1
|
Li Z, Szentmáry N, Fries FN, Suiwal S, Chai N, Seitz B, Shi L, Amini M, Stachon T. Effect of Ritanserin and Duloxetine on the Gene Expression of Primary Aniridia and Healthy Human Limbal Stromal Cells, In Vitro. Ophthalmol Ther 2024; 13:2931-2950. [PMID: 39306593 PMCID: PMC11494677 DOI: 10.1007/s40123-024-01032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/30/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION In congenital aniridia caused by mutations in paired box 6 (PAX6), PAX6 influences the migration and differentiation of limbal epithelial cells (LECs), thereby playing a pivotal role in aniridia-associated keratopathy. The antidepressants ritanserin and duloxetine affect PAX6 expression in LECs. Limbal stromal cells, which support limbal epithelial stem cells, are crucial in the limbal stem cell niche. This study explores how ritanserin and duloxetine influence gene expression in primary human limbal stromal cells from subjects with congenital aniridia and from healthy subjects, in vitro. METHODS Primary human limbal stromal cells from corneas affected by aniridia (AN-LSCs) (n = 8) and from healthy corneas (LSCs) (n = 8) were isolated and cultured in either low-glucose serum-free (LGSF) or normal-glucose serum-containing (NGSC) media. Cells were treated with 4 µM ritanserin or duloxetine for 24 h. Quantitative PCR (qPCR) and western blot were used to assess the expression of PAX6, FOSL2, TGF-β1, ACTA2A1, LUM, COL1A1, COL5A1, DSG1, FABP5 and ADH7. RESULTS In AN-LSCs with LGSF-medium, ritanserin increased PAX6 messenger RNA (mRNA) (p = 0.007) and decreased TGF-β1 and FOSL2 mRNA levels (P = 0.005, P = 0.038). In addition, TGF-β1 protein levels decreased with both treatments (P = 0.02, P = 0.007), and FABP5 protein level increased, using ritanserin (P = 0.019). In LSCs with LGSF-medium, ACTA2A1 mRNA levels decreased using ritanserin and duloxetine (P = 0.028; P = 0.031), while FABP5 mRNA levels increased with ritanserin treatment (P = 0.003). Also, duloxetine use reduced α-SMA protein (P = 0.013) and increased FABP5 protein levels (P = 0.029). In LSCs with NGSC-medium, ritanserin elevated LUM, FABP5 and ADH7 mRNA and protein levels (P = 0.025, P = 0.003, P = 0.047, P = 0.024, P = 0.013, P = 0.039). CONCLUSIONS The results of our study confirmed that the antipsychotropic drugs ritanserin and duloxetine alter PAX6 and TGF-β1 gene expression in AN-LSCs cultured in LGSF-medium. These drugs were found to have an impact on retinoic acid signaling pathways and keratocyte characteristic markers both in LSCs and AN-LSCs, using different culture media.
Collapse
Affiliation(s)
- Zhen Li
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Kirrberger Str. 100, Homburg, Saarland, 66424, Germany.
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Kirrberger Str. 100, Homburg, Saarland, 66424, Germany
| | - Fabian N Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Kirrberger Str. 100, Homburg, Saarland, 66424, Germany
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Kirrberger Str. 100, Homburg, Saarland, 66424, Germany
| | - Ning Chai
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Kirrberger Str. 100, Homburg, Saarland, 66424, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Lei Shi
- Department of Ophthalmology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, China
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Kirrberger Str. 100, Homburg, Saarland, 66424, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Kirrberger Str. 100, Homburg, Saarland, 66424, Germany
| |
Collapse
|
2
|
Brunel LG, Cai B, Hull SM, Han U, Wungcharoen T, Fernandes-Cunha GM, Seo YA, Johansson PK, Heilshorn SC, Myung D. In Situ UNIversal Orthogonal Network (UNION) Bioink Deposition for Direct Delivery of Corneal Stromal Stem Cells to Corneal Wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613997. [PMID: 39386574 PMCID: PMC11463654 DOI: 10.1101/2024.09.19.613997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The scarcity of human donor corneal graft tissue worldwide available for corneal transplantation necessitates the development of alternative therapeutic strategies for treating patients with corneal blindness. Corneal stromal stem cells (CSSCs) have the potential to address this global shortage by allowing a single donor cornea to treat multiple patients. To directly deliver CSSCs to corneal defects within an engineered biomatrix, we developed a UNIversal Orthogonal Network (UNION) collagen bioink that crosslinks in situ with a bioorthogonal, covalent chemistry. This cell-gel therapy is optically transparent, stable against contraction forces exerted by CSSCs, and permissive to the efficient growth of corneal epithelial cells. Furthermore, CSSCs remain viable within the UNION collagen gel precursor solution under standard storage and transportation conditions. This approach promoted corneal transparency and re-epithelialization in a rabbit anterior lamellar keratoplasty model, indicating that the UNION collagen bioink serves effectively as an in situ -forming, suture-free therapy for delivering CSSCs to corneal wounds. TEASER. Corneal stem cells are delivered within chemically crosslinked collagen as a transparent, regenerative biomaterial therapy.
Collapse
|
3
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Riau AK, Look Z, Yam GHF, Boote C, Ma Q, Han EJY, Binte M Yusoff NZ, Ong HS, Goh TW, Binte Halim NSH, Mehta JS. Impact of keratocyte differentiation on corneal opacity resolution and visual function recovery in male rats. Nat Commun 2024; 15:4959. [PMID: 38862465 PMCID: PMC11166667 DOI: 10.1038/s41467-024-49008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Intrastromal cell therapy utilizing quiescent corneal stromal keratocytes (qCSKs) from human donor corneas emerges as a promising treatment for corneal opacities, aiming to overcome limitations of traditional surgeries by reducing procedural complexity and donor dependency. This investigation demonstrates the therapeutic efficacy of qCSKs in a male rat model of corneal stromal opacity, underscoring the significance of cell-delivery quality and keratocyte differentiation in mediating corneal opacity resolution and visual function recovery. Quiescent CSKs-treated rats display improvements in escape latency and efficiency compared to wounded, non-treated rats in a Morris water maze, demonstrating improved visual acuity, while stromal fibroblasts-treated rats do not. Advanced imaging, including multiphoton microscopy, small-angle X-ray scattering, and transmission electron microscopy, revealed that qCSK therapy replicates the native cornea's collagen fibril morphometry, matrix order, and ultrastructural architecture. These findings, supported by the expression of keratan sulfate proteoglycans, validate qCSKs as a potential therapeutic solution for corneal opacities.
Collapse
Affiliation(s)
- Andri K Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Zhuojian Look
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Gary H F Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Craig Boote
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Qian Ma
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Evelina J Y Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Nur Zahirah Binte M Yusoff
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Hon Shing Ong
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
- Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, 168751, Singapore
| | - Tze-Wei Goh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
| | | | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore.
- Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, 168751, Singapore.
| |
Collapse
|
5
|
Meissner JM, Chmielińska A, Ofri R, Cisło-Sankowska A, Marycz K. Extracellular Vesicles Isolated from Equine Adipose-Derived Stromal Stem Cells (ASCs) Mitigate Tunicamycin-Induced ER Stress in Equine Corneal Stromal Stem Cells (CSSCs). Curr Issues Mol Biol 2024; 46:3251-3277. [PMID: 38666934 PMCID: PMC11048834 DOI: 10.3390/cimb46040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Corneal ulcers, characterized by severe inflammation of the cornea, can lead to serious, debilitating complications and may be vision-threatening for horses. In this study, we aimed to investigate the role of endoplasmic reticulum (ER) stress in corneal stem progenitor cell (CSSC) dysfunction and explore the potential of equine adipose-derived stromal stem cell (ASC)-derived extracellular vesicles (EVs) to improve corneal wound healing. We showed that CSSCs expressed high levels of CD44, CD45, and CD90 surface markers, indicating their stemness. Supplementation of the ER-stress-inducer tunicamycin to CSSCs resulted in reduced proliferative and migratory potential, accumulation of endoplasmic reticulum (ER)-stressed cells in the G0/G1 phase of the cell cycle, increased expression of proinflammatory genes, induced oxidative stress and sustained ER stress, and unfolded protein response (UPR). Importantly, treatment with EVs increased the proliferative activity and number of cells in the G2/Mitosis phase, enhanced migratory ability, suppressed the overexpression of proinflammatory cytokines, and upregulated the anti-inflammatory miRNA-146a-5p, compared to control and/or ER-stressed cells. Additionally, EVs lowered the expression of ER-stress master regulators and effectors (PERK, IRE1, ATF6, and XBP1), increased the number of mitochondria, and reduced the expression of Fis-1 and Parkin, thereby promoting metabolic homeostasis and protecting against apoptosis in equine CSSCs. Our findings demonstrate that MSCs-derived EVs represent an innovative and promising therapeutic strategy for the transfer of bioactive mediators which regulate various cellular and molecular signaling pathways.
Collapse
Affiliation(s)
- Justyna M. Meissner
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland;
| | - Aleksandra Chmielińska
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel;
| | - Anna Cisło-Sankowska
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland;
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95516, USA
| |
Collapse
|
6
|
Yang J, Tian M, Li J, Chen Y, Lin S, Ma X, Chen W, Hou L. Induction of human ESC-derived and adult primary multipotent limbal stem cells into retinal pigment epithelial cells and corneal stromal stem cells. Exp Eye Res 2024; 239:109778. [PMID: 38171475 DOI: 10.1016/j.exer.2023.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) therapies are promising alternatives for the treatment of retinal degenerative diseases caused by RPE degeneration. The generation of autologous RPE cells from human adult donors, which has the advantage of avoiding immune rejection and teratoma formation, is an alternative cell resource to gain mechanistic insight into and test potential therapies for RPE degenerative diseases. Here, we found that limbal stem cells (LSCs) from hESCs and adult primary human limbus have the potential to produce RPE cells and corneal stromal stem cells (CSSCs). We showed that hESC-LSC-derived RPE cells (LSC-RPE) expressed RPE markers, had a phagocytic function, and synthesized tropical factors. Furthermore, during differentiation from LSCs to RPE cells, cells became pigmented, accompanied by a decrease in the level of LSC marker KRT15 and an increase in the level of RPE marker MITF. The Wnt signaling pathway plays a role in LSC-RPE fate transition, promotes MITF expression in the nucleus, and encourages RPE fate transition. In addition, we also showed that primary LSCs (pLSCs) from adult human limbus similar to hESC-LSC could generate RPE cells, which was supported by the co-expression of LSC and RPE cell markers (KRT15/OTX2, KRT15/MITF), suggesting the transition from pLSC to RPE cells, and typical polygonal morphology, melanization, RPE cell marker genes expression (TYR, RPE65), tight junction formation by ZO-1 expression, and the most crucial phagocytotic function. On the other hand, both hESC-LSCs and pLSCs also differentiated into CSSCs (LSC-CSSCs) that expressed stem cell markers (PAX6, NESTIN), presented MSC features, including surface marker expression and trilineage differentiation capability, like those in human CSSCs. Furthermore, the capability of pLSC-CSSC to differentiate into cells expressing keratocyte marker genes (ALDH3A1, PTGDS, PDK4) indicated the potential to induce keratocytes. These results suggest that the adult pLSC is an alternative cell resource, and its application provides a novel potential therapeutic avenue for preventing RPE dysfunction-related retinal degenerative diseases and corneal scarring.
