1
|
Chen G, Zhu M, Zhong D, Liu J, Li Y, Zang Y, Sun S, Liu H, Wang S, Xin Y, Wang X, Hu C, Teng B. Transparent and Thermally Stable Rare-Earth-Doped Luminescent Gallate Glass toward Passive Daytime Radiative Cooling Applications. Inorg Chem 2024. [PMID: 39455428 DOI: 10.1021/acs.inorgchem.4c03438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Currently, the implementation of passive daytime radiative cooling based on zero-energy cooling methodologies primarily focuses on polymers and composite materials, whereas the available literature on all-inorganic materials is relatively few. Here, we present a novel microcrystalline glass material CaGa0.5Al1.5O4 (CGAO), doped with rare-earth elements and prepared by the high-temperature melting method. This material exhibits long-term stability at 200 °C, coupled with an effective infrared radiation cooling function, demonstrating a 4.9 °C temperature reduction at solar noon. The energy transfer and luminescence mechanisms of Tb3+ and Sm3+ doped CGAO glass have been thoroughly investigated, along with thorough assessments of its thermal stability and hardness. The glass exhibits ultrahigh light transmission in the ultraviolet to near-infrared range, with the transmittance reaching 98% in specific spectral bands. Furthermore, it demonstrates superior luminescent thermal stability, retaining 85.6% and 71.2% of its initial luminescence intensity at 423 and 523 K, respectively. The high-temperature resistance and stability and long-term cooling properties render CGAO glass as an optimal candidate for integration into future energy-efficient and sustainable building designs.
Collapse
Affiliation(s)
- Guanning Chen
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Maochen Zhu
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Degao Zhong
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- National Demonstration Center for Experimental Applied Physics Education, Qingdao University, Qingdao 266071, China
- Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center, Qingdao University, Qingdao 266071, China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, China
| | - Jiaen Liu
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Yongjian Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Yinghao Zang
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Shouyi Sun
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Hao Liu
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Shoubo Wang
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Yingfei Xin
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Xiaoxiong Wang
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- National Demonstration Center for Experimental Applied Physics Education, Qingdao University, Qingdao 266071, China
| | - Chen Hu
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- National Demonstration Center for Experimental Applied Physics Education, Qingdao University, Qingdao 266071, China
- Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center, Qingdao University, Qingdao 266071, China
| | - Bing Teng
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- National Demonstration Center for Experimental Applied Physics Education, Qingdao University, Qingdao 266071, China
- Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center, Qingdao University, Qingdao 266071, China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, China
| |
Collapse
|
2
|
Wang J, Mao Y, Miljkovic N. Nano-Enhanced Graphite/Phase Change Material/Graphene Composite for Sustainable and Efficient Passive Thermal Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402190. [PMID: 39119846 PMCID: PMC11481206 DOI: 10.1002/advs.202402190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Passive battery thermal management systems (BTMSs) are critical for mitigation of battery thermal runaway (TR). Phase change materials (PCMs) have shown promise for mitigating transient thermal challenges. Fluid leakage and low effective thermal conductivity limit PCM adoption. Furthermore, the thermal capacitance of PCMs diminishes as their latent load is exhausted, creating an unsustainable cooling effect that is transitory. Here, an expanded graphite/PCM/graphene composite that solves these challenges is proposed. The expanded graphite/PCM phase change composite eliminates leakage and increases effective thermal conductivity while the graphene coating enables radiative cooling for PCM regeneration. The composite demonstrates excellent thermal performance in a real BTMS and shows a 26% decrease in temperature when compared to conventional BTMS materials. The composite exhibits thermal control performance comparable with active cooling, resulting in reduced cost and increased simplicity. In addition to BTMSs, this material is anticipated to have application in a plethora of engineered systems requiring stringent thermal management.
Collapse
Affiliation(s)
- Ji‐Xiang Wang
- Institute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- Hebei Key Laboratory of Man‐machine Environmental Thermal Control Technology and EquipmentHebei Vocational University of Technology and EngineeringHebei054000P. R. China
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SARP. R. China
- College of ElectricalEnergy and Power EngineeringYangzhou UniversityYangzhou225009P. R. China
| | - Yufeng Mao
- Institute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
| | - Nenad Miljkovic
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of IllinoisUrbanaIL61801USA
- International Institute for Carbon‐Neutral Energy Research (WPI‐I2CNER)Kyushu University744 Motooka, Nishi‐kuFukuoka819‐0395Japan
- Institute for Sustainability, Energy and Environment (iSEE)University of IllinoisUrbanaIL61801USA
| |
Collapse
|
3
|
Zhai Q, Gong W, Yu M, Gu R, Lei C, Liu S, Wang Z, Wang D. Flexible fabrication of core/shell nanoparticles for tailored infrared emissivity on aluminum via femtosecond laser self-deposition. OPTICS LETTERS 2024; 49:5192-5195. [PMID: 39270261 DOI: 10.1364/ol.533782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
A metal surface with controllable infrared emissivity has a wide range of applications. However, a flexible and simple fabrication method is needed. Here, a controllable femtosecond laser self-deposition technology was developed to fabricate Al@AlOx core/shell micropillars (MPs) with diverse size distribution on the aluminum surface in a single-step operation under ambient conditions. By establishing a deterministic relationship between pulse-repetition frequency (PRF) and particle size distribution (PSD), we achieved continuous control of the infrared emissivity of the surface by lower PRF, ranging from low (0.31) to high (0.93). Additionally, by using higher PRF, we attained dual-band emissivity control, featuring high emissivity in the range of 10-14 µm and near-continuous change in the range of 2.5-10 µm.
