synthesize uniform Cs5 Cu3 Cl6 I2 nanocrystals (NCs) with a superior quantum yield (QY) is proposed. In addition, precise control of the synthesis parameters, enabling anisotropic growth and emission wavelength shifting is demonstrated. The synthesized Cs5 Cu3 Cl6 I2 NCs have an excellent photoluminescence (PL) retention rate, even at high temperature, and exhibit high stability over multiple heating-cooling cycles under ambient conditions. Moreover, under 850-nm femtosecond laser irradiation, the NCs exhibit three-photon absorption (3PA)-induced PL, highlighting the possibility of utilizing their nonlinear optical properties. Such thermally stable and highly luminescent Cs5 Cu3 Cl6 I2 NCs with nonlinear optical properties overcome the limitations of conventional blue-emitting nanomaterials. These findings provide insights into the mechanism of the colloidal synthesis of Cs5 Cu3 Cl6 I2 NCs and a foundation for further research.
Collapse
Affiliation(s)
- Changhee Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kangyong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hak-Won Nho
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Seung Min Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hanif Mubarok
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Joo Hyeong Han
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyeonjung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dongryeol Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yangpil Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Hyung Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bin Im
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jongnam Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
13
|
Singha Roy A, Kesavan Pillai S, Ray SS. A Comparison of Nitrate Release from Zn/Al-, Mg/Al-, and Mg-Zn/Al Layered Double Hydroxides and Composite Beads: Utilization as Slow-Release Fertilizers. ACS OMEGA 2023; 8:8427-8440. [PMID: 36910931 PMCID: PMC9996809 DOI: 10.1021/acsomega.2c07395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Nitrate-loaded Zn/Al, Mg/Al, and Mg-Zn/Al layered double hydroxides (LDHs) were synthesized using the coprecipitation method. The slow-release properties of LDHs were measured in powder form at various pH conditions. Sodium alginate was used to encapsulate Mg/Al LDH to produce composite beads (LB) to further slow down the release of nitrate ions. The prepared LDH samples and LB were characterized by X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, and inductively coupled plasma optical emission spectroscopy. The surface morphologies of LDHs and LB were obtained from scanning electron microscopy analysis. The slow-release properties of the materials were evaluated using a kinetic study of nitrate release in tap water, soil solution, as well as plant growth experiments using coriander (Coriandrum sativum). The nitrate release ability of LDHs and LB was compared with a soluble nitrate source. The plant growth experiments showed that all three LDHs were able to supply an adequate amount of nitrate to the plant similar to the soluble fertilizer while maintaining the availability of nitrate over extended periods. The ability of LDHs to increase soil pH was also demonstrated.
Collapse
Affiliation(s)
- Abhinandan Singha Roy
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South
Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Sreejarani Kesavan Pillai
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South
Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
14
|
Han S, Quan J, Wang D, Li H, Liu X, Xu J, Zhang Y, Li Z, Wu L, Fang X. Anisotropic Growth of Centimeter-Size CsCu 2 I 3 Single Crystals with Ultra-Low Trap Density for Aspect-Ratio-Dependent Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206417. [PMID: 36599662 PMCID: PMC9982547 DOI: 10.1002/advs.202206417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Low-dimensional ternary copper iodide metal halide with strong quantum confinement effects has made great progress in optoelectronic fields. However, efficient regulation of anisotropic growth of metal halides single crystal still remains a great challenge. Herein, 2 cm size CsCu2 I3 single crystals with tunable aspect ratio and the trap states (ntrap ) as low as 5.38 × 109 cm-3 are fabricated by optimized anti-solvent vapor-assisted method, in which the growth cycle is shortened by half. Evidenced by real-time observation and the LaMer growth model, the rapid and anisotropic growth mechanism is ascribed to preferential 1D growth, promoted by high concentration and fast vapor rate. Furthermore, the aspect-ratio-dependent optoelectronic performance is observed, the on-off ratio for 2 cm CsCu2 I3 single crystal are enhanced 350 times compared with those of short and thick single crystal, which shows ultrahigh on-off ratio of 1570, D* of 1.34 × 1012 Jones, Rλ of 276.94 mA W-1 , t rise /t decay of 0.37 and 1.08 ms, and EQE of 95.53%, which are clearly at very high level among lead-free perovskite-based photodetectors. This study not only provides a new strategy for overcoming anisotropic growth limitations of low-dimensional metal halides, but also paves a way for high-performance optoelectronic applications.