Collapse
Affiliation(s)
- Juan Yang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Meiyu Tian
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinyang Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shichao Lin
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
7
|
Dou S, Liu X, Shi W, Gao H. New dawn for keratoconus treatment: potential strategies for corneal stromal regeneration. Stem Cell Res Ther 2023; 14:317. [PMID: 37932824 PMCID: PMC10629149 DOI: 10.1186/s13287-023-03548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Keratoconus is a progressive, ectatic and blinding disorder of the cornea, characterized by thinning of corneal stroma. As a highly prevalent among adolescents, keratoconus has been a leading indication for corneal transplantation worldwide. However, the severe shortage of donor corneas is a global issue, and the traditional corneal transplantation surgeries may superinduce multiple complications, necessitating efforts to develop more effective strategies for keratoconus treatment. In this review, we summarized several strategies to promote corneal stromal regeneration or improve corneal stromal thickness, including cell-based therapies, biosynthetic alternatives for inducing corneal regeneration, minimally invasive intrastromal implantation and bioengineered tissues for implantation. These strategies provided more accessible but safer alternatives from various perspectives for keratoconus treatment, paving the way for arresting the keratoconus progression in its earlier stage. For the treatments of corneal ectatic diseases beyond keratoconus, these approaches will provide important references and widen the therapy options in a donor tissue-independent manner.
Collapse
Affiliation(s)
- Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Eye Hospital of Shandong First Medical University, Jinan, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Eye Hospital of Shandong First Medical University, Jinan, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
- Eye Hospital of Shandong First Medical University, Jinan, China.
- School of Ophthalmology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
8
|
Shetty R, Mahendran K, Joshi PD, Jeyabalan N, Jayadev C, Das D. Corneal stromal regeneration-keratoconus cell therapy: a review. Graefes Arch Clin Exp Ophthalmol 2023; 261:3051-3065. [PMID: 37074409 DOI: 10.1007/s00417-023-06064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Keratoconus is a corneal ectatic disease caused by stromal thinning leading to astigmatism and progressive loss of vision. Loss of the keratocytes and excessive degradation of collagen fibres by matrix metalloproteinases are the molecular signatures of the disease. Despite several limitations, corneal collagen cross-linking and keratoplasty are the most widely used treatment options for keratoconus. In the pursuit of alternative treatment modalities, clinician scientists have explored cell therapy paradigms for treating the condition. METHODS Articles pertaining to keratoconus cell therapy with relevant key words were used to search in PubMed, Researchgate, and Google Scholar. The articles were selected based on their relevance, reliability, publication year, published journal, and accessibility. RESULTS Various cellular abnormalities have been reported in keratoconus. Diverse cell types such as mesenchymal stromal cells, dental pulp cells, bone marrow stem cells, haematopoietic stem cells, adipose-derived stem cells apart from embryonic and induced pluripotent stem cells can be used for keratoconus cell therapy. The results obtained show that there is a potential for these cells from various sources as a viable treatment option. CONCLUSION There is a need for consensus with respect to the source of cells, mode of delivery, stage of disease, and duration of follow-up, to establish a standard operating protocol. This would eventually widen the cell therapy options for corneal ectatic diseases beyond keratoconus.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, India
| | - Krithikaa Mahendran
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, India
| | - Parth D Joshi
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, India
| | | | - Chaitra Jayadev
- Department of Vitreo-Retina, Narayana Nethralaya Eye Hospital, Bangalore, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, India.
- Stem Cell Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Narayana Health City, 258/A Bommasandra Industrial Area, Bangalore, 560099, Karnataka, India.
| |
Collapse
|
9
|
Bondarenko NA, Surovtseva MA, Kim II, Krasner KY, Orishchenko KE, Trunov AN, Chernykh VV, Poveshchenko OV. Studying the Proliferative Activity of Human Corneal Stromal Cell Populations. Bull Exp Biol Med 2023; 176:105-110. [PMID: 38085398 DOI: 10.1007/s10517-023-05976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 12/19/2023]
Abstract
The proliferative activity of populations of stromal cells (fibroblasts) obtained from human corneal lenticles under conditions of their differentiation into keratocytes was studied. It was shown that during differentiation, the number of dividing fibroblasts and the frequency of divisions, and motor activity of these cells (speed of movement along the cell trajectory and the length of the trajectory) sharply decreased. These findings indicate a decrease in the proliferative activity of fibroblasts under conditions of their differentiation and transformation into keratocytes. A period of 17 days is sufficient for differentiation of corneal fibroblasts into keratocytes.
Collapse
Affiliation(s)
- N A Bondarenko
- Research Institute of Clinical and Experimental Lymphology - Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - M A Surovtseva
- Research Institute of Clinical and Experimental Lymphology - Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I I Kim
- Research Institute of Clinical and Experimental Lymphology - Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K Yu Krasner
- Research Institute of Clinical and Experimental Lymphology - Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
- S. N. Fedorov National Medical Research Center Multisectoral Scientific and Technical Complex "Eye Microsurgery", Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - K E Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A N Trunov
- S. N. Fedorov National Medical Research Center Multisectoral Scientific and Technical Complex "Eye Microsurgery", Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - V V Chernykh
- S. N. Fedorov National Medical Research Center Multisectoral Scientific and Technical Complex "Eye Microsurgery", Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - O V Poveshchenko
- Research Institute of Clinical and Experimental Lymphology - Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Verma N, Khare D, Poe AJ, Amador C, Ghiam S, Fealy A, Ebrahimi S, Shadrokh O, Song XY, Santiskulvong C, Mastali M, Parker S, Stotland A, Van Eyk JE, Ljubimov AV, Saghizadeh M. MicroRNA and Protein Cargos of Human Limbal Epithelial Cell-Derived Exosomes and Their Regulatory Roles in Limbal Stromal Cells of Diabetic and Non-Diabetic Corneas. Cells 2023; 12:2524. [PMID: 37947602 PMCID: PMC10649916 DOI: 10.3390/cells12212524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
Epithelial and stromal/mesenchymal limbal stem cells contribute to corneal homeostasis and cell renewal. Extracellular vesicles (EVs), including exosomes (Exos), can be paracrine mediators of intercellular communication. Previously, we described cargos and regulatory roles of limbal stromal cell (LSC)-derived Exos in non-diabetic (N) and diabetic (DM) limbal epithelial cells (LECs). Presently, we quantify the miRNA and proteome profiles of human LEC-derived Exos and their regulatory roles in N- and DM-LSC. We revealed some miRNA and protein differences in DM vs. N-LEC-derived Exos' cargos, including proteins involved in Exo biogenesis and packaging that may affect Exo production and ultimately cellular crosstalk and corneal function. Treatment by N-Exos, but not by DM-Exos, enhanced wound healing in cultured N-LSCs and increased proliferation rates in N and DM LSCs vs. corresponding untreated (control) cells. N-Exos-treated LSCs reduced the keratocyte markers ALDH3A1 and lumican and increased the MSC markers CD73, CD90, and CD105 vs. control LSCs. These being opposite to the changes quantified in wounded LSCs. Overall, N-LEC Exos have a more pronounced effect on LSC wound healing, proliferation, and stem cell marker expression than DM-LEC Exos. This suggests that regulatory miRNA and protein cargo differences in DM- vs. N-LEC-derived Exos could contribute to the disease state.
Collapse
Affiliation(s)
- Nagendra Verma
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Drirh Khare
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam J. Poe
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sean Ghiam
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andrew Fealy
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shaghaiegh Ebrahimi
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Odelia Shadrokh
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xue-Ying Song
- Genomics Core, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (X.-Y.S.); (C.S.)
| | - Chintda Santiskulvong
- Genomics Core, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (X.-Y.S.); (C.S.)
| | - Mitra Mastali
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (M.M.); (S.P.); (A.S.); (J.E.V.E.)
| | - Sarah Parker
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (M.M.); (S.P.); (A.S.); (J.E.V.E.)
| | - Aleksandr Stotland
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (M.M.); (S.P.); (A.S.); (J.E.V.E.)