Collapse
|
4
|
Li Z, Zhang JH, Li J, Wang S, Zhang L, He CY, Lin P, Melhi S, Yang T, Yamauchi Y, Xu X. Dynamical Janus-Like Behavior Excited by Passive Cold-Heat Modulation in the Earth-Sun/Universe System: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309397. [PMID: 38644343 DOI: 10.1002/smll.202309397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Indexed: 04/23/2024]
Abstract
The utilization of solar-thermal energy and universal cold energy has led to many innovative designs that achieve effective temperature regulation in different application scenarios. Numerous studies on passive solar heating and radiation cooling often operate independently (or actively control the conversion) and lack a cohesive framework for deep connections. This work provides a concise overview of the recent breakthroughs in solar heating and radiation cooling by employing a mechanism material in the application model. Furthermore, the utilization of dynamic Janus-like behavior serves as a novel nexus to elucidate the relationship between solar heating and radiation cooling, allowing for the analysis of dynamic conversion strategies across various applications. Additionally, special discussions are provided to address specific requirements in diverse applications, such as optimizing light transmission for clothing or window glass. Finally, the challenges and opportunities associated with the development of solar heating and radiation cooling applications are underscored, which hold immense potential for substantial carbon emission reduction and environmental preservation. This work aims to ignite interest and lay a solid foundation for researchers to conduct in-depth studies on effective and self-adaptive regulation of cooling and heating.
Collapse
Affiliation(s)
- Zhengtong Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot, 010021, China
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiaoyang Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Song Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Lvfei Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Cheng-Yu He
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Peng Lin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Tao Yang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Xingtao Xu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
5
|
Wu R, Sui C, Chen TH, Zhou Z, Li Q, Yan G, Han Y, Liang J, Hung PJ, Luo E, Talapin DV, Hsu PC. Spectrally engineered textile for radiative cooling against urban heat islands. Science 2024; 384:1203-1212. [PMID: 38870306 DOI: 10.1126/science.adl0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Radiative cooling textiles hold promise for achieving personal thermal comfort under increasing global temperature. However, urban areas have heat island effects that largely diminish the effectiveness of cooling textiles as wearable fabrics because they absorb emitted radiation from the ground and nearby buildings. We developed a mid-infrared spectrally selective hierarchical fabric (SSHF) with emissivity greatly dominant in the atmospheric transmission window through molecular design, minimizing the net heat gain from the surroundings. The SSHF features a high solar spectrum reflectivity of 0.97 owing to strong Mie scattering from the nano-micro hybrid fibrous structure. The SSHF is 2.3°C cooler than a solar-reflecting broadband emitter when placed vertically in simulated outdoor urban scenarios during the day and also has excellent wearable properties.
Collapse
Affiliation(s)
- Ronghui Wu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Chenxi Sui
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ting-Hsuan Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zirui Zhou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Qizhang Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Gangbin Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yu Han
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jiawei Liang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Pei-Jan Hung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Edward Luo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Dmitri V Talapin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Po-Chun Hsu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Qin M, Jia K, Usman A, Han S, Xiong F, Han H, Jin Y, Aftab W, Geng X, Ma B, Ashraf Z, Gao S, Wang Y, Shen Z, Zou R. High-Efficiency Thermal-Shock Resistance Enabled by Radiative Cooling and Latent Heat Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314130. [PMID: 38428436 DOI: 10.1002/adma.202314130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Radiative cooling technology is well known for its subambient temperature cooling performance under sunlight radiation. However, the intrinsic maximum cooling power of radiative cooling limits the performance when the objects meet the thermal shock. Here, a dual-function strategy composed of radiative cooling and latent heat storage simultaneously enabling the efficient subambient cooling and high-efficiency thermal-shock resistance performance is proposed. The electrospinning and absorption-pressing methods are used to assemble the dual-function cooler. The high sunlight reflectivity and high mid-infrared emissivity of radiative film allow excellent subambient temperature of 5.1 °C. When subjected the thermal shock, the dual-function cooler demonstrates a pinning effect of huge temperature drop of 39 °C and stable low-temperature level by isothermal heat absorption compared with the traditional radiative cooler. The molten phase change materials provide the heat-time transfer effect by converting thermal-shock heat to the delayed preservation. This strategy paves a powerful way to protect the objects from thermal accumulation and high-temperature damage, expanding the applications of radiative cooling and latent heat storage technologies.