Collapse
Affiliation(s)
- Sancan Han
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Jiale Quan
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Ding Wang
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Huijun Li
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Xinya Liu
- Department of Materials ScienceInstitute of OptoelectronicsState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
| | - Jingcheng Xu
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Yixin Zhang
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Ziqing Li
- Department of Materials ScienceInstitute of OptoelectronicsState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
| | - Limin Wu
- Department of Materials ScienceInstitute of OptoelectronicsState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
| | - Xiaosheng Fang
- Department of Materials ScienceInstitute of OptoelectronicsState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
| |
Collapse
|
15
|
Chen Y, Zhou L, Zhou S, You D, Xiong H, Hu Y, Chen Q, He R, Li M. Effect of the Host Lattice Environment on the Expression of 5s 2 Lone-Pair Electrons in a 0D Bismuth-Based Metal Halide. Inorg Chem 2023; 62:2806-2816. [PMID: 36716166 DOI: 10.1021/acs.inorgchem.2c03961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ns2-Metal halide perovskites have attracted wide attention due to their fascinating photophysical properties. However, achieving high photoluminescence (PL) properties is still an enormous challenge, and the relationship between the lattice environment and ns2-electron expression is still elusive. Herein, an organic-inorganic Bi3+-based halide (C5H14N2)2BiCl6·Cl·2H2O (C5H14N22+ = doubly protonated 1-methylpiperazine) with a six-coordinated structure has been successfully prepared, which, however, exhibits inferior PL properties due to the chemically inert expression of Bi3+-6s2 lone-pair electrons. After reasonably embedding Sb3+ with 5s2 electrons into the lattice of (C5H14N2)2BiCl6·Cl·2H2O, the host lattice environment induces the Sb-Cl moiety to change from the original five-coordinated to six-coordinated structure, thereby resulting in a broad-band yellow emission with a PL efficiency up to 50.75%. By utilizing the host lattice of (C5H14N2)2BiCl6·Cl·2H2O, the expression of Sb3+-5s2 lone-pair electrons is improved and thus promotes the radiative recombination from the Sb3+-3P1 state, resulting in the enhanced PL efficiency. This work will provide an in-depth insight into the effect of the local structure on the expression of Sb3+-5s2 lone-pair electrons.
Collapse
Affiliation(s)
- Yihao Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Lei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Shuigen Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Donghui You
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Haizhou Xiong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Yuhan Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Qinlin Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| |
Collapse
|
16
|
Wang X, Cheng Q, Rong X, Han S, Zeng Y, Cao P, Fang M, Liu W, Zhu D, Lu Y. Preparation of high performance Ga2O3 based ultraviolet photodetector by CVD. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
17
|
Yang Z, Meng W, Kang J, Wang X, Shu X, Chen T, Xu R, Xu F, Hong F. Unraveling the Defect-Dominated Broadband Emission Mechanisms in (001)-Preferred Two-Dimensional Layered Antimony-Halide Perovskite Film. J Phys Chem Lett 2022; 13:11736-11744. [PMID: 36515687 DOI: 10.1021/acs.jpclett.2c03151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
By adding molar-controlled SbCl3 in a Cs3Sb2Cl9 precursor, we employed a low-temperature solution-processed approach to prepare high-quality (001)-preferred Cs3Sb2Cl9 thin film, which demonstrates a stable defect-dominated broadband emission at room temperature. Density functional theory calculations reveal that the defect emission originates from the donor-acceptor pair (DAP) recombination between chlorine vacancy (VCl) and cesium vacancy (VCs). Furthermore, VCl + VCs DAP is more stable on the (001) surface. The improved film quality and the more stable VCl + VCs DAP increase the activation energy related to defect states, resulting in an enhancement of the defect emission for the high-quality (001)-preferred film. This work provides deep insight into the key role of the (001) surface in defect emission and a feasible strategy to enhance the defect emission in 2D halide perovskites A3B2X9 (A = CH3NH3, Cs, Rb; B = Bi, Sb; X = Cl, Br, I) by control of the thin film preferred orientation.