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (M.M.); (S.P.); (A.S.); (J.E.V.E.)
| | - Alexander V. Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| |
Collapse
|
11
|
Sanie-Jahromi F, Nowroozzadeh MH, Emadi Z, Eghtedari M, Khajehahmadi Z. Intra-stromal injection of honey-treated keratocytes as a cell-based therapy for experimental corneal laceration. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:604-611. [PMID: 37277938 DOI: 10.1515/jcim-2023-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVES This study aimed to investigate the potential of honey-supplemented medium (HSM) for expanding corneal keratocytes and its transplantation in a model of corneal laceration. METHODS Keratocytes were cultured in 1 % HSM- or 10 % fetal bovine serum (FBS)-supplemented medium for 24 h. The effect of HSM on keratocyte proliferation was evaluated using the MTT assay. The relative expression of Lum, Kera, and ALDH3A1, known markers of native keratocytes, was quantified by real-time PCR. The safety and efficacy of HSM-treated keratocyte intrastromal injection in a rabbit model of corneal laceration were also evaluated. RESULTS The MTT assay showed that HSM treatment did not significantly affect cell viability compared to FBS-supplemented medium (84.71 ± 2.38 vs. 100.08 ± 10.92, respectively; p=0.076). Moreover, HSM-treated keratocytes had significantly increased expression of Lum, Kera, and ALDH3A1 compared to cells treated with FBS, while the expression of the proliferation biomarker Thy-1 did not significantly differ between the two treatments. Intrastromal injection of HSM-treated keratocytes in the laceration animal model was safe and uneventful, resulting in less stromal inflammation and neovascularization, and consequently, better final architecture with less residual haze compared to the group injected with FBS-treated keratocytes. CONCLUSIONS These findings suggest that honey is a suitable supplement for keratocyte treatment and corneal cell therapy. The use of HSM may have potential applications in the treatment of corneal injuries and diseases.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Emadi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoomeh Eghtedari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Khajehahmadi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Wang L, Xu X, Chen Q, Wei Y, Wei Z, Jin ZB, Liang Q. Extracellular Vesicle MicroRNAs From Corneal Stromal Stem Cell Enhance Stemness of Limbal Epithelial Stem Cells by Targeting the Notch Pathway. Invest Ophthalmol Vis Sci 2023; 64:42. [PMID: 37768272 PMCID: PMC10541724 DOI: 10.1167/iovs.64.12.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Purpose The limbal niche supports the self-renewal of limbal epithelial stem cells (LESCs). The corneal stromal stem cell (CSSC) is an important component in the niche that regulates the LESC phenotype. However, the intercellular communication between LESCs and CSSCs has yet to be elucidated. Methods A traditional two-dimensional (2D) system, a direct three-dimensional (3D) system, and an indirect 3D coculture system of LESCs and CSSCs were used to elucidate the paracrine pathway effect of CSSCs on LESCs. To reveal the impact of CSSC derived extracellular vesicles (CSSC-EVs) on LESCs, GW4869 and CSSC-EVs were added separately to the LESC culture medium. The outgrowth rate, cell density, differentiation, and stemness maintenance were compared among these methods. The miRNAs in the CSSC-EVs were sequenced, and the targeted Notch pathway was further confirmed by RT‒qPCR and Western blotting. Results Compared with 2D culture, both the direct and indirect 3D coculture systems yielded a higher outgrowth rate and expression of stem cell markers of LESCs. The phenotypes of LESCs cultivated using the two coculture approaches were also comparable. Nevertheless, GW4869 inhibited the effect of CSSCs on LESCs, and the addition of CSSC-EVs to the 2D culture system could increase cell density, and the proportion of p63αbright cells, which indicated that CSSC-EVs were crucial in regulating LESCs. Furthermore, the EV-AlixKD with reduced miRNA partly lost its regulating function. The abundant miRNAs in CSSC-EVs, such as hsa-miR-663b, hsa-miR-16-5p, and hsa-miR-1290, target the Notch pathway. The LESCs transfected with miR-663b had higher p63 expression via downregulating of the Notch pathway. Conclusions CSSC-EV played an important role in promoting LESC proliferation and stemness maintenance by targeting Notch signaling via miRNAs, which will increase our understanding of the limbal niche and provide a potential new approach for LESC culture and the treatment of corneal epithelial disorders.
Collapse
Affiliation(s)
- Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Soleimani M, Ebrahimi Z, Ebrahimi KS, Farhadian N, Shahlaei M, Cheraqpour K, Ghasemi H, Moradi S, Chang AY, Sharifi S, Baharnoori SM, Djalilian AR. Application of biomaterials and nanotechnology in corneal tissue engineering. J Int Med Res 2023; 51:3000605231190473. [PMID: 37523589 PMCID: PMC10392709 DOI: 10.1177/03000605231190473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Corneal diseases are among the most common causes of blindness worldwide. Regardless of the etiology, corneal opacity- or globe integrity-threatening conditions may necessitate corneal replacement procedures. Several procedure types are currently available to address these issues, based on the complexity and extent of injury. Corneal allograft or keratoplasty is considered to be first-line treatment in many cases. However, a significant proportion of the world's population are reported to have no access to this option due to limitations in donor preparation. Thus, providing an appropriate, safe, and efficient synthetic implant (e.g., artificial cornea) may revolutionize this field. Nanotechnology, with its potential applications, has garnered a lot of recent attention in this area, however, there is seemingly a long way to go. This narrative review provides a brief overview of the therapeutic interventions for corneal pathologies, followed by a summary of current biomaterials used in corneal regeneration and a discussion of the nanotechnologies that can aid in the production of superior implants.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zohreh Ebrahimi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Sadat Ebrahimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Ghasemi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sina Sharifi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Seyed Mahbod Baharnoori
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int J Mol Sci 2023; 24:10917. [PMID: 37446091 DOI: 10.3390/ijms241310917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cornea, with its delicate structure, is vulnerable to damage from physical, chemical, and genetic factors. Corneal transplantation, including penetrating and lamellar keratoplasties, can restore the functions of the cornea in cases of severe damage. However, the process of corneal transplantation presents considerable obstacles, including a shortage of available donors, the risk of severe graft rejection, and potentially life-threatening complications. Over the past few decades, mesenchymal stem cell (MSC) therapy has become a novel alternative approach to corneal regeneration. Numerous studies have demonstrated the potential of MSCs to differentiate into different corneal cell types, such as keratocytes, epithelial cells, and endothelial cells. MSCs are considered a suitable candidate for corneal regeneration because of their promising therapeutic perspective and beneficial properties. MSCs compromise unique immunomodulation, anti-angiogenesis, and anti-inflammatory properties and secrete various growth factors, thus promoting corneal reconstruction. These effects in corneal engineering are mediated by MSCs differentiating into different lineages and paracrine action via exosomes. Early studies have proven the roles of MSC-derived exosomes in corneal regeneration by reducing inflammation, inhibiting neovascularization, and angiogenesis, and by promoting cell proliferation. This review highlights the contribution of MSCs and MSC-derived exosomes, their current usage status to overcome corneal disease, and their potential to restore different corneal layers as novel therapeutic agents. It also discusses feasible future possibilities, applications, challenges, and opportunities for future research in this field.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Se-Heon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Chang-Min Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ye-Ji Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Young-Jae Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ho-Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Eun-Ah Ye
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Jae-Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
15
|
Vottonen L, Koskela A, Felszeghy S, Wylegala A, Kryszan K, Gurubaran IS, Kaarniranta K, Wylegala E. Oxidative Stress and Cellular Protein Accumulation Are Present in Keratoconus, Macular Corneal Dystrophy, and Fuchs Endothelial Corneal Dystrophy. J Clin Med 2023; 12:4332. [PMID: 37445366 DOI: 10.3390/jcm12134332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to investigate oxidative stress as well as cellular protein accumulation in corneal diseases including keratoconus (KC), macular corneal dystrophy (MCD), and Fuchs endothelial corneal dystrophy (FECD) at their primary affecting sites. Corneal buttons from KC, MCD, and FECD patients, as well as healthy controls, were analyzed immunohistochemically to evaluate the presence of oxidative stress and the function of the proteostasis network. 4-Fydroxynonenal (4-HNE) was used as a marker of oxidative stress, whereas the levels of catalase and heat-shock protein 70 (HSP70) were analyzed to evaluate the response of the antioxidant defense system and molecular chaperones, respectively. Sequestosome 1 (SQSTM1) levels were determined to assess protein aggregation and the functionality of autophagic degradation. Basal epithelial cells of the KC samples showed increased levels of oxidative stress marker 4-HNE and antioxidant enzyme catalase together with elevated levels of HSP70 and accumulation of SQSTM1. Corneal stromal cells and endothelial cells from MCD and FECD samples, respectively, showed similarly increased levels of these markers. All corneal diseases showed the presence of oxidative stress and activation of the molecular chaperone response to sustain protein homeostasis. However, the accumulation of protein aggregates suggests insufficient function of the protective mechanisms to limit the oxidative damage and removal of protein aggregates via autophagy. These results suggest that oxidative stress has a role in KC, MCD, and FECD at the cellular level as a secondary outcome. Thus, antioxidant- and autophagy-targeted therapies could be included as supporting care when treating KC or corneal dystrophies.
Collapse
Affiliation(s)
- Linda Vottonen
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Adam Wylegala
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
| | | | | | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Edward Wylegala
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
- Clinical Department of Ophthalmology, II School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland
| |
Collapse
|
16
|
Gao J, Ding L, Xin Y, Li Y, He K, Su M, Hu R. Pax6-induced proliferation and differentiation of bone marrow mesenchymal stem cells into limbal epithelial stem cells. Stem Cells Dev 2023. [PMID: 37097204 DOI: 10.1089/scd.2022.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Corneal integrity, transparency, and visual acuity are maintained by corneal epithelial cells (CECs), which are continuously renewed by limbal epithelial stem cells (LESCs). The limbal stem cell deficiency (LSCD) is associated with ocular diseases. This study aimed to develop a novel method to differentiate bone marrow mesenchymal stem cells (BM-MSCs) into LESC-like cells using a culture medium and paired box 6 (Pax6) transfection. The LESC-like cells were confirmed using the LESC markers CK14 and p63 and CEC marker CK12. Pax6 induces BM-MSCs to differentiate into LESC-like cells in vitro. Mouse models of chemical corneal burn were obtained and treated with the LESC-like cells. The transplantation experiment indicated that Pax6-reprogramed BM-MSCs attached to and replenished the damaged cornea via the formation of stratified corneal epithelium. The proliferation and colony formation abilities of Pax6-overexpressing BM-MSCs were significantly enhanced. These findings provide evidence that BM-MSCs might serve as an excellent candidate for generating bioengineered corneal epithelium and provide a new strategy for the treatment of clinical corneal damage.