Collapse
Affiliation(s)
- Mulin Qin
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Kaihang Jia
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Ali Usman
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shenghui Han
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Feng Xiong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haiwei Han
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yongkang Jin
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Waseem Aftab
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaoye Geng
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bingbing Ma
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zubair Ashraf
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yonggang Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhenghui Shen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| |
Collapse
|
7
|
Bai Y, Jia X, Shan Z, Huang C, Wang D, Yang J, Pang B, Song H. Sustainable cellulose foams for all-weather high-performance radiative cooling and building insulation. Carbohydr Polym 2024; 333:121951. [PMID: 38494216 DOI: 10.1016/j.carbpol.2024.121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Passive daytime radiative cooling (PDRC) as a zero-energy-consumption cooling technique offers rich opportunities in reducing global energy consumption and mitigating CO2 emissions. Developing high-performance PDRC coolers with practical applicability based on sustainable materials is of great significance, but remains a big challenge. Herein, polyvinyl alcohol (PVA) and esterified cellulose (EC) extracted from sawdust were used as raw materials to construct foams by using a dual-crosslinking assisted-unidirectional freeze-drying strategy followed by hydrophobic surface modification. The resultant PVA/EC (PEC) foams with ideal hierarchical macropore structure displayed various excellent features, such as low thermal conductivity (26.2 mW·m-1·K-1), high solar reflectance (95 %) and infrared emissivity (0.97), superhydrophobicity as well as high mechanical properties. The features allowed the PEC foams to be used as radiative coolers with excellent PDRC performance and thermal insulating materials. A maximum sub-ambient temperature drops of 10.2 °C could be achieved for optimal PEC foams. Building simulations indicated that PEC foams could save 55.8 % of the energy consumption for Xi'an. Our work would give inspiration for designing various types of PDRC coolers, including but certainly not limited to foams-based radiative coolers.
Collapse
Affiliation(s)
- Yunfei Bai
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Xiaohua Jia
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Zhiqiang Shan
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Caiyue Huang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Ding Wang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Jin Yang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Bo Pang
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrheniusväg 16C, Stockholm 106 91, Sweden.
| | - Haojie Song
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
8
|
He J, Zhang Q, Zhou Y, Chen Y, Ge H, Tang S. Bioinspired Polymer Films with Surface Ordered Pyramid Arrays and 3D Hierarchical Pores for Enhanced Passive Radiative Cooling. ACS NANO 2024; 18:11120-11129. [PMID: 38626337 DOI: 10.1021/acsnano.3c12244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Passive radiative cooling (PRC) has been acknowledged to be an environmentally friendly cooling technique, and especially artificial photonic materials with manipulating light-matter interaction ability are more favorable for PRC. However, scalable production of radiative cooling materials with advanced biologically inspired structures, fascinating properties, and high throughput is still challenging. Herein, we reported a bioinspired design combining surface ordered pyramid arrays and internal three-dimensional hierarchical pores for highly efficient PRC based on mimicking natural photonic structures of the white beetle Cyphochilus' wings. The biological photonic film consisting of surface ordered pyramid arrays with a bottom side length of 4 μm together with amounts of internal nano- and micropores was fabricated by using scalable phase separation and a quick hot-pressing process. Optimization of pore structures and surface-enhanced photonic arrays enables the bioinspired film to possess an average solar reflectance of ∼98% and a high infrared emissivity of ∼96%. A temperature drop of ∼8.8 °C below the ambient temperature is recorded in the daytime. Besides the notable PRC capability, the bioinspired film exhibits excellent flexibility, strong mechanical strength, and hydrophobicity; therefore, it can be applied in many complex outdoor scenarios. This work provides a highly efficient and mold replication-like route to develop highly efficient passive cooling devices.
Collapse
Affiliation(s)
- Jiajun He
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Qingyuan Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yaya Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yu Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shaochun Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
9
|
Wu B, Qi Q, Liu L, Liu Y, Wang J. Wearable Aerogels for Personal Thermal Management and Smart Devices. ACS NANO 2024; 18:9798-9822. [PMID: 38551449 DOI: 10.1021/acsnano.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Extreme climates have become frequent nowadays, causing increased heat stress in human daily life. Personal thermal management (PTM), a technology that controls the human body's microenvironment, has become a promising strategy to address heat stress. While effective in ordinary environments, traditional high-performance fibers, such as ultrafine, porous, highly thermally conductive, and phase change materials, fall short when dealing with harsh conditions or large temperature fluctuations. Aerogels, a third-generation superinsulation material, have garnered extensive attention among researchers for their thermal management applications in building energy conservation, transportation, and aerospace, attributed to their extremely low densities and thermal conductivity. While aerogels have historically faced challenges related to weak mechanical strength and limited secondary processing capacity, recent advancements have witnessed notable progress in the development of wearable aerogels for PTM. This progress underscores their potential applications within extremely harsh environments, serving as self-powered smart devices and sensors. This Review offers a timely overview of wearable aerogels and their PTM applications with a particular focus on their wearability and suitability. Finally, the discussion classifies five types of PTM applications based on aerogel function: thermal insulation, heating, cooling, adaptive regulation (involving thermal insulation, heating, and cooling), and utilization of aerogels as wearable smart devices.
Collapse
Affiliation(s)
- Bing Wu
- Emergency Research Institute, Chinese Institute of Coal Science, Beijing 100013, P. R. China
| | - Qingjie Qi
- Emergency Research Institute, Chinese Institute of Coal Science, Beijing 100013, P. R. China
| | - Ling Liu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingjie Liu
- Emergency Research Institute, Chinese Institute of Coal Science, Beijing 100013, P. R. China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
10
|
Li X, Zhang Z, Zhang X, Cao Y, Yang Y, Wang W, Wang J. A Polymer Nanocomposite with Strong Full-Spectrum Solar Absorption and Infrared Emission for All-Day Thermal Energy Management and Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308200. [PMID: 38342623 PMCID: PMC11022738 DOI: 10.1002/advs.202308200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/13/2024] [Indexed: 02/13/2024]
Abstract
Realizing efficient energy utilization from the heat source of the sun and the cold source of outer space is of great significance for addressing the global energy and environmental crisis. Materials with ideal full-spectrum solar absorption and infrared emission are highly desirable for adapting to the continuous weather dynamic throughout the day, nonetheless, their development remains challenging. Here, a polymer nanocomposite with full-spectrum strong solar (280-2500 nm) absorption ranging from 88.8% to 94.8% with an average value of 93.2% and full-spectrum high infrared (8-13 µm) emission ranging from 81.3% to 90.0% with an average value of 84.2%, is reported by melt-processing polypropylene and uniformly dispersed low-loading MXene nanosheets (1.9 vol%). The nanocomposite can achieve daytime photothermal enhancement of ≈50 °C and nighttime radiative cooling of 8 °C. The temperature difference throughout the day ensures all-day uninterrupted thermoelectric generation, yielding a power density output of 1.5 W m-2 (daytime) and 7.9 mW m-2 (nighttime) in real outdoor environment without any additional energy consumption. This work provides an impressive polymer nanocomposite with ideal full-spectrum solar absorption and infrared emission for all-day uninterrupted thermal energy management and conversion.
