1
|
Wu J, Zhang Y, Hu J, Yang Y, Jin D, Liu W, Huang D, Jia B, Moss DJ. 2D Graphene Oxide Films Expand Functionality of Photonic Chips. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403659. [PMID: 38843445 DOI: 10.1002/adma.202403659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Indexed: 06/13/2024]
Abstract
On-chip integration of 2D materials with unique structures and properties endow integrated devices with new functionalities and improved performance. With high flexibility in ways to modify its properties and compatibility with integrated platforms, graphene oxide (GO) is an exceptionally attractive 2D material for hybrid integrated photonic chips. Here, by harnessing unique property changes induced by photothermal effects in 2D GO films, novel functionalities beyond the capability of photonic integrated circuits are demonstrated. These include all-optical control and tuning, optical power limiting, and nonreciprocal light transmission. The 2D layered GO films are integrated onto photonic chips with precise control of their thickness and size. Benefitting from the broadband optical response of 2D GO films, all three functionalities feature a very wide operational optical bandwidth. By fitting the experimental results with theory, the changes in GO film properties induced by the photothermal effects are analyzed, revealing interesting insights about the physics of 2D GO films. These results highlight the versatility of 2D GO films in implementing new functions for integrated photonic devices for a wide range of applications.
Collapse
Affiliation(s)
- Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), Melbourne, VIC, 3000, Australia
| | - Yuning Zhang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- School of Physics, Peking University, Haidian District, Beijing, 100871, China
| | - Junkai Hu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- School of Automation, Central South University, Changsha, 410083, China
| | - Yunyi Yang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Di Jin
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- School of Automation, Central South University, Changsha, 410083, China
| | - Wenbo Liu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- School of Science, Centre for Atomaterials and Nanomanufacturing, Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, Melbourne, VIC, 3000, Australia
| | - Duan Huang
- School of Electronic Information, Central South University, Changsha, 410038, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Baohua Jia
- ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), Melbourne, VIC, 3000, Australia
- School of Science, Centre for Atomaterials and Nanomanufacturing, Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, Melbourne, VIC, 3000, Australia
| | - David J Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), Melbourne, VIC, 3000, Australia
| |
Collapse
|
2
|
Xie Z, Zhao T, Yu X, Wang J. Nonlinear Optical Properties of 2D Materials and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311621. [PMID: 38618662 DOI: 10.1002/smll.202311621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/12/2024] [Indexed: 04/16/2024]
Abstract
2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light-matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second-order and third-order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second-order susceptibility χ(2) and third-order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second-harmonic generation (SHG) and third-harmonic generation (THG) for 2D materials are presented.
Collapse
Affiliation(s)
- Zhixiang Xie
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Tianxiang Zhao
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Xuechao Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Junjia Wang
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| |
Collapse
|
3
|
Gao W, Zhi G, Zhou M, Niu T. Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311317. [PMID: 38712469 DOI: 10.1002/smll.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Indexed: 05/08/2024]
Abstract
The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.
Collapse
Affiliation(s)
- Wenjin Gao
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | | | - Miao Zhou
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianchao Niu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
| |
Collapse
|
4
|
Pham PV, Mai TH, Dash SP, Biju V, Chueh YL, Jariwala D, Tung V. Transfer of 2D Films: From Imperfection to Perfection. ACS NANO 2024; 18:14841-14876. [PMID: 38810109 PMCID: PMC11171780 DOI: 10.1021/acsnano.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Atomically thin 2D films and their van der Waals heterostructures have demonstrated immense potential for breakthroughs and innovations in science and technology. Integrating 2D films into electronics and optoelectronics devices and their applications in electronics and optoelectronics can lead to improve device efficiencies and tunability. Consequently, there has been steady progress in large-area 2D films for both front- and back-end technologies, with a keen interest in optimizing different growth and synthetic techniques. Parallelly, a significant amount of attention has been directed toward efficient transfer techniques of 2D films on different substrates. Current methods for synthesizing 2D films often involve high-temperature synthesis, precursors, and growth stimulants with highly chemical reactivity. This limitation hinders the widespread applications of 2D films. As a result, reports concerning transfer strategies of 2D films from bare substrates to target substrates have proliferated, showcasing varying degrees of cleanliness, surface damage, and material uniformity. This review aims to evaluate, discuss, and provide an overview of the most advanced transfer methods to date, encompassing wet, dry, and quasi-dry transfer methods. The processes, mechanisms, and pros and cons of each transfer method are critically summarized. Furthermore, we discuss the feasibility of these 2D film transfer methods, concerning their applications in devices and various technology platforms.