Collapse
Affiliation(s)
- Zichen Yang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Weiwei Meng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan430072, China
| | - Jiaxing Kang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Xiang Wang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Xin Shu
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Teng Chen
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200444, China
| | - Run Xu
- Department of Electronic Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
| | - Fei Xu
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai200433, China
| | - Feng Hong
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
| |
Collapse
|
18
|
Xu J, Ma J, Gu Y, Li Y, Li Y, Shen H, Zhang Z, Ma Y. Progress of Metal Halide Perovskite Crystals From a Crystal Growth Point of View. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiayue Xu
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Jian Ma
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Yankai Gu
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Yang Li
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Yasheng Li
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Hui Shen
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Zhijie Zhang
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Yunfeng Ma
- Institute of Crystal Growth School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
19
|
Zhou S, Zhou L, Chen Y, Shen W, Li M, He R. Boosting Blue Emission of Organic Cations in a Sn(IV)-Based Perovskite by Constructing Intermolecular Interactions. J Phys Chem Lett 2022; 13:8717-8724. [PMID: 36094405 DOI: 10.1021/acs.jpclett.2c02413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving the photoluminescence (PL) efficiency of organic luminescent molecules is still a great challenge. Herein, a novel zero-dimensional Sn(IV)-based halide (C9H8N)2SnCl6 is prepared by assembling inactive quinoline cations and stable [SnCl6]2- polyhedra. Experimental characterizations and theoretical calculations show that the blue emission of (C9H8N)2SnCl6 centered at 433 nm is derived from the organic cations. Surprisingly, the PL efficiency of the as-prepared halide is nearly 50 times higher than that of the organic precursor and exhibits ultrahigh stability. Structural analysis shows that the introduction of inorganic clusters regulates the stacking mode of organic components and forms hydrogen bonds. This strong intermolecular interaction enhances the structural rigidity of (C9H8N)2SnCl6, inhibits concentration quenching and vibrational dissipation, and thus significantly improves the PL efficiency and stability of the organic cations. This work provides an important way to improve the PL performance and stability of organic species by constructing efficient intermolecular interactions.
Collapse
Affiliation(s)
- Shuigen Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yihao Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Saikia D, Alam M, Bera J, Betal A, Gandi AN, Sahu S. A First‐Principles Study on ABBr
3
(A = Cs, Rb, K, Na; B = Ge, Sn) Halide Perovskites for Photovoltaic Applications. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dibyajyoti Saikia
- Department of Physics Indian Institute of Technology Jodhpur Jodhpur 342037 India
| | - Mahfooz Alam
- Department of Metallurgical and Materials Engineering Indian Institute of Technology Jodhpur Jodhpur 342037 India
| | - Jayanta Bera
- Department of Physics Indian Institute of Technology Jodhpur Jodhpur 342037 India
| | - Atanu Betal
- Department of Physics Indian Institute of Technology Jodhpur Jodhpur 342037 India
| | - Appala Naidu Gandi
- Department of Metallurgical and Materials Engineering Indian Institute of Technology Jodhpur Jodhpur 342037 India