Collapse
Affiliation(s)
- Xiangxin Li
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Zipeng Zhang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Xueting Zhang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Yanxia Cao
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Yanyu Yang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Wanjie Wang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Jianfeng Wang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
11
|
Xue J, Liu D, Li D, Hong T, Li C, Zhu Z, Sun Y, Gao X, Guo L, Shen X, Ma P, Zheng Q. New Carbon Materials for Multifunctional Soft Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312596. [PMID: 38490737 DOI: 10.1002/adma.202312596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Soft electronics are garnering significant attention due to their wide-ranging applications in artificial skin, health monitoring, human-machine interaction, artificial intelligence, and the Internet of Things. Various soft physical sensors such as mechanical sensors, temperature sensors, and humidity sensors are the fundamental building blocks for soft electronics. While the fast growth and widespread utilization of electronic devices have elevated life quality, the consequential electromagnetic interference (EMI) and radiation pose potential threats to device precision and human health. Another substantial concern pertains to overheating issues that occur during prolonged operation. Therefore, the design of multifunctional soft electronics exhibiting excellent capabilities in sensing, EMI shielding, and thermal management is of paramount importance. Because of the prominent advantages in chemical stability, electrical and thermal conductivity, and easy functionalization, new carbon materials including carbon nanotubes, graphene and its derivatives, graphdiyne, and sustainable natural-biomass-derived carbon are particularly promising candidates for multifunctional soft electronics. This review summarizes the latest advancements in multifunctional soft electronics based on new carbon materials across a range of performance aspects, mainly focusing on the structure or composite design, and fabrication method on the physical signals monitoring, EMI shielding, and thermal management. Furthermore, the device integration strategies and corresponding intriguing applications are highlighted. Finally, this review presents prospects aimed at overcoming current barriers and advancing the development of state-of-the-art multifunctional soft electronics.
Collapse
Affiliation(s)
- Jie Xue
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dan Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Da Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Tianzeng Hong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zifu Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiaobo Gao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Lei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Pengcheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
12
|
Zhang X, Wang F, Guo H, Sun F, Li X, Zhang C, Yu C, Qin X. Advanced Cooling Textiles: Mechanisms, Applications, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305228. [PMID: 38140792 PMCID: PMC10933611 DOI: 10.1002/advs.202305228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Indexed: 12/24/2023]
Abstract
High-temperature environments pose significant risks to human health and safety. The body's natural ability to regulate temperature becomes overwhelmed under extreme heat, leading to heat stroke, dehydration, and even death. Therefore, the development of effective personal thermal-moisture management systems is crucial for maintaining human well-being. In recent years, significant advancements have been witnessed in the field of textile-based cooling systems, which utilize innovative materials and strategies to achieve effective cooling under different environments. This review aims to provide an overview of the current progress in textile-based personal cooling systems, mainly focusing on the classification, mechanisms, and fabrication techniques. Furthermore, the challenges and potential application scenarios are highlighted, providing valuable insights for further advancements and the eventual industrialization of personal cooling textiles.
Collapse
Affiliation(s)
- Xueping Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Fei Wang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Hanyu Guo
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Xiangshun Li
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Chentian Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Chongwen Yu
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| |
Collapse
|
13
|
Han D, Wang C, Han CB, Cui Y, Ren WR, Zhao WK, Jiang Q, Yan H. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO 2 Aerogel Coating for Daytime Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9303-9312. [PMID: 38343044 DOI: 10.1021/acsami.3c18101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Daytime radiative cooling technology offers a low-carbon, environmentally friendly, and nonpower-consuming approach to realize building energy conservation. It is important to design materials with high solar reflectivity and high infrared emissivity in atmospheric windows. Herein, a porous calcium silicate composite SiO2 aerogel water-borne coating with strong passive radiative cooling and high thermal insulation properties is proposed, which shows an exceptional solar reflectance of 94%, high sky window emissivity of 96%, and 0.0854 W/m·K thermal conductivity. On the SiO2/CaSiO3 radiative cooling coating (SiO2-CS-coating), a strategy is proposed to enhance the atmospheric window emissivity by lattice resonance, which is attributed to the eight-membered ring structure of porous calcium silicate, thereby increasing the atmospheric window emissivity. In the daytime test (solar irradiance 900W/m2, ambient temperature 43 °C, wind speed 0.53 m/s, humidity 25%), the temperature inside the box can achieve a cooling temperature of 13 °C lower than that of the environment, which is 30 °C, and the theoretical cooling power is 96 W/m2. Compared with the commercial white coating, SiO2-CS-coating can save 70 kW·h of electric energy in 1 month, and the energy consumption is reduced by 36%. The work provides a scalable, widely applicable radiative-cooling coating for building comfort, which can greatly reduce indoor temperatures and is suitable for building surfaces.