Collapse
Affiliation(s)
- Phuong V. Pham
- Department
of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - The-Hung Mai
- Department
of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Saroj P. Dash
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Vasudevanpillai Biju
- Research
Institute for Electronic Science, Hokkaido
University, Hokkaido 001-0020, Japan
| | - Yu-Lun Chueh
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Deep Jariwala
- Department
of Electrical and Systems Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vincent Tung
- Department
of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Fu Y, Liu Z, Yue S, Zhang K, Wang R, Zhang Z. Optical Second Harmonic Generation of Low-Dimensional Semiconductor Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:662. [PMID: 38668156 PMCID: PMC11054873 DOI: 10.3390/nano14080662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
In recent years, the phenomenon of optical second harmonic generation (SHG) has attracted significant attention as a pivotal nonlinear optical effect in research. Notably, in low-dimensional materials (LDMs), SHG detection has become an instrumental tool for elucidating nonlinear optical properties due to their pronounced second-order susceptibility and distinct electronic structure. This review offers an exhaustive overview of the generation process and experimental configurations for SHG in such materials. It underscores the latest advancements in harnessing SHG as a sensitive probe for investigating the nonlinear optical attributes of these materials, with a particular focus on its pivotal role in unveiling electronic structures, bandgap characteristics, and crystal symmetry. By analyzing SHG signals, researchers can glean invaluable insights into the microscopic properties of these materials. Furthermore, this paper delves into the applications of optical SHG in imaging and time-resolved experiments. Finally, future directions and challenges toward the improvement in the NLO in LDMs are discussed to provide an outlook in this rapidly developing field, offering crucial perspectives for the design and optimization of pertinent devices.
Collapse
Affiliation(s)
- Yue Fu
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
| | - Zhengyan Liu
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Song Yue
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Kunpeng Zhang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
| | - Ran Wang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Zichen Zhang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| |
Collapse
|
6
|
Duleba A, Pugachev M, Blumenau M, Martanov S, Naumov M, Shupletsov A, Kuntsevich A. Inert-Atmosphere Microfabrication Technology for 2D Materials and Heterostructures. MICROMACHINES 2023; 15:94. [PMID: 38258213 PMCID: PMC11154319 DOI: 10.3390/mi15010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024]
Abstract
Most 2D materials are unstable under ambient conditions. Assembly of van der Waals heterostructures in the inert atmosphere of the glove box with ex situ lithography partially solves the problem of device fabrication out of unstable materials. In our paper, we demonstrate an approach to the next-generation inert-atmosphere (nitrogen, <20 ppm oxygen content) fabrication setup, including optical contact mask lithography with a 2 μm resolution, metal evaporation, lift-off and placement of the sample to the cryostat for electric measurements in the same inert atmosphere environment. We consider basic construction principles, budget considerations, and showcase the fabrication and subsequent degradation of black-phosphorous-based structures within weeks. The proposed solutions are surprisingly compact and inexpensive, making them feasible for implementation in numerous 2D materials laboratories.
Collapse
Affiliation(s)
- Aliaksandr Duleba
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (A.D.); (M.P.); (M.B.); (S.M.); (A.S.)
| | - Mikhail Pugachev
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (A.D.); (M.P.); (M.B.); (S.M.); (A.S.)
| | - Mark Blumenau
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (A.D.); (M.P.); (M.B.); (S.M.); (A.S.)
| | - Sergey Martanov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (A.D.); (M.P.); (M.B.); (S.M.); (A.S.)
| | - Mark Naumov
- Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russia;
| | - Aleksey Shupletsov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (A.D.); (M.P.); (M.B.); (S.M.); (A.S.)
| | - Aleksandr Kuntsevich
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (A.D.); (M.P.); (M.B.); (S.M.); (A.S.)
| |
Collapse
|
7
|
Tang L, Zou J. p-Type Two-Dimensional Semiconductors: From Materials Preparation to Electronic Applications. NANO-MICRO LETTERS 2023; 15:230. [PMID: 37848621 PMCID: PMC10582003 DOI: 10.1007/s40820-023-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023]
Abstract
Two-dimensional (2D) materials are regarded as promising candidates in many applications, including electronics and optoelectronics, because of their superior properties, including atomic-level thickness, tunable bandgaps, large specific surface area, and high carrier mobility. In order to bring 2D materials from the laboratory to industrialized applications, materials preparation is the first prerequisite. Compared to the n-type analogs, the family of p-type 2D semiconductors is relatively small, which limits the broad integration of 2D semiconductors in practical applications such as complementary logic circuits. So far, many efforts have been made in the preparation of p-type 2D semiconductors. In this review, we overview recent progresses achieved in the preparation of p-type 2D semiconductors and highlight some promising methods to realize their controllable preparation by following both the top-down and bottom-up strategies. Then, we summarize some significant application of p-type 2D semiconductors in electronic and optoelectronic devices and their superiorities. In end, we conclude the challenges existed in this field and propose the potential opportunities in aspects from the discovery of novel p-type 2D semiconductors, their controlled mass preparation, compatible engineering with silicon production line, high-κ dielectric materials, to integration and applications of p-type 2D semiconductors and their heterostructures in electronic and optoelectronic devices. Overall, we believe that this review will guide the design of preparation systems to fulfill the controllable growth of p-type 2D semiconductors with high quality and thus lay the foundations for their potential application in electronics and optoelectronics.