Collapse
Affiliation(s)
- Jie Gao
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| | - Ling Ding
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| | - Ying Xin
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| | - Yuandi Li
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| | - Keke He
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| | - Min Su
- Guizhou Medical University, 74628, Guiyang, China, 550004;
| | - Rong Hu
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| |
Collapse
|
17
|
Sahoo A, Damala M, Jaffet J, Prasad D, Basu S, Singh V. Expansion and characterization of human limbus-derived stromal/mesenchymal stem cells in xeno-free medium for therapeutic applications. Stem Cell Res Ther 2023; 14:89. [PMID: 37061739 PMCID: PMC10105964 DOI: 10.1186/s13287-023-03299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been proven to prevent and clear corneal scarring and limbal stem cell deficiency. However, using animal-derived serum in a culture medium raises the ethical and regulatory bar. This study aims to expand and characterize human limbus-derived stromal/mesenchymal stem cells (hLMSCs) for the first time in vitro in the xeno-free medium. METHODS Limbal tissue was obtained from therapeutic grade corneoscleral rims and subjected to explant culture till tertiary passage in media with and without serum (STEM MACS XF; SM), to obtain pure hLMSCs. Population doubling time, cell proliferation, expression of phenotypic markers, tri-lineage differentiation, colony-forming potential and gene expression analysis were carried out to assess the retention of phenotypic and genotypic characteristics of hLMSCs. RESULTS The serum-free medium supported the growth of hLMSCs, retaining similar morphology but a significantly lower doubling time of 23 h (*p < 0.01) compared to the control medium. FACS analysis demonstrated ≥ 90% hLMSCs were positive for CD90+, CD73+, CD105+, and ≤ 6% were positive for CD45-, CD34- and HLA-DR-. Immunofluorescence analysis confirmed similar expression of Pax6+, COL IV+, ABCG2+, ABCB5+, VIM+, CD90+, CD105+, CD73+, HLA-DR- and CD45-, αSMA- in both the media. Tri-lineage differentiation potential and gene expression of hLMSCs were retained similarly to that of the control medium. CONCLUSION The findings of this study demonstrate successful isolation, characterization and culture optimization of hLMSCs for the first time in vitro in a serum-free environment. This will help in the future pre-clinical and clinical applications of MSCs in translational research.
Collapse
Affiliation(s)
- Abhishek Sahoo
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mukesh Damala
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Deeksha Prasad
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sayan Basu
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
18
|
Tavakkoli F, Eleiwa TK, Elhusseiny AM, Damala M, Rai AK, Cheraqpour K, Ansari MH, Doroudian M, H Keshel S, Soleimani M, Djalilian AR, Sangwan VS, Singh V. Corneal stem cells niche and homeostasis impacts in regenerative medicine; concise review. Eur J Ophthalmol 2023:11206721221150065. [PMID: 36604831 DOI: 10.1177/11206721221150065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The limbal stem cells niche (LSCN) is an optimal microenvironment that provides the limbal epithelial stem cells (LESCs) and strictly regulates their proliferation and differentiation. Disturbing the LSCN homeostasis can lead to limbal stem cell dysfunction (LSCD) and subsequent ocular surface aberrations, such as corneal stromal inflammation, persistent epithelial defects, corneal neovascularisation, lymphangiogenesis, corneal opacification, and conjunctivalization. As ocular surface disorders are considered the second main cause of blindness, it becomes crucial to explore different therapeutic strategies for restoring the functions of the LSCN. A major limitation of corneal transplantation is the current shortage of donor tissue to meet the requirements worldwide. In this context, it becomes mandatory to find an alternative regenerative medicine, such as using cultured limbal epithelial/stromal stem cells, inducing the production of corneal like cells by using other sources of stem cells, and using tissue engineering methods aiming to produce the three-dimensional (3D) printed cornea. Limbal epithelial stem cells have been considered the magic potion for eye treatment. Epithelial and stromal stem cells in the limbal niche hold the responsibility of replenishing the corneal epithelium. These stem cells are being used for transplantation to maintain corneal epithelial integrity and ultimately sustain optimal vision. In this review, we summarised the characteristics of the LSCN and their current and future roles in restoring corneal homeostasis in eyes with LSCD.
Collapse
Affiliation(s)
- Fatemeh Tavakkoli
- Department of Community Health, College of Health Technology, Cihan University, Erbil, Iraq.,SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India.,Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Taher K Eleiwa
- Department of Ophthalmology, Benha University, Benha, Egypt
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mukesh Damala
- SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India.,School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit K Rai
- Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Kasra Cheraqpour
- Translational Eye Research Center, Farabi Eye Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, 145440Kharazmi University, Tehran, Iran
| | - Saeed H Keshel
- Department of Tissue Engineering and Applied Cell Sciences, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Department of Ophthalmology, 159636Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology, 159636Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Vivek Singh
- SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
19
|
Ying PX, Fu M, Huang C, Li ZH, Mao QY, Fu S, Jia XH, Cao YC, Hong LB, Cai LY, Guo X, Liu RB, Meng FK, Yi GG. Profile of biological characterizations and clinical application of corneal stem/progenitor cells. World J Stem Cells 2022; 14:777-797. [PMID: 36483848 PMCID: PMC9724387 DOI: 10.4252/wjsc.v14.i11.777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal stem/progenitor cells are typical adult stem/progenitor cells. The human cornea covers the front of the eyeball, which protects the eye from the outside environment while allowing vision. The location and function demand the cornea to maintain its transparency and to continuously renew its epithelial surface by replacing injured or aged cells through a rapid turnover process in which corneal stem/progenitor cells play an important role. Corneal stem/progenitor cells include mainly corneal epithelial stem cells, corneal endothelial cell progenitors and corneal stromal stem cells. Since the discovery of corneal epithelial stem cells (also known as limbal stem cells) in 1971, an increasing number of markers for corneal stem/progenitor cells have been proposed, but there is no consensus regarding the definitive markers for them. Therefore, the identification, isolation and cultivation of these cells remain challenging without a unified approach. In this review, we systematically introduce the profile of biological characterizations, such as anatomy, characteristics, isolation, cultivation and molecular markers, and clinical applications of the three categories of corneal stem/progenitor cells.
Collapse
Affiliation(s)
- Pei-Xi Ying
- Department of Ophthalmology, Zhujiang Hospital, The Second Clinical School, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200030, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200030, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200030, China
| | - Zhi-Hong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510550, Guangdong Province, China
| | - Qing-Yi Mao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng Fu
- Hengyang Medical School, The University of South China, Hengyang 421001, Hunan Province, China
| | - Xu-Hui Jia
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yu-Chen Cao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Bing Hong
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Yang Cai
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xi Guo
- Medical College of Rehabilitation, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ru-Bing Liu
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Fan-ke Meng
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Guo-Guo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
20
|
Serrano A, Osei KA, Huertas-Bello M, Sabater AL. The Potential of Stem Cells as Treatment for Ocular Surface Diseases. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Corneal Regeneration Using Adipose-Derived Mesenchymal Stem Cells. Cells 2022; 11:cells11162549. [PMID: 36010626 PMCID: PMC9406486 DOI: 10.3390/cells11162549] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose-derived stem cells are a subtype of mesenchymal stem cell that offers the important advantage of being easily obtained (in an autologous manner) from low invasive procedures, rendering a high number of multipotent stem cells with the potential to differentiate into several cellular lineages, to show immunomodulatory properties, and to promote tissue regeneration by a paracrine action through the secretion of extracellular vesicles containing trophic factors. This secretome is currently being investigated as a potential source for a cell-free based regenerative therapy for human tissues, which would significantly reduce the involved costs, risks and law regulations, allowing for a broader application in real clinical practice. In the current article, we will review the existing preclinical and human clinical evidence regarding the use of such adipose-derived mesenchymal stem cells for the regeneration of the three main layers of the human cornea: the epithelium (derived from the surface ectoderm), the stroma (derived from the neural crest mesenchyme), and the endothelium (derived from the neural crest cells).
Collapse
|
22
|
Effect of Conditioned Media of Limbal Epithelial Cells and Corneal Stromal Cells on Functional Activity of Limb Mesenchymal Stem Cells. Bull Exp Biol Med 2022; 173:464-467. [DOI: 10.1007/s10517-022-05562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 10/14/2022]
|
23
|
Tavakkoli F, Damala M, Koduri MA, Gangadharan A, Rai AK, Dash D, Basu S, Singh V. Transcriptomic Profiling of Human Limbus-Derived Stromal/Mesenchymal Stem Cells-Novel Mechanistic Insights into the Pathways Involved in Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms23158226. [PMID: 35897793 PMCID: PMC9368612 DOI: 10.3390/ijms23158226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Limbus-derived stromal/mesenchymal stem cells (LMSCs) are vital for corneal homeostasis and wound healing. However, despite multiple pre-clinical and clinical studies reporting the potency of LMSCs in avoiding inflammation and scarring during corneal wound healing, the molecular basis for the ability of LMSCs remains unknown. This study aimed to uncover the factors and pathways involved in LMSC-mediated corneal wound healing by employing RNA-Sequencing (RNA-Seq) in human LMSCs for the first time. We characterized the cultured LMSCs at the stages of initiation (LMSC−P0) and pure population (LMSC−P3) and subjected them to RNA-Seq to identify the differentially expressed genes (DEGs) in comparison to native limbus and cornea, and scleral tissues. Of the 28,000 genes detected, 7800 DEGs were subjected to pathway-specific enrichment Gene Ontology (GO) analysis. These DEGs were involved in Wnt, TGF-β signaling pathways, and 16 other biological processes, including apoptosis, cell motility, tissue remodeling, and stem cell maintenance, etc. Two hundred fifty-four genes were related to wound healing pathways. COL5A1 (11.81 ± 0.48) and TIMP1 (20.44 ± 0.94) genes were exclusively up-regulated in LMSC−P3. Our findings provide new insights involved in LMSC-mediated corneal wound healing.
Collapse
Affiliation(s)
- Fatemeh Tavakkoli
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Center for Genetic Disorders, Banaras Hindu University, Varanasi 221005, India;
| | - Mukesh Damala
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Madhuri Amulya Koduri
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Abhilash Gangadharan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road Campus, New Delhi 110025, India; (A.G.); (D.D.)
| | - Amit K. Rai
- Center for Genetic Disorders, Banaras Hindu University, Varanasi 221005, India;
| | - Debasis Dash
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road Campus, New Delhi 110025, India; (A.G.); (D.D.)
| | - Sayan Basu
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Center for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Vivek Singh
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India; (F.T.); (M.D.); (M.A.K.); (S.B.)