Collapse
Affiliation(s)
- Dong Han
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Chenghai Wang
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
- Langgu (Tianjin) New Material Technology Co., Ltd., Tianjin 300392, People's Republic of China
| | - Chang Bao Han
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yanan Cui
- Langgu (Tianjin) New Material Technology Co., Ltd., Tianjin 300392, People's Republic of China
| | - Wen Rui Ren
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Wen Kang Zhao
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Quan Jiang
- China Testing & Certification International Group Co., Ltd., Beijing 100000, People's Republic of China
- China Buiding Material Federation Metal Composite Materials & Products Branch, Beijing 100024, People's Republic of China
| | - Hui Yan
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
14
|
Zhou J, Ding C, Zhang X, Li D, Yang D, You B, Wu L. High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38032275 DOI: 10.1021/acsami.3c14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments, and their performance deteriorates significantly with prolonged outdoor use. These shortcomings restrict their widespread application in various settings. To address this, we draw inspiration from the unique biostructure of dictyophora and propose a novel hollow@porous radiative cooling film by integrating hollow microparticles and porous polymer. The fabricated hollow@porous flexible film exhibits high sunlight reflection (93.7%), strong infrared emissivity (89.1%), as well as ultralow thermal conductivity (17.56 mW/m k). The daytime cooling performance of the prepared cooler is experimentally demonstrated with a marked temperature decrease to 17.4 °C under a peak solar intensity of 980 W/m2. Furthermore, the unique hollow@porous structure also strengthens the film's long-term durability by incorporating weather resistance and self-cleaning properties, which ensures stable and efficient radiative cooling performance even in harsh climatic conditions. This advancement in radiative cooling materials opens up new possibilities for thermal management, energy conservation, and cooling of solar panels, engine components, electronic equipment, new energy batteries, etc.
Collapse
Affiliation(s)
- Jianlin Zhou
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200438, P. R. China
| | - Canxia Ding
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200438, P. R. China
| | - Xuehui Zhang
- Shanghai Waigaoqiao Shipbuilding Co., Ltd., Shanghai 200137, P. R. China
| | - Donglei Li
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200438, P. R. China
| | - Dicong Yang
- Tsongyi Technology Shanghai Co., Ltd, Shanghai 201306, P. R. China
| | - Bo You
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200438, P. R. China
| | - Limin Wu
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
15
|
Xiong L, Wei Y, Chen C, Chen X, Fu Q, Deng H. Thin lamellar films with enhanced mechanical properties for durable radiative cooling. Nat Commun 2023; 14:6129. [PMID: 37783720 PMCID: PMC10545832 DOI: 10.1038/s41467-023-41797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023] Open
Abstract
Passive daytime radiative cooling is a promising path to tackle energy, environment and security issues originated from global warming. However, the contradiction between desired high solar reflectivity and necessary applicable performance is a major limitation at this stage. Herein, we demonstrate a "Solvent exchange-Reprotonation" processing strategy to fabricate a lamellar structure integrating aramid nanofibers with core-shell TiO2-coated Mica microplatelets for enhanced strength and durability without compromising optical performance. Such approach enables a slow but complete two-step protonation transition and the formation of three-dimensional dendritic networks with strong fibrillar joints, where overloaded scatterers are stably grasped and anchored in alignment, thereby resulting in a high strength of ~112 MPa as well as excellent environmental durability including ultraviolet aging, high temperature, scratches, etc. Notably, the strong backward scattering excited by multiple core-shell and shell-air interfaces guarantees a balanced reflectivity (~92%) and thickness (~25 μm), which is further revealed by outdoor tests where attainable subambient temperature drops are ~3.35 °C for daytime and ~6.11 °C for nighttime. Consequently, both the cooling capacity and comprehensive outdoor-services performance, greatly push radiative cooling towards real-world applications.
Collapse
Affiliation(s)
- Lianhu Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Yun Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Chuanliang Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Xin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
16
|
Wang JX, Lai H, Zhong M, Liu X, Chen Y, Yao S. Design and Scalable Fabrication of Liquid Metal and Nano-Sheet Graphene Hybrid Phase Change Materials for Thermal Management. SMALL METHODS 2023; 7:e2300139. [PMID: 37129546 DOI: 10.1002/smtd.202300139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Here, a paraffin/liquid metal (LM)/graphene hybrid thermal composite material with a high thermal-conductivity as well as high latent heat is developed. The paraffin is encapsulated in calcium alginate, which produces leakage-free phase change material (PCM) capsules. LM is filled among the gaps of PCM capsules to enhance overall heat conduction. Graphene nano-sheets coating attains efficient heat dissipation because of its high spectral emissivity (>91%) in the spectrum of the mid-infrared region. The developed material is verified to have strong compatibility and durable stability. The composite is utilized as a thermal buffer (TB) for central processing unit thermal management to demonstrate the synergy of these superior thermal properties. In certain cases, active cooling normally used could be replaced by the developed TB without any energy consumption for thermal management, demonstrating a completely passive cooling strategy. Compared to traditional heat sink active cooling, general energy savings of 10.4-26.3% could thus be achieved by the developed composite in wider operating conditions, proving its potential for more efficient and sustainable data center cooling alongside thermal management of other ground-based electrical/electronic equipment.