Collapse
Affiliation(s)
- Lei Tang
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, People's Republic of China.
| | - Jingyun Zou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Jia L, Wu J, Zhang Y, Qu Y, Jia B, Moss DJ. Third-Order Optical Nonlinearities of 2D Materials at Telecommunications Wavelengths. MICROMACHINES 2023; 14:307. [PMID: 36838007 PMCID: PMC9962682 DOI: 10.3390/mi14020307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
All-optical signal processing based on nonlinear optical devices is promising for ultrafast information processing in optical communication systems. Recent advances in two-dimensional (2D) layered materials with unique structures and distinctive properties have opened up new avenues for nonlinear optics and the fabrication of related devices with high performance. This paper reviews the recent advances in research on third-order optical nonlinearities of 2D materials, focusing on all-optical processing applications in the optical telecommunications band near 1550 nm. First, we provide an overview of the material properties of different 2D materials. Next, we review different methods for characterizing the third-order optical nonlinearities of 2D materials, including the Z-scan technique, third-harmonic generation (THG) measurement, and hybrid device characterization, together with a summary of the measured n2 values in the telecommunications band. Finally, the current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Linnan Jia
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Jiayang Wu
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Yuning Zhang
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Yang Qu
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, Melbourne, VIC 3000, Australia
| | - David J. Moss
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
9
|
Wu J, Lin H, Moss DJ, Loh KP, Jia B. Graphene oxide for photonics, electronics and optoelectronics. Nat Rev Chem 2023; 7:162-183. [PMID: 37117900 DOI: 10.1038/s41570-022-00458-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/19/2023]
Abstract
Graphene oxide (GO) was initially developed to emulate graphene, but it was soon recognized as a functional material in its own right, addressing an application space that is not accessible to graphene and other carbon materials. Over the past decade, research on GO has made tremendous advances in material synthesis and property tailoring. These, in turn, have led to rapid progress in GO-based photonics, electronics and optoelectronics, paving the way for technological breakthroughs with exceptional performance. In this Review, we provide an overview of the optical, electrical and optoelectronic properties of GO and reduced GO on the basis of their chemical structures and fabrication approaches, together with their applications in key technologies such as solar energy harvesting, energy storage, medical diagnosis, image display and optical communications. We also discuss the challenges of this field, together with exciting opportunities for future technological advances.
Collapse
|
10
|
Wei T, Han Z, Zhong X, Xiao Q, Liu T, Xiang D. Two dimensional semiconducting materials for ultimately scaled transistors. iScience 2022; 25:105160. [PMID: 36204270 PMCID: PMC9529977 DOI: 10.1016/j.isci.2022.105160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two dimensional (2D) semiconductors have been established as promising candidates to break through the short channel effect that existed in Si metal-oxide-semiconductor field-effect-transistor (MOSFET), owing to their unique atomically layered structure and dangling-bond-free surface. The last decade has witnessed the significant progress in the size scaling of 2D transistors by various approaches, in which the physical gate length of the transistors has shrank from micrometer to sub-one nanometer with superior performance, illustrating their potential as a replacement technology for Si MOSFETs. Here, we review state-of-the-art techniques to achieve ultra-scaled 2D transistors with novel configurations through the scaling of channel, gate, and contact length. We provide comprehensive views of the merits and drawbacks of the ultra-scaled 2D transistors by summarizing the relevant fabrication processes with the corresponding critical parameters achieved. Finally, we identify the key opportunities and challenges for integrating ultra-scaled 2D transistors in the next-generation heterogeneous circuitry.