- Center for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India
- Correspondence: ; Tel.: +91-40-6810-2286
| |
Collapse
|
24
|
Veernala I, Jaffet J, Fried J, Mertsch S, Schrader S, Basu S, Vemuganti G, Singh V. Lacrimal gland regeneration: The unmet challenges and promise for dry eye therapy. Ocul Surf 2022; 25:129-141. [PMID: 35753665 DOI: 10.1016/j.jtos.2022.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
DED (Dry eye disease) is a common multifactorial disease of the ocular surface and the tear film. DED has gained attention globally, with millions of people affected.. Although treatment strategies for DED have shifted towards Tear Film Oriented Therapy (TFOT), all the existing strategies fall under standard palliative care when addressed as a long-term goal. Therefore, different approaches have been explored by various groups to uncover alternative treatment strategies that can contribute to a full regeneration of the damaged lacrimal gland. For this, multiple groups have investigated the role of lacrimal gland (LG) cells in DED based on their regenerating, homing, and differentiating capabilities. In this review, we discuss in detail therapeutic mechanisms and regenerative strategies that can potentially be applied for lacrimal gland regeneration as well as their therapeutic applications. This review mainly focuses on Aqueous Deficiency Dry Eye Disease (ADDE) caused by lacrimal gland dysfunction and possible future treatment strategies. The current key findings from cell and tissue-based regenerative therapy modalities that could be utilised to achieve lacrimal gland tissue regeneration are summarized. In addition, this review summarises the available literature from in vitro to in vivo animal studies, their limitations in relation to lacrimal gland regeneration and the possible clinical applications. Finally, current issues and unmet needs of cell-based therapies in providing complete lacrimal gland tissue regeneration are discussed.
Collapse
Affiliation(s)
- Induvahi Veernala
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jasmin Fried
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sayan Basu
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India
| | - Geeta Vemuganti
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India.
| |
Collapse
|
25
|
Zhu L, Zhang W, Zhu J, Chen C, Mo K, Guo H, Wu S, Huang H, Li L, Li M, Tan J, Huang Y, Wang L, Ouyang H. Cotransplantation of Limbal Epithelial and Stromal Cells for Ocular Surface Reconstruction. OPHTHALMOLOGY SCIENCE 2022; 2:100148. [PMID: 36249679 PMCID: PMC9560570 DOI: 10.1016/j.xops.2022.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
Purpose To propose an improved stem cell-based strategy for limbal stem cell deficiency (LSCD) treatment. Design Experimental randomized or parallel-group animal study. Subjects Fifty adult male New Zealand white rabbits. Methods Human limbal stem/progenitor cells (LSCs) and limbal stromal stem/progenitor cells (LSSCs) were cultured in serum-free conditions and further differentiated into corneal epithelial cells and keratocytes, respectively. All cell types were characterized with lineage-specific markers. Gene expression analysis was performed to identify the potential function of LSSCs in corneal regeneration. Two LSCD models of rabbits for transplantations were used: transplantation performed at the time of limbal and corneal epithelial excision (LSCD model) and transplantation performed after clinical signs were induced in an LSCD model (pLSCD model). The pLSCD model better mimics the pathologic changes and symptoms of human LSCD. Rabbit models received LSC or LSC plus LSSC treatment. Corneal epithelial defects, neovascularization, and opacity were assessed every 3 weeks for 24 weeks. ZsGreen-labeled LSSCs were used for short-term tracking in vivo. Main Outcome Measures Rates of corneal epithelial defect area, corneal neovascularization and opacity scores, graft survival rate, and immunofluorescence staining of specific markers. Results Both LSC transplantation and LSC plus LSSC cotransplantation effectively repaired the corneal surface in the LSCD model. These 2 strategies showed no significant differences in terms of graft survival rate or epithelial repair. However, corneal opacity was observed in the LSC group (in 3 of 8 rabbits), but not in the LSC plus LSSC group. Notably, when treating LSCD rabbits with distinguishable stromal opacification and neovascularization, cotransplantation of LSCs and LSSCs exhibited significantly better therapeutic effects than transplantation of LSCs alone, with graft survival rates of 87.5% and 37.5%, respectively. The implanted LSSCs could differentiate into keratocytes during the wound-healing process. RNA sequencing analysis showed that the stromal cells produced not only a collagen-rich extracellular matrix to facilitate reconstruction of the lamellar structure, but also niche factors that accelerated epithelial cell growth and inhibited angiogenesis and inflammation. Conclusions These findings highlight the support of stromal cells in niche homeostasis and tissue regeneration, providing LSC plus LSSC cotransplantation as a new treatment strategy for corneal blindness.
Collapse
|
26
|
Peterson C, Chandler HL. Insulin facilitates corneal wound healing in the diabetic environment through the RTK-PI3K/Akt/mTOR axis in vitro. Mol Cell Endocrinol 2022; 548:111611. [PMID: 35231580 PMCID: PMC9053186 DOI: 10.1016/j.mce.2022.111611] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
Diabetic patients can develop degenerative corneal changes, termed diabetic keratopathy, during the course of their disease. Topical insulin has been shown to reduce corneal wound area and restore sensitivity in diabetic rats, and both the insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF-1R) stimulate cell signaling of the PI3K-Akt pathway. The purpose of this study was to assess a mechanism by which improved wound healing occurs by characterizing expression within the PI3K-Akt pathway in corneal epithelial and stromal cells. In vitro scratch tests were used to evaluate wound healing outcomes under variable glucose conditions in the presence or absence of insulin. Protein expression of intracellular kinases in the PI3K pathway, stromal cell markers, and GLUT-1 was evaluated by immunoblotting.TGF-β1 expression was evaluated by ELISA. Insulin promoted in vitro wound healing in all cell types. In human corneal epithelial cells, insulin did not induce PI3K-Akt signaling; however, in all other cell types evaluated, insulin increased expression of PI3K-Akt signaling proteins compared to vehicle control. Fibroblasts variably expressed α-SMA under all treatment conditions, with significant increases in α-SMA and TGF-β1 occurring in a dose-dependent manner with glucose concentration. These results indicate that insulin can promote corneal cellular migration and proliferation by inducing Akt signaling. Exogenous insulin therapy may serve as a novel target of therapeutic intervention for diabetic keratopathy.
Collapse
Affiliation(s)
- C Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Vision Science, The Ohio State University College of Optometry, Columbus, OH, 43210, USA.
| | - H L Chandler
- Department of Vision Science, The Ohio State University College of Optometry, Columbus, OH, 43210, USA
| |
Collapse
|
27
|
Rad LM, Yumashev AV, Hussen BM, Jamad HH, Ghafouri-Fard S, Taheri M, Rostami S, Niazi V, Hajiesmaeili M. Therapeutic Potential of Microvesicles in Cell Therapy and Regenerative Medicine of Ocular Diseases With an Especial Focus on Mesenchymal Stem Cells-Derived Microvesicles. Front Genet 2022; 13:847679. [PMID: 35422841 PMCID: PMC9001951 DOI: 10.3389/fgene.2022.847679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
These days, mesenchymal stem cells (MSCs), because of immunomodulatory and pro-angiogenic abilities, are known as inevitable factors in regenerative medicine and cell therapy in different diseases such as ocular disorder. Moreover, researchers have indicated that exosome possess an essential potential in the therapeutic application of ocular disease. MSC-derived exosome (MSC-DE) have been identified as efficient as MSCs for treatment of eye injuries due to their small size and rapid diffusion all over the eye. MSC-DEs easily transfer their ingredients such as miRNAs, proteins, and cytokines to the inner layer in the eye and increase the reconstruction of the injured area. Furthermore, MSC-DEs deliver their immunomodulatory cargos in inflamed sites and inhibit immune cell migration, resulting in improvement of autoimmune uveitis. Interestingly, therapeutic effects were shown only in animal models that received MSC-DE. In this review, we summarized the therapeutic potential of MSCs and MSC-DE in cell therapy and regenerative medicine of ocular diseases.
Collapse
Affiliation(s)
- Lina Moallemi Rad
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Alexey V Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Hadayat Jamad
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Samaneh Rostami
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciecnes, Zanjan, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Critical Care Quality Improvement Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res 2022; 87:101011. [PMID: 34530154 PMCID: PMC8918435 DOI: 10.1016/j.preteyeres.2021.101011] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
The cornea is the outmost layer of the eye, unique in its transparency and strength. The cornea not only transmits the light essential for vision, also refracts light, giving focus to images. Each of the three layers of the cornea has properties essential for the function of vision. Although the epithelium can often recover from injury quickly by cell division, loss of limbal stem cells can cause severe corneal surface abnormalities leading to corneal blindness. Disruption of the stromal extracellular matrix and loss of cells determining this structure, the keratocytes, leads to corneal opacity. Corneal endothelium is the inner part of the cornea without self-renewal capacity. It is very important to maintain corneal dehydration and transparency. Permanent damage to the corneal stroma or endothelium can be effectively treated by corneal transplantation; however, there are drawbacks to this procedure, including a shortage of donors, the need for continuing treatment to prevent rejection, and limits to the survival of the graft, averaging 10-20 years. There exists a need for new strategies to promote regeneration of the stromal structure and restore vision. This review highlights critical contributions in regenerative medicine with the aim of corneal reconstruction after injury or disease. These approaches include corneal stromal stem cells, corneal limbal stem cells, embryonic stem cells, and other adult stem cells, as well as induced pluripotent stem cells. Stem cell-derived trophic factors in the forms of secretomes or exosomes for corneal regeneration are also discussed. Corneal sensory nerve regeneration promoting corneal transparency is discussed. This article provides description of the up-to-date options for corneal regeneration and presents exciting possible avenues for future studies toward clinical applications for corneal regeneration.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
29
|
Advances in Regulatory Strategies of Differentiating Stem Cells towards Keratocytes. Stem Cells Int 2022; 2022:5403995. [PMID: 35140792 PMCID: PMC8820938 DOI: 10.1155/2022/5403995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Corneal injury is a commonly encountered clinical problem which led to vision loss and impairment that affects millions of people worldwide. Currently, the available treatment in clinical practice is corneal transplantation, which is limited by the accessibility of donors. Corneal tissue engineering appears to be a promising alternative for corneal repair. However, current experimental strategies of corneal tissue engineering are insufficient due to inadequate differentiation of stem cell into keratocytes and thus cannot be applied in clinical practice. In this review, we aim to clarify the role and effectiveness of both biochemical factors, physical regulation, and the combination of both to induce stem cells to differentiate into keratocytes. We will also propose novel perspectives of differentiation strategy that may help to improve the efficiency of corneal tissue engineering.