Collapse
Affiliation(s)
- Ji-Xiang Wang
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Hebei, 054000, P. R. China
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Huang Lai
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Mingliang Zhong
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, P. R. China
| | - Xiangdong Liu
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yongping Chen
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
17
|
Sun H, Chen Y, Zeng W, Tang F, Bi Y, Lu Q, Mondal AK, Huang L, Chen L, Li J. Solution-processable, robust and sustainable cooler via nano-structured engineering. Carbohydr Polym 2023; 314:120948. [PMID: 37173049 DOI: 10.1016/j.carbpol.2023.120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Passive daytime radiative cooling (PDRC) materials simultaneously featuring aesthetic and safety distinctions demonstrate versatile applications beyond cooling buildings, while the integrated advantages of high strength, morphological reconfigurability, and sustainability remain challenging for the conventional PDRC materials. Herein, we designed a robust, custom-shaped and eco-friendly cooler via a scalable solution-processable strategy, involving the nano-scale assembly of nano cellulose (NC) and inorganic nanoparticle (e.g., ZrO2, SiO2, BaSO4, and hydroxyapatite). The robust cooler shows an interesting "brick-and-mortar" structure, where the NC constructs interwoven framework (as brick structure) and the inorganic nanoparticle uniformly locates in the skeleton (as mortar structure), collectively contributing to high mechanical strength (>80 MPa) and flexibility. In addition, the structural and chemical distinctions enable our cooler to show a high solar reflectance (>96 %) and mid-infrared emissivity (>0.9), demonstrating a sub-ambient average temperature drop of 8.8 °C in long-term outdoor environments. The high-performance cooler with robustness, scalability and environmental friendliness, serves as a competitive participant toward the advanced PDRC materials in our low-carbon society.
Collapse
Affiliation(s)
- Haodong Sun
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuwen Chen
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenchao Zeng
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengjie Tang
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinghao Bi
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingxin Lu
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ajoy Kanti Mondal
- Leather Research Institute, Bangladesh Council of Scientific and Industrial Research, Savar, Dhaka 1350, Bangladesh
| | - Liulian Huang
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihui Chen
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jianguo Li
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Kousis I, D’Amato R, Pisello AL, Latterini L. Daytime Radiative Cooling: A Perspective toward Urban Heat Island Mitigation. ACS ENERGY LETTERS 2023; 8:3239-3250. [PMID: 37469389 PMCID: PMC10353003 DOI: 10.1021/acsenergylett.3c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Traditional cooling and heating systems in residential buildings account for more than 15% of global electricity consumption and 10% of global emissions of greenhouse gases. Daytime radiative cooling (DRC) is an emerging passive cooling technology that has garnered significant interest in recent years due to its high cooling capability. It is expected to play a pivotal role in improving indoor and outdoor urban environments by mitigating surface and air temperatures while decreasing relevant energy demand. Yet, DRC is in its infancy, and thus several challenges need to be addressed to establish its efficient wide-scale application into the built environment. In this Perspective, we critically discuss the strategies and progress in materials development to achieve DRC and highlight the challenges and future paths to pave the way for real-life applications. Advances in nanofabrication in combination with the establishment of uniform experimental protocols, both in the laboratory/field and through simulations, are expected to drive economic increases in DRC.
Collapse
Affiliation(s)
- Ioannis Kousis
- Environmental
Applied Physics Lab (EAPLAB) at Interuniversity Research Center on
Pollution and Environment (CIRIAF), University
of Perugia, Via G. Duranti 63, Perugia 06125, Italy
| | - Roberto D’Amato
- Nano4Light-Lab,
Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Anna Laura Pisello
- Environmental
Applied Physics Lab (EAPLAB) at Interuniversity Research Center on
Pollution and Environment (CIRIAF), University
of Perugia, Via G. Duranti 63, Perugia 06125, Italy
- Department
of Engineering, University of Perugia, Via G. Duranti 97, Perugia 06125, Italy
| | - Loredana Latterini
- Nano4Light-Lab,
Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
19
|
Zhang D, Zhang H, Xu Z, Zhao Y. Recent Advances in Electrospun Membranes for Radiative Cooling. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103677. [PMID: 37241303 DOI: 10.3390/ma16103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Radiative cooling is an approach that maximizes the thermal emission through the atmospheric window in order to dissipate heat, while minimizing the absorption of incoming atmospheric radiation, to realize a net cooling effect without consuming energy. Electrospun membranes are made of ultra-thin fibers with high porosity and surface area, which makes them suitable for radiative cooling applications. Many studies have investigated the use of electrospun membranes for radiative cooling, but a comprehensive review that summarizes the research progress in this area is still lacking. In this review, we first summarize the basic principles of radiative cooling and its significance in achieving sustainable cooling. We then introduce the concept of radiative cooling of electrospun membranes and discuss the selection criteria for materials. Furthermore, we examine recent advancements in the structural design of electrospun membranes for improved cooling performance, including optimization of geometric parameters, incorporation of highly reflective nanoparticles, and designing multilayer structure. Additionally, we discuss dual-mode temperature regulation, which aims to adapt to a wider range of temperature conditions. Finally, we provide perspectives for the development of electrospun membranes for efficient radiative cooling. This review will provide a valuable resource for researchers working in the field of radiative cooling, as well as for engineers and designers interested in commercializing and developing new applications for these materials.