Collapse
Affiliation(s)
- Tianyao Wei
- Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
- Frontier Institute of Chip and System, Fudan University, Shanghai 200438, People’s Republic of China
| | - Zichao Han
- Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
| | - Xinyi Zhong
- Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
| | - Qingyu Xiao
- Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
| | - Tao Liu
- Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
- Zhangjiang Fudan International Innovation Centre, Fudan University, Shanghai 200438, People’s Republic of China
- Corresponding author
| | - Du Xiang
- Frontier Institute of Chip and System, Fudan University, Shanghai 200438, People’s Republic of China
- Zhangjiang Fudan International Innovation Centre, Fudan University, Shanghai 200438, People’s Republic of China
- Shanghai Qi Zhi Institute, Shanghai 200232, People’s Republic of China
- Corresponding author
| |
Collapse
|
11
|
Qu Y, Yang Y, Wu J, Zhang Y, Jia L, El Dirani H, Crochemore R, Sciancalepore C, Demongodin P, Grillet C, Monat C, Jia B, Moss DJ. Photo-Thermal Tuning of Graphene Oxide Coated Integrated Optical Waveguides. MICROMACHINES 2022; 13:1194. [PMID: 36014116 PMCID: PMC9416401 DOI: 10.3390/mi13081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/07/2022]
Abstract
We experimentally investigate power-sensitive photo-thermal tuning (PTT) of two-dimensional (2D) graphene oxide (GO) films coated on integrated optical waveguides. We measure the light power thresholds for reversible and permanent GO reduction in silicon nitride (SiN) waveguides integrated with one and two layers of GO. For the device with one layer of GO, the power threshold for reversible and permanent GO reduction are ~20 and ~22 dBm, respectively. For the device with two layers of GO, the corresponding results are ~13 and ~18 dBm, respectively. Raman spectra at different positions of a hybrid waveguide with permanently reduced GO are characterized, verifying the inhomogeneous GO reduction along the direction of light propagation through the waveguide. The differences between the PTT induced by a continuous-wave laser and a pulsed laser are also compared, confirming that the PTT mainly depend on the average input power. These results reveal interesting features for 2D GO films coated on integrated optical waveguides, which are of fundamental importance for the control and engineering of GO's properties in hybrid integrated photonic devices.
Collapse
Affiliation(s)
- Yang Qu
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (Y.Q.); (Y.Z.); (L.J.)
| | - Yunyi Yang
- Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Jiayang Wu
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (Y.Q.); (Y.Z.); (L.J.)
| | - Yuning Zhang
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (Y.Q.); (Y.Z.); (L.J.)
| | - Linnan Jia
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (Y.Q.); (Y.Z.); (L.J.)
| | | | - Romain Crochemore
- Minatec, Optics and Photonics Division, CEA-LETI, 38054 Grenoble, France;
| | | | - Pierre Demongodin
- Institut des Nanotechnologies de Lyon, UMR CNRS 5270, Ecole Centrale Lyon, 69130 Ecully, France; (P.D.); (C.G.); (C.M.)
| | - Christian Grillet
- Institut des Nanotechnologies de Lyon, UMR CNRS 5270, Ecole Centrale Lyon, 69130 Ecully, France; (P.D.); (C.G.); (C.M.)
| | - Christelle Monat
- Institut des Nanotechnologies de Lyon, UMR CNRS 5270, Ecole Centrale Lyon, 69130 Ecully, France; (P.D.); (C.G.); (C.M.)
| | - Baohua Jia
- Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - David J. Moss
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (Y.Q.); (Y.Z.); (L.J.)
| |
Collapse
|
12
|
Zhang Y, Wu J, Yang Y, Qu Y, Jia L, Jia B, Moss DJ. Enhanced Spectral Broadening of Femtosecond Optical Pulses in Silicon Nanowires Integrated with 2D Graphene Oxide Films. MICROMACHINES 2022; 13:mi13050756. [PMID: 35630223 PMCID: PMC9145626 DOI: 10.3390/mi13050756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
Abstract
We experimentally demonstrate enhanced spectral broadening of femtosecond optical pulses after propagation through silicon-on-insulator (SOI) nanowire waveguides integrated with two-dimensional (2D) graphene oxide (GO) films. Owing to the strong mode overlap between the SOI nanowires and the GO films with a high Kerr nonlinearity, the self-phase modulation (SPM) process in the hybrid waveguides is significantly enhanced, resulting in greatly improved spectral broadening of the femtosecond optical pulses. A solution-based, transfer-free coating method is used to integrate GO films onto the SOI nanowires with precise control of the film thickness. Detailed SPM measurements using femtosecond optical pulses are carried out, achieving a broadening factor of up to ~4.3 for a device with 0.4-mm-long, 2 layers of GO. By fitting the experimental results with the theory, we obtain an improvement in the waveguide nonlinear parameter by a factor of ~3.5 and in the effective nonlinear figure of merit (FOM) by a factor of ~3.8, relative to the uncoated waveguide. Finally, we discuss the influence of GO film length on the spectral broadening and compare the nonlinear optical performance of different integrated waveguides coated with GO films. These results confirm the improved nonlinear optical performance of silicon devices integrated with 2D GO films.
Collapse
Affiliation(s)
- Yuning Zhang
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Jiayang Wu
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Yunyi Yang
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Yang Qu
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Linnan Jia
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - David J Moss
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|