Collapse
|
30
|
Rajaiya J, Saha A, Zhou X, Chodosh J. Human Adenovirus Species D Interactions with Corneal Stromal Cells. Viruses 2021; 13:2505. [PMID: 34960773 PMCID: PMC8709199 DOI: 10.3390/v13122505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Notable among the many communicable agents known to infect the human cornea is the human adenovirus, with less than ten adenoviruses having corneal tropism out of more than 100 known types. The syndrome of epidemic keratoconjunctivitis (EKC), caused principally by human adenovirus, presents acutely with epithelial keratitis, and later with stromal keratitis that can be chronic and recurrent. In this review, we discuss the current state of knowledge regarding the molecular biology of adenovirus infection of corneal stromal cells, among which the fibroblast-like keratocyte is the most predominant, in order to elucidate basic pathophysiologic mechanisms of stromal keratitis in the human patient with EKC.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (A.S.); (X.Z.)
| | | | | | - James Chodosh
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (A.S.); (X.Z.)
| |
Collapse
|
31
|
Karamichos D, Escandon P, Vasini B, Nicholas SE, Van L, Dang DH, Cunningham RL, Riaz KM. Anterior pituitary, sex hormones, and keratoconus: Beyond traditional targets. Prog Retin Eye Res 2021; 88:101016. [PMID: 34740824 PMCID: PMC9058044 DOI: 10.1016/j.preteyeres.2021.101016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
"The Diseases of the Horny-coat of The Eye", known today as keratoconus, is a progressive, multifactorial, non-inflammatory ectatic corneal disorder that is characterized by steepening (bulging) and thinning of the cornea, irregular astigmatism, myopia, and scarring that can cause devastating vision loss. The significant socioeconomic impact of the disease is immeasurable, as patients with keratoconus can have difficulties securing certain jobs or even joining the military. Despite the introduction of corneal crosslinking and improvements in scleral contact lens designs, corneal transplants remain the main surgical intervention for treating keratoconus refractory to medical therapy and visual rehabilitation. To-date, the etiology and pathogenesis of keratoconus remains unclear. Research studies have increased exponentially over the years, highlighting the clinical significance and international interest in this disease. Hormonal imbalances have been linked to keratoconus, both clinically and experimentally, with both sexes affected. However, it is unclear how (molecular/cellular signaling) or when (age/disease stage(s)) those hormones affect the keratoconic cornea. Previous studies have categorized the human cornea as an extragonadal tissue, showing modulation of the gonadotropins, specifically luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Studies herein provide new data (both in vitro and in vivo) to further delineate the role of hormones/gonadotropins in the keratoconus pathobiology, and propose the existence of a new axis named the Hypothalamic-Pituitary-Adrenal-Corneal (HPAC) axis.
Collapse
Affiliation(s)
- Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Brenda Vasini
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Lyly Van
- University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA; Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Deanna H Dang
- College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Kamran M Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
32
|
Jameson JF, Pacheco MO, Nguyen HH, Phelps EA, Stoppel WL. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering (Basel) 2021; 8:161. [PMID: 34821727 PMCID: PMC8615221 DOI: 10.3390/bioengineering8110161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Given the incidence of corneal dysfunctions and diseases worldwide and the limited availability of healthy, human donors, investigators are working to generate engineered cellular and acellular therapeutic approaches as alternatives to corneal transplants from human cadavers. These engineered strategies aim to address existing complications with human corneal transplants, including graft rejection, infection, and complications resulting from surgical methodologies. The main goals of these research endeavors are to (1) determine ideal mechanical properties, (2) devise methodologies to improve the efficacy of engineered corneal grafts and cell-based therapies, and (3) optimize transplantation of engineered tissue structures in the eye. Thus, recent innovations have sought to address these challenges through both in vitro and in vivo studies. This review covers recent work aimed at evaluating engineered materials, potential therapeutic cells, and the resulting cell-material interactions that lead to optimal corneal graft properties. Furthermore, we discuss promising strategies in corneal tissue engineering techniques and in vivo studies in animal models.
Collapse
Affiliation(s)
- Julie F. Jameson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Marisa O. Pacheco
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Henry H. Nguyen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Whitney L. Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| |
Collapse
|
33
|
Hidalgo-Alvarez V, Dhowre HS, Kingston OA, Sheridan CM, Levis HJ. Biofabrication of Artificial Stem Cell Niches in the Anterior Ocular Segment. Bioengineering (Basel) 2021; 8:135. [PMID: 34677208 PMCID: PMC8533470 DOI: 10.3390/bioengineering8100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The anterior segment of the eye is a complex set of structures that collectively act to maintain the integrity of the globe and direct light towards the posteriorly located retina. The eye is exposed to numerous physical and environmental insults such as infection, UV radiation, physical or chemical injuries. Loss of transparency to the cornea or lens (cataract) and dysfunctional regulation of intra ocular pressure (glaucoma) are leading causes of worldwide blindness. Whilst traditional therapeutic approaches can improve vision, their effect often fails to control the multiple pathological events that lead to long-term vision loss. Regenerative medicine approaches in the eye have already had success with ocular stem cell therapy and ex vivo production of cornea and conjunctival tissue for transplant recovering patients' vision. However, advancements are required to increase the efficacy of these as well as develop other ocular cell therapies. One of the most important challenges that determines the success of regenerative approaches is the preservation of the stem cell properties during expansion culture in vitro. To achieve this, the environment must provide the physical, chemical and biological factors that ensure the maintenance of their undifferentiated state, as well as their proliferative capacity. This is likely to be accomplished by replicating the natural stem cell niche in vitro. Due to the complex nature of the cell microenvironment, the creation of such artificial niches requires the use of bioengineering techniques which can replicate the physico-chemical properties and the dynamic cell-extracellular matrix interactions that maintain the stem cell phenotype. This review discusses the progress made in the replication of stem cell niches from the anterior ocular segment by using bioengineering approaches and their therapeutic implications.
Collapse
Affiliation(s)
- Veronica Hidalgo-Alvarez
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Hala S. Dhowre
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Olivia A. Kingston
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| |
Collapse
|
34
|
Latta L, Figueiredo FC, Ashery-Padan R, Collinson JM, Daniels J, Ferrari S, Szentmáry N, Solá S, Shalom-Feuerstein R, Lako M, Xapelli S, Aberdam D, Lagali N. Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions. Ocul Surf 2021; 22:245-266. [PMID: 34520870 DOI: 10.1016/j.jtos.2021.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease.
Collapse
Affiliation(s)
- L Latta
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - F C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - R Ashery-Padan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - J M Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - J Daniels
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - S Ferrari
- The Veneto Eye Bank Foundation, Venice, Italy
| | - N Szentmáry
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - S Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - R Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - S Xapelli
- Instituto Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D Aberdam
- Centre de Recherche des Cordeliers, INSERM U1138, Team 17, France; Université de Paris, 75006, Paris, France.
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
35
|
Corneal Epithelial Stem Cells-Physiology, Pathophysiology and Therapeutic Options. Cells 2021; 10:cells10092302. [PMID: 34571952 PMCID: PMC8465583 DOI: 10.3390/cells10092302] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
In the human cornea, regeneration of the epithelium is regulated by the stem cell reservoir of the limbus, which is the marginal region of the cornea representing the anatomical and functional border between the corneal and conjunctival epithelium. In support of this concept, extensive limbal damage, e.g., by chemical or thermal injury, inflammation, or surgery, may induce limbal stem cell deficiency (LSCD) leading to vascularization and opacification of the cornea and eventually vision loss. These acquired forms of limbal stem cell deficiency may occur uni- or bilaterally, which is important for the choice of treatment. Moreover, a variety of inherited diseases, such as congenital aniridia or dyskeratosis congenita, are characterized by LSCD typically occurring bilaterally. Several techniques of autologous and allogenic stem cell transplantation have been established. The limbus can be restored by transplantation of whole limbal grafts, small limbal biopsies or by ex vivo-expanded limbal cells. In this review, the physiology of the corneal epithelium, the pathophysiology of LSCD, and the therapeutic options will be presented.
Collapse
|
36
|
Derivation and Characterization of EGFP-Labeled Rabbit Limbal Mesenchymal Stem Cells and Their Potential for Research in Regenerative Ophthalmology. Biomedicines 2021; 9:biomedicines9091134. [PMID: 34572321 PMCID: PMC8465718 DOI: 10.3390/biomedicines9091134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
The development of cell-based approaches to the treatment of various cornea pathologies, including limbal stem cell deficiency (LSCD), is an area of current interest in regenerative biomedicine. In this context, the shortage of donor material is urgent, and limbal mesenchymal stem cells (L-MSCs) may become a promising cell source for the development of these novel approaches, being established mainly within the rabbit model. In this study, we obtained and characterized rabbit L-MSCs and modified them with lentiviral transduction to express the green fluorescent protein EGFP (L-MSCs-EGFP). L-MSCs and L-MSCs-EGFP express not only stem cell markers specific for mesenchymal stem cells but also ABCG2, ABCB5, ALDH3A1, PAX6, and p63a specific for limbal epithelial stem cells (LESCs), as well as various cytokeratins (3/12, 15, 19). L-MSCs-EGFP have been proven to differentiate into adipogenic, osteogenic, and chondrogenic directions, as well as to transdifferentiate into epithelial cells. The possibility of using L-MSCs-EGFP to study the biocompatibility of various scaffolds developed to treat corneal pathologies was demonstrated. L-MSCs-EGFP may become a useful tool for studying regenerative processes occurring during the treatment of various corneal pathologies, including LSCD, with the use of cell-based technologies.