| | - Satyajit Sahu
- Department of Physics Indian Institute of Technology Jodhpur Jodhpur 342037 India
| |
Collapse
|
21
|
Wen R, Ma X, Zhang K, Zhang X, Gu Q, Sun H, Jian Y, Zhang G, Wang Y, Gao Z. One-Dimensional Perovskite-like Cu(I)-Halides with Ideal Bandgap Based on Quantum-Well Structure. Inorg Chem 2022; 61:8521-8528. [PMID: 35594557 DOI: 10.1021/acs.inorgchem.2c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Low-dimensional halide perovskites with quantum-well structures are promising materials for electronics and optoelectronics because of their excellent optoelectronic properties. This work concerns two novel, lead-free, one-dimensional organic-inorganic hybrid perovskite-like Cu(I) halides, (MV)Cu2X4 (MV = methyl viologen; X = Br, I), for optoelectronic applications. Both Cu(I) halides exhibited good stability under ambient conditions. The optical bandgaps of (MV)Cu2Br4 and (MV)Cu2I4 are 1.4 and 1.5 eV, respectively, which are in the ideal bandgap range for solar cells. (MV)Cu2Br4 possessed a characteristic quantum-well structure in which [CuBr4]n3n- chains with a nanowire-like structure were rolled up and isolated by tightly packed organic cations. Thanks to quantum confinement in the unique structure, the optical bandgap of (MV)Cu2Br4 fell in the ideal bandgap range for solar cells and was superior to that of (MV)Cu2I4. The good photoresponse properties of these Cu(I) halides suggest their great potential for application as light-harvesting materials in solar cells.
Collapse
Affiliation(s)
- Rui Wen
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xinjie Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Kan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xiaoyong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Quan Gu
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yajun Jian
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Guofang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,School of Chemistry & Chemical Engineering, Xinjiang Normal University, Urumqi 830054, P. R. China
| |
Collapse
|
22
|
Stable yellow light emission from lead-free copper halides single crystals for visible light communication. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Wu JJ, Guo Y, Yao WD, Liu WL, Guo SP. Symmetry breaking of A 3M 2X 9-type perovskite derivatives induced by polar quaternary ammonium cations: achieving efficient nonlinear optical properties. Dalton Trans 2022; 51:4878-4883. [PMID: 35260873 DOI: 10.1039/d2dt00451h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Low-dimensional organic-inorganic metal halides, especially lead-free perovskites, are attracting increasing attention because of their environmentally friendly processing, flexible structures, chemical stability, and promising nonlinear optical properties. Herein, we report a new stable polar 0D lead-free hybrid bismuth chloride to enable the second-harmonic generation (SHG) active material (BTA)3Bi2Cl9 (BTA = benzyltriethylammonium, C6H5CH2N(C2H5)3+) that was obtained by the antisolvent vapor diffusion method and crystallized in the polar Cc space group. Its structure features organic cations surrounded by face-sharing [Bi2Cl9]3- dimers. (BTA)3Bi2Cl9 exhibits a wide direct bandgap (3.21 eV) and a strong phase-matchable SHG conversion efficiency (1.39 × KDP). Theoretical calculation reveals that the SHG response is owing to the synergistic effect of distorted inorganic [Bi2Cl9]3- anions and polar organic BTA+ cations. This work not only enriches the family of organic-inorganic A3M2X9 (A = monovalent cations; M = trivalent metal ions; and X = halide ions) NLO crystals but also provides the possibilities for further designing novel lead-free semiconducting piezoelectric, pyroelectric and ferroelectric materials.