Collapse
Affiliation(s)
- Dongxue Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Haiyan Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Gao W, Chen Y. Emerging Materials and Strategies for Passive Daytime Radiative Cooling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206145. [PMID: 36604963 DOI: 10.1002/smll.202206145] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Indexed: 05/04/2023]
Abstract
In recent decades, the growing demands for energy saving and accompanying heat mitigation concerns, together with the vital goal for carbon neutrality, have drawn human attention to the zero-energy-consumption cooling technique. Recent breakthroughs in passive daytime radiative cooling (PDRC) might be a potent approach to combat the energy crisis and environmental challenges by directly dissipating ambient heat from the Earth to the cold outer space instead of only moving the heat across the Earth's surface. Despite significant progress in cooling mechanisms, materials design, and application exploration, PDRC faces potential functionalization, durability, and commercialization challenges. Herein, emerging materials and rational strategies for PDRC devices are reviewed. First, the fundamental physics and thermodynamic concepts of PDRC are examined, followed by a discussion on several categories of PDRC devices developed to date according to their implementation mechanism and material properties. Emerging strategies for performance enhancement and specific functions of PDRC are discussed in detail. Potential applications and possible directions for designing next-generation high-efficiency PDRC are also discussed. It is hoped that this review will contribute to exciting advances in PDRC and aid its potential applications in various fields.
Collapse
Affiliation(s)
- Wei Gao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yongping Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
21
|
Tao S, Han J, Xu Y, Fang Z, Ni Y, Fang L, Lu C, Xu Z. Mechanically Switchable Multifunctional Device for Regulating Passive Radiative Cooling and Solar Heating. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17123-17133. [PMID: 36971527 DOI: 10.1021/acsami.2c21961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Energy consumption during cooling and heating poses a great threat to the development of society. Thermal regulation, as switchable cooling and heating in a single platform, is therefore urgently demanded. Herein, a switchable multifunctional device integrating heating, cooling, and latent energy storage was proposed for temperature regulation and window energy saving for buildings. A radiative cooling (RC) emitter, a phase-change (PC) membrane, and a solar-heating (SH) film were connected layer by layer to form a sandwich structure. The RC emitter exhibited selective infrared emission (emissivity in the atmospheric window: 0.81, emissivity outside the atmospheric window: 0.39) and a high solar reflectance (0.92). Meanwhile, the SH film had a high solar absorptivity (0.90). More importantly, both the RC emitter and the SH film displayed excellent wear resistance and UV resistance. The PC layer can control the temperature at a steady state under dynamic weather conditions, which could be verified by indoor and outdoor measurements. The thermal regulation performance of the multifunctional device was also verified by outdoor measurements. The temperature difference between the RC and SH models of the multifunctional device could reach up to 25 °C. The as-constructed switchable multifunctional device is a promising candidate for alleviating the cooling and heating energy consumption and realizing energy saving for windows.
Collapse
Affiliation(s)
- Shuang Tao
- College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jingtian Han
- College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ying Xu
- College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Zhenggang Fang
- College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yaru Ni
- College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Liang Fang
- College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Chunhua Lu
- College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Zhongzi Xu
- College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
22
|
Lauster T, Mauel A, Herrmann K, Veitengruber V, Song Q, Senker J, Retsch M. From Chitosan to Chitin: Bio-Inspired Thin Films for Passive Daytime Radiative Cooling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206616. [PMID: 36793085 PMCID: PMC10104647 DOI: 10.1002/advs.202206616] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Passive radiative daytime cooling is an emerging technology contributing to carbon-neutral heat management. Optically engineered materials with distinct absorption and emission properties in the solar and mid-infrared range are at the heart of this technology. Owing to their low emissive power of about 100 W m-2 during daytime, substantial areas need to be covered with passive cooling materials or coatings to achieve a sizeable effect on global warming. Consequently, biocompatible materials are urgently needed to develop suitable coatings with no adverse environmental impact. It is shown how chitosan films with different thicknesses can be produced from slightly acidic aqueous solutions. The conversion to their insoluble form chitin in the solid state is demonstrated and the conversion is monitored with infrared (IR) and NMR spectroscopy. In combination with a reflective backing material, the films show below-ambient temperature cooling capabilities with a suitable emissivity in the mid-IR region and low solar absorption of 3.1-6.9%, depending on the film thickness. This work highlights the potential of chitosan and chitin as widely available biocompatible polymers for passive radiative cooling applications.