Collapse
|
37
|
Putra I, Shen X, Anwar KN, Rabiee B, Samaeekia R, Almazyad E, Giri P, Jabbehdari S, Hayat MR, Elhusseiny AM, Ghassemi M, Mahmud N, Edward DP, Joslin CE, Rosenblatt MI, Dana R, Eslani M, Hematti P, Djalilian AR. Preclinical Evaluation of the Safety and Efficacy of Cryopreserved Bone Marrow Mesenchymal Stromal Cells for Corneal Repair. Transl Vis Sci Technol 2021; 10:3. [PMID: 34383879 PMCID: PMC8362636 DOI: 10.1167/tvst.10.10.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Mesenchymal stromal cells (MSCs) have been shown to enhance tissue repair as a cell-based therapy. In preparation for a phase I clinical study, we evaluated the safety, dosing, and efficacy of bone marrow–derived MSCs after subconjunctival injection in preclinical animal models of mice, rats, and rabbits. Methods Human bone marrow–derived MSCs were expanded to passage 4 and cryopreserved. Viability of MSCs after thawing and injection through small-gauge needles was evaluated by vital dye staining. The in vivo safety of human and rabbit MSCs was studied by subconjunctivally injecting MSCs in rabbits with follow-up to 90 days. The potency of MSCs on accelerating wound healing was evaluated in vitro using a scratch assay and in vivo using 2-mm corneal epithelial debridement wounds in mice. Human MSCs were tracked after subconjunctival injection in rat and rabbit eyes. Results The viability of MSCs after thawing and immediate injection through 27- and 30-gauge needles was 93.1% ± 2.1% and 94.9% ± 1.3%, respectively. Rabbit eyes demonstrated mild self-limiting conjunctival inflammation at the site of injection with human but not rabbit MSCs. In scratch assay, the mean wound healing area was 93.5% ± 12.1% in epithelial cells co-cultured with MSCs compared with 40.8% ± 23.1% in controls. At 24 hours after wounding, all MSC-injected murine eyes had 100% corneal wound closure compared with 79.9% ± 5.5% in controls. Human MSCs were detectable in the subconjunctival area and peripheral cornea at 14 days after injection. Conclusions Subconjunctival administration of MSCs is safe and effective in promoting corneal epithelial wound healing in animal models. Translational Relevance These results provide preclinical data to support a phase I clinical study.
Collapse
Affiliation(s)
- Ilham Putra
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ravand Samaeekia
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Enmar Almazyad
- Department of Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Pushpanjali Giri
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed R Hayat
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nadim Mahmud
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak P Edward
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Department of Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Charlotte E Joslin
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Peiman Hematti
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
38
|
Mohan RR, Balne PK, Muayad MS, Tripathi R, Sinha NR, Gupta S, An JA, Sinha PR, Hesemann NP. Six-Month In Vivo Safety Profiling of Topical Ocular AVV5-Decorin Gene Transfer. Transl Vis Sci Technol 2021; 10:5. [PMID: 34383877 PMCID: PMC8362634 DOI: 10.1167/tvst.10.10.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose A significant remission of corneal fibrosis and neovascularization in rabbit eye in vivo was observed from a tissue-selective localized adeno-associated virus (AAV)5–Decorin (Dcn) gene therapy. This study sought to investigate 6-month toxicity profiling of this gene therapy for the eye in vivo using a rabbit model. Methods A small epithelial scrape followed by corneal drying was performed unilaterally in 12 rabbit eyes and either AAV5–Dcn (n = 6) or naked vector (n = 6) was delivered topically using a cloning cylinder technique. Contralateral eyes served as naïve control (n = 6). Safety and tolerability measurements in live rabbits were performed periodically until month 6 using multimodel clinical ophthalmic imaging tools—a slit lamp, stereomicroscope, and HRT3-RCM in vivo confocal microscope. Thereafter, corneas were excised and subjected to hematoxylin and eosin staining, Mason trichome staining, propidium iodide nuclear staining, and quantitative real-time polymerase chain reaction analyses. Results Clinical eye examinations based on the modified Hackett–McDonald ocular scoring system, and in vivo confocal imaging of the cornea showed no signs of ocular toxicity in rabbit eyes given AAV5–Dcn gene transfer vs control eyes (P > 0.05) through 6 months after treatment. The histologic and molecular analyses showed no significant differences in AAV5–Dcn vs AAV naked or naïve control groups (P > 0.05) and were in accordance with the masked clinical ophthalmic observations showing no abnormalities. Conclusions Topical tissue-targeted localized AAV5–Dcn gene therapy seems to be safe and nontoxic to the rabbit eye in vivo. Translational Relevance AAV5–Dcn gene therapy has the potential to treat corneal fibrosis and neovascularization in vivo safely without significant ocular toxicity.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Praveen K Balne
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Maryam S Muayad
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jella A An
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
39
|
Abdul-Al M, Kyeremeh GK, Saeinasab M, Heidari Keshel S, Sefat F. Stem Cell Niche Microenvironment: Review. Bioengineering (Basel) 2021; 8:bioengineering8080108. [PMID: 34436111 PMCID: PMC8389324 DOI: 10.3390/bioengineering8080108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
The cornea comprises a pool of self-regenerating epithelial cells that are crucial to preserving clarity and visibility. Limbal epithelial stem cells (LESCs), which live in a specialized stem cell niche (SCN), are crucial for the survival of the human corneal epithelium. They live at the bottom of the limbal crypts, in a physically enclosed microenvironment with a number of neighboring niche cells. Scientists also simplified features of these diverse microenvironments for more analysis in situ by designing and recreating features of different SCNs. Recent methods for regenerating the corneal epithelium after serious trauma, including burns and allergic assaults, focus mainly on regenerating the LESCs. Mesenchymal stem cells, which can transform into self-renewing and skeletal tissues, hold immense interest for tissue engineering and innovative medicinal exploration. This review summarizes all types of LESCs, identity and location of the human epithelial stem cells (HESCs), reconstruction of LSCN and artificial stem cells for self-renewal.
Collapse
Affiliation(s)
- Mohamed Abdul-Al
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD71DP, UK; (M.A.-A.); (G.K.K.)
| | - George Kumi Kyeremeh
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD71DP, UK; (M.A.-A.); (G.K.K.)
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91779 48974, Iran;
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839 69411, Iran;
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD71DP, UK; (M.A.-A.); (G.K.K.)
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD71DP, UK
- Correspondence:
| |
Collapse
|
40
|
Application of mesenchymal stem cells in corneal regeneration. Tissue Cell 2021; 73:101600. [PMID: 34371292 DOI: 10.1016/j.tice.2021.101600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Due to delicate its structure, the cornea is susceptible to physical, chemical, and genetic damages. Corneal transplantation is the main treatment for serious corneal damage, but it faces significant challenges, including donor shortages and severe complications. In recent years, cell therapy is suggested as a novel alternative method for corneal regeneration. Regarding the unique characteristics of Mesenchymal stem cells including the potential to differentiate into discrete cell types, secretion of growth factors, mobilization potency, and availability from different sources; special attention has been paid to these cells in corneal engineering. Differentiation of MSCs into specialized corneal cells such as keratocytes, epithelial and endothelial cells is reported. Potential for Treatment of keratitis, reducing inflammation, and inhibition of neovascularization by MSCs, introducing them as novel agents for corneal repairing. In this review, various types of MSCs used to treat corneal injuries as well as their potential for restoring different corneal layers was investigated.
Collapse
|
41
|
[Regression and ablation profiles in corneal refractive surgery]. J Fr Ophtalmol 2021; 44:1059-1075. [PMID: 34148702 DOI: 10.1016/j.jfo.2020.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
Abstract
Regression after corneal refractive surgery is a complex phenomenon which seems inevitable. The choice of surgical technique has very little influence on regression for low myopia or myopic astigmatism. However, LASIK and SMILE are the two techniques of choice in the correction of high myopia. LASIK is also better for the correction of hyperopia, hyperopic astigmatism and mixed astigmatism. Intraoperatively, the choice of a wide optical zone and adherence to a thick residual stromal bed provide stability. Regression may also be reduced by modulating anti-inflammatory therapy, treating dry eye, and using mitomycin C in PKR. In all cases, obtaining keratometry during patient follow-up helps to identify the cause of the regression. The objective of this review is to synthesize recent data from the literature on regression in refractive surgery as a function of the ablation profiles used.
Collapse
|
42
|
Nieto-Nicolau N, Martínez-Conesa EM, Fuentes-Julián S, Arnalich-Montiel F, García-Tuñón I, De Miguel MP, Casaroli-Marano RP. Priming human adipose-derived mesenchymal stem cells for corneal surface regeneration. J Cell Mol Med 2021; 25:5124-5137. [PMID: 33951289 PMCID: PMC8178265 DOI: 10.1111/jcmm.16501] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cells (LSC) maintain the transparency of the corneal epithelium. Chemical burns lead the loss of LSC inducing an up-regulation of pro-inflammatory and pro-angiogenic factors, triggering corneal neovascularization and blindness. Adipose tissue-derived mesenchymal stem cells (AT-MSC) have shown promise in animal models to treat LSC deficiency (LSCD), but there are not studies showing their efficacy when primed with different media before transplantation. We cultured AT-MSC with standard medium and media used to culture LSC for clinical application. We demonstrated that different media changed the AT-MSC paracrine secretion showing different paracrine effector functions in an in vivo model of chemical burn and in response to a novel in vitro model of corneal inflammation by alkali induction. Treatment of LSCD with AT-MSC changed the angiogenic and inflammatory cytokine profile of mice corneas. AT-MSC cultured with the medium that improved their cytokine secretion, enhanced the anti-angiogenic and anti-inflammatory profile of the treated corneas. Those corneas also presented better outcome in terms of corneal transparency, neovascularization and histologic reconstruction. Priming human AT-MSC with LSC specific medium can potentiate their ability to improve corneal wound healing, decrease neovascularization and inflammation modulating paracrine effector functions in an in vivo optimized rat model of LSCD.