Collapse
Affiliation(s)
- Jia-Jing Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Wen-Long Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| |
Collapse
|
24
|
Zhou L, Ren M, He R, Li M. Tailoring Photophysical Dynamics in a Hybrid Gallium-Bismuth Heterometallic Halide by Transferring from an Indirect to a Direct Band Structure. Inorg Chem 2022; 61:5283-5291. [PMID: 35302735 DOI: 10.1021/acs.inorgchem.1c04000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Low-dimensional lead-free metal halides have emerged as novel luminous materials for solid-state lighting, remote thermal imaging, X-ray scintillation, and anticounterfeiting labeling applications. However, the influence of band structure on the intriguing optical property has rarely been explored, especially for low-dimensional hybrid heterometallic halides. In this study, we have developed a lead-free zero-dimensional gallium-bismuth hybrid heterometallic halide, A8(GaCl4)4(BiCl6)4 (A = C8H22N2), that is photoluminescence (PL)-inert because of its indirect-band-gap character. Upon rational composition engineering, parity-forbidden transitions associated with the indirect band gap have been broken by replacing partial Ga3+ with Sb3+, which contains an active outer-shell 5s2 lone pair, resulting in a transition from an indirect to a direct band gap. As a result, broadband yellow PL centered at 580 nm with a large Stokes shift over 200 nm is recorded. Such an emission is attributed to the radiative recombination of an allowed direct transition from triplet 3P1 states of Sb3+ based on experimental characterizations and theoretical calculations. This study provides not only important insights into the effect of the band structure on the photophysical properties but a guidance for the design of new hybrid heterometallic halides for optoelectronic applications.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Meixuan Ren
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
25
|
Wang H, Zhang C, Huang W, Zou X, Chen Z, Sun S, Zhang L, Li J, Cheng J, Huang S, Gu M, Chen X, Guo X, Gui R, Wang W. Research progress of ABX 3-type lead-free perovskites for optoelectronic applications: materials and devices. Phys Chem Chem Phys 2022; 24:27585-27605. [DOI: 10.1039/d2cp02451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We summarize the development and application of ABX3-type lead-free halide perovskite materials, especially in optoelectronic devices.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Chunqian Zhang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Wenqi Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Xiaoping Zou
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Zhenyu Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Shengliu Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Lixin Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Junming Li
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Jin Cheng
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China
- School of Applied Science, Beijing Information Science and Technology University, Beijing 100101, China
| | - Shixian Huang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Mingkai Gu
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Xinyao Chen
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Xin Guo
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Ruoxia Gui
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| | - Weimin Wang
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing 100101, China
| |
Collapse
|
26
|
Guo Y, Chen B, Ren X, Wang F. Recent Advances in All-Inorganic Zero-Dimensional Metal Halides. Chempluschem 2021; 86:1577-1585. [PMID: 34874121 DOI: 10.1002/cplu.202100459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Indexed: 12/27/2022]
Abstract
All-inorganic zero-dimensional (0D) metal halides are composed of isolated metal halide polyhedrons bridged by monovalent alkali metal ions. The unique structure gives rise to molecule-like electronic configuration and consequently highly attractive optical properties. In comparison with their three-dimensional (3D) counterparts, the 0D metal halides exhibit characteristic features such as broadband emission and long-term stability. In addition, 0D metal halides can be constructed from a diverse range of metal ions and permit high-level impurity doping, thereby offering great structural designability and spectral tunability. This Review surveys recent advances in 0D metal halides, including crystal preparation, luminescence modulation, and emerging applications.
Collapse
Affiliation(s)
- Yang Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Xiaolin Ren
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, P. R. China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
27
|
Abstract
Lead-free perovskites have received remarkable attention because of their nontoxicity, low-cost fabrication, and spectacular properties including controlled bandgap, long diffusion length of charge carrier, large absorption coefficient, and high photoluminescence quantum yield. Compared with the widely investigated polycrystals, single crystals have advantages of lower trap densities, longer diffusion length of carrier, and extended absorption spectrum due to the lack of grain boundaries, which facilitates their potential in different fields including photodetectors, solar cells, X-ray detectors, light-emitting diodes, and so on. Therefore, numerous research focusing on the novel properties, preparation methods, and remarkable progress in applications of lead-free perovskite single crystals (LFPSCs) has been extensively studied. In this review, the current advancements of LFPSCs are briefly summarized, including the synthesis approaches, compositional and interfacial engineering, and stability of several representative systems of LFPSCs as well as the reported practical applications. Finally, the critical challenges which limit the performance of LFPSCs, and their inspiring prospects for further developments are also discussed.
Collapse
|