Collapse
Affiliation(s)
- Tobias Lauster
- Department of ChemistryPhysical Chemistry IUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Anika Mauel
- Department of ChemistryInorganic Chemistry III and Northern Bavarian NMR CenterUniversity of Bayreuth95447Universitätsstraße 30BayreuthGermany
| | - Kai Herrmann
- Department of ChemistryPhysical Chemistry IUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Viktoria Veitengruber
- Department of ChemistryPhysical Chemistry IUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Qimeng Song
- Department of ChemistryPhysical Chemistry IUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Jürgen Senker
- Department of ChemistryInorganic Chemistry III and Northern Bavarian NMR CenterUniversity of Bayreuth95447Universitätsstraße 30BayreuthGermany
| | - Markus Retsch
- Department of ChemistryPhysical Chemistry IBavarian Polymer InstituteBayreuth Center for Colloids and Interfaces and Bavarian Center for Battery Technology (BayBatt)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
23
|
Zhao B, Wu H, Tian Q, Li Y, Qiu F, Zhang T. Laminated MXene Foam/Cellulose@LDH Composite Membrane with Efficient EMI Shielding Property for Asymmetric Personal Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8751-8760. [PMID: 36719403 DOI: 10.1021/acsami.2c21694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Facing the increasingly complex and deteriorated environment, people's thermal comfort and health requirements are expanding. Therefore, wearable materials with integrated functions have progressed rapidly due to the fair compatibility for various functions and precise regulation. In this work, a laminated MXene foam/cellulose@LDH composite membrane was fabricated via a facile process consisting of in situ growth, vacuum filtration, and foaming for asymmetrical personal thermal management and electromagnetic interference shielding. In detail, the Zn-Al LDH side shows a high solar reflectance of 0.89 and an infrared emissivity of 0.97 in the atmospheric window, demonstrating the superior radiative cooling property. In contrast, the outstanding radiative warming performance is revealed by the high solar absorption (0.72) and infrared reflectivity (0.55) of the MXene foam. As a result, prominent temperature differences were achieved during the validation test. Compared to the control group, an 18 °C reduction of the Zn-Al LDH side and a 9.6 °C increment of the MXene foam side were observed, bringing out the excellent optical properties and radiative thermal management performances. What is more, due to the outstanding electrical conductivity of MXene, a rapid and prominent temperature rise to 44.2 °C could be expected by applying a low voltage of 1 V to provide active joule warmth. In addition, hydrophobization and the associated stain resistance were explained by the high water contact angles of obtained membranes. The excellent electromagnetic interference shielding performance (43.9 dB) given by the introduction of MXene provides a prospective candidate to replace the common shielding materials. The results, in general, provide a promising strategy for meeting the updating requirements for comfortable living in a world full of potential thermal and health threats.
Collapse
Affiliation(s)
- Bencheng Zhao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, Jiangsu Province, China
| | - Haonan Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, Jiangsu Province, China
| | - Qiong Tian
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, Jiangsu Province, China
| | - Yuqi Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/ Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin541004, China
| | - Fengxian Qiu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, Jiangsu Province, China
| | - Tao Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, Jiangsu Province, China
| |
Collapse
|
24
|
Schöttle M, Lauster T, Roemling LJ, Vogel N, Retsch M. A Continuous Gradient Colloidal Glass. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208745. [PMID: 36366915 DOI: 10.1002/adma.202208745] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Colloidal crystals and glasses manipulate light propagation depending on their chemical composition, particle morphology, and mesoscopic structure. This light-matter interaction has been intensely investigated, but a knowledge gap remains for mesostructures comprising a continuous property gradient of the constituting particles. Here, a general synthetic approach to bottom-up fabrication of continuous size gradient colloidal ensembles is introduced. First, the technique synthesizes a dispersion with a specifically designed gradual particle size distribution. Second, self-assembly of this dispersion yields a photonic colloidal glass with a continuous size gradient from top to bottom. Local and bulk characterization methods are used to highlight the significant potential of this mesostructure, resulting in vivid structural colors along, and in superior light scattering across the gradient. The process describes a general pathway to mesoscopic gradients. It can expectedly be transferred to a variety of other particle-based systems where continuous gradients will provide novel physical insights and functionalities.
Collapse
Affiliation(s)
- Marius Schöttle
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Tobias Lauster
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Lukas J Roemling
- Insitute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Nicolas Vogel
- Insitute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Markus Retsch
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| |
Collapse
|
25
|
Ma B, Cheng Y, Hu P, Fang D, Wang J. Passive Daytime Radiative Cooling of Silica Aerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:467. [PMID: 36770428 PMCID: PMC9919039 DOI: 10.3390/nano13030467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Silica aerogels are one of the most widely used aerogels, exhibiting excellent thermal insulation performance and ultralow density. However, owing to their plenitude of Si-O-Si bonds, they possess high infrared emissivity in the range of 8-13 µm and are potentially robust passive radiative cooling (PRC) materials. In this study, the PRC behavior of traditional silica aerogels prepared from methyltrimethoxysilane (MTMS) and dimethyldimethoxysilane (DMDMS) in outdoor environments was investigated. The silica aerogels possessed low thermal conductivity of 0.035 W/m·K and showed excellent thermal insulation performance in room environments. However, sub-ambient cooling of 12 °C was observed on a clear night and sub-ambient cooling of up to 7.5 °C was achieved in the daytime, which indicated that in these cases the silica aerogel became a robust cooling material rather than a thermal insulator owing to its high IR emissivity of 0.932 and high solar reflectance of 0.924. In summary, this study shows the PRC performance of silica aerogels, and the findings guide the utilization of silica aerogels by considering their application environments for achieving optimal thermal management behavior.
Collapse
Affiliation(s)
- Bingjie Ma
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yingying Cheng
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Peiying Hu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Dan Fang
- Suzhou Institute of Metrology, Suzhou, 215128, China
| | - Jin Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
26
|
Wang X, Zhang Q, Wang S, Jin C, Zhu B, Su Y, Dong X, Liang J, Lu Z, Zhou L, Li W, Zhu S, Zhu J. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci Bull (Beijing) 2022; 67:1874-1881. [DOI: 10.1016/j.scib.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/09/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
|