Collapse
Affiliation(s)
- Núria Nieto-Nicolau
- CellTec-UB, Department of Cell Biology, University of Barcelona, Barcelona, Spain.,Barcelona Tissue Bank (BTB), Banc de Sang I Teixits (BST), Barcelona, Spain.,Institute of Biomedical Research IIB-Sant Pau (SGR1113), Barcelona, Spain
| | - Eva M Martínez-Conesa
- Barcelona Tissue Bank (BTB), Banc de Sang I Teixits (BST), Barcelona, Spain.,Institute of Biomedical Research IIB-Sant Pau (SGR1113), Barcelona, Spain
| | | | | | - Ignacio García-Tuñón
- Cell Engineering Laboratory, La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - María P De Miguel
- Cell Engineering Laboratory, La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Ricardo P Casaroli-Marano
- CellTec-UB, Department of Cell Biology, University of Barcelona, Barcelona, Spain.,Barcelona Tissue Bank (BTB), Banc de Sang I Teixits (BST), Barcelona, Spain.,Institute of Biomedical Research IIB-Sant Pau (SGR1113), Barcelona, Spain.,Department of Surgery & Hospital Clinic de Barcelona, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Expression and Function of ZEB1 in the Cornea. Cells 2021; 10:cells10040925. [PMID: 33923743 PMCID: PMC8074155 DOI: 10.3390/cells10040925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is an important transcription factor for epithelial to mesenchymal transition (EMT) and in the regulation of cell differentiation and transformation. In the cornea, ZEB1 presents in all three layers: the epithelium, the stroma and the endothelium. Mutations of ZEB1 have been linked to multiple corneal genetic defects, particularly to the corneal dystrophies including keratoconus (KD), Fuchs endothelial corneal dystrophy (FECD), and posterior polymorphous corneal dystrophy (PPCD). Accumulating evidence indicates that dysfunction of ZEB1 may affect corneal stem cell homeostasis, and cause corneal cell apoptosis, stromal fibrosis, angiogenesis, squamous metaplasia. Understanding how ZEB1 regulates the initiation and progression of these disorders will help us in targeting ZEB1 for potential avenues to generate therapeutics to treat various ZEB1-related disorders.
Collapse
|
44
|
Collin J, Queen R, Zerti D, Bojic S, Dorgau B, Moyse N, Molina MM, Yang C, Dey S, Reynolds G, Hussain R, Coxhead JM, Lisgo S, Henderson D, Joseph A, Rooney P, Ghosh S, Clarke L, Connon C, Haniffa M, Figueiredo F, Armstrong L, Lako M. A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells. Ocul Surf 2021; 21:279-298. [PMID: 33865984 PMCID: PMC8343164 DOI: 10.1016/j.jtos.2021.03.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Purpose Single cell (sc) analyses of key embryonic, fetal and adult stages were performed to generate a comprehensive single cell atlas of all the corneal and adjacent conjunctival cell types from development to adulthood. Methods Four human adult and seventeen embryonic and fetal corneas from 10 to 21 post conception week (PCW) specimens were dissociated to single cells and subjected to scRNA- and/or ATAC-Seq using the 10x Genomics platform. These were embedded using Uniform Manifold Approximation and Projection (UMAP) and clustered using Seurat graph-based clustering. Cluster identification was performed based on marker gene expression, bioinformatic data mining and immunofluorescence (IF) analysis. RNA interference, IF, colony forming efficiency and clonal assays were performed on cultured limbal epithelial cells (LECs). Results scRNA-Seq analysis of 21,343 cells from four adult human corneas and adjacent conjunctivas revealed the presence of 21 cell clusters, representing the progenitor and differentiated cells in all layers of cornea and conjunctiva as well as immune cells, melanocytes, fibroblasts, and blood/lymphatic vessels. A small cell cluster with high expression of limbal progenitor cell (LPC) markers was identified and shown via pseudotime analysis to give rise to five other cell types representing all the subtypes of differentiated limbal and corneal epithelial cells. A novel putative LPCs surface marker, GPHA2, expressed on the surface of 0.41% ± 0.21 of the cultured LECs, was identified, based on predominant expression in the limbal crypts of adult and developing cornea and RNAi validation in cultured LECs. Combining scRNA- and ATAC-Seq analyses, we identified multiple upstream regulators for LPCs and demonstrated a close interaction between the immune cells and limbal progenitor cells. RNA-Seq analysis indicated the loss of GPHA2 expression and acquisition of proliferative limbal basal epithelial cell markers during ex vivo LEC expansion, independently of the culture method used. Extending the single cell analyses to keratoconus, we were able to reveal activation of collagenase in the corneal stroma and a reduced pool of limbal suprabasal cells as two key changes underlying the disease phenotype. Single cell RNA-Seq of 89,897 cells obtained from embryonic and fetal cornea indicated that during development, the conjunctival epithelium is the first to be specified from the ocular surface epithelium, followed by the corneal epithelium and the establishment of LPCs, which predate the formation of limbal niche by a few weeks. Conclusions Our scRNA-and ATAC-Seq data of developing and adult cornea in steady state and disease conditions provide a unique resource for defining genes/pathways that can lead to improvement in ex vivo LPCs expansion, stem cell differentiation methods and better understanding and treatment of ocular surface disorders.
Collapse
Affiliation(s)
- Joseph Collin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Darin Zerti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Sanja Bojic
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Birthe Dorgau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Nicky Moyse
- Newcastle Cellular Therapies Facility, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, UK
| | - Marina Moya Molina
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Chunbo Yang
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Sunanda Dey
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Israel
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Rafiqul Hussain
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Jonathan M Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Agatha Joseph
- NHS Blood and Transplant Tissue and Eye Services, Liverpool, UK
| | - Paul Rooney
- NHS Blood and Transplant Tissue and Eye Services, Liverpool, UK
| | - Saurabh Ghosh
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Lucy Clarke
- UK Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, UK
| | - Che Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Francisco Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK; UK Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, UK
| | - Lyle Armstrong
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK.
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK.
| |
Collapse
|
45
|
Liu XN, Mi SL, Chen Y, Wang Y. Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment. Int J Ophthalmol 2021; 14:448-455. [PMID: 33747824 DOI: 10.18240/ijo.2021.03.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal stroma-derived mesenchymal stem cells (CS-MSCs) are mainly distributed in the anterior part of the corneal stroma near the corneal limbal stem cells (LSCs). CS-MSCs are stem cells with self-renewal and multidirectional differentiation potential. A large amount of data confirmed that CS-MSCs can be induced to differentiate into functional keratocytes in vitro, which is the motive force for maintaining corneal transparency and producing a normal corneal stroma. CS-MSCs are also an important component of the limbal microenvironment. Furthermore, they are of great significance in the reconstruction of ocular surface tissue and tissue engineering for active biocornea construction. In this paper, the localization and biological characteristics of CS-MSCs, the use of CS-MSCs to reconstruct a tissue-engineered active biocornea, and the repair of the limbal and matrix microenvironment by CS-MSCs are reviewed, and their application prospects are discussed.
Collapse
Affiliation(s)
- Xian-Ning Liu
- Department of Ophthalmology, First Hospital of Xi'an; Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, the First Affiliated Hospital of Northwest University, Xi'an 710002, Shaanxi Province, China
| | - Sheng-Li Mi
- Open FIESTA Center, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China.,Biomanufacturing Engineering Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China
| | - Yun Chen
- Open FIESTA Center, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China
| | - Yao Wang
- Department of Ophthalmology, First Hospital of Xi'an; Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, the First Affiliated Hospital of Northwest University, Xi'an 710002, Shaanxi Province, China
| |
Collapse
|
46
|
Ashworth S, Harrington J, Hammond GM, Bains KK, Koudouna E, Hayes AJ, Ralphs JR, Regini JW, Young RD, Hayashi R, Nishida K, Hughes CE, Quantock AJ. Chondroitin Sulfate as a Potential Modulator of the Stem Cell Niche in Cornea. Front Cell Dev Biol 2021; 8:567358. [PMID: 33511110 PMCID: PMC7835413 DOI: 10.3389/fcell.2020.567358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chondroitin sulfate (CS) is an important component of the extracellular matrix in multiple biological tissues. In cornea, the CS glycosaminoglycan (GAG) exists in hybrid form, whereby some of the repeating disaccharides are dermatan sulfate (DS). These CS/DS GAGs in cornea, through their presence on the proteoglycans, decorin and biglycan, help control collagen fibrillogenesis and organization. CS also acts as a regulatory ligand for a spectrum of signaling molecules, including morphogens, cytokines, chemokines, and enzymes during corneal growth and development. There is a growing body of evidence that precise expression of CS or CS/DS with specific sulfation motifs helps define the local extracellular compartment that contributes to maintenance of the stem cell phenotype. Indeed, recent evidence shows that CS sulfation motifs recognized by antibodies 4C3, 7D4, and 3B3 identify stem cell populations and their niches, along with activated progenitor cells and transitional areas of tissue development in the fetal human elbow. Various sulfation motifs identified by some CS antibodies are also specifically located in the limbal region at the edge of the mature cornea, which is widely accepted to represent the corneal epithelial stem cell niche. Emerging data also implicate developmental changes in the distribution of CS during corneal morphogenesis. This article will reflect upon the potential roles of CS and CS/DS in maintenance of the stem cell niche in cornea, and will contemplate the possible involvement of CS in the generation of eye-like tissues from human iPS (induced pluripotent stem) cells.
Collapse
Affiliation(s)
- Sean Ashworth
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jodie Harrington
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.,Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Greg M Hammond
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Kiranjit K Bains
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Elena Koudouna
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony J Hayes
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - James R Ralphs
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Justyn W Regini
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Robert D Young
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ryuhei Hayashi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Clare E Hughes
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
47
|
Li S, Cui Z, Gu J, Wang Y, Tang S, Chen J. Effect of porcine corneal stromal extract on keratocytes from SMILE-derived lenticules. J Cell Mol Med 2021; 25:1207-1220. [PMID: 33342057 PMCID: PMC7812260 DOI: 10.1111/jcmm.16189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/19/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
Propagating large amounts of human corneal stromal cells (hCSCs) in vitro while maintaining the physiological quality of their phenotypes is necessary for their application in cell therapy. Here, a novel medium to propagate hCSCs obtained from small incision lenticule extraction (SMILE)-derived lenticules was investigated and the feasibility of intrastromal injection of these hCSCs was assessed. Primary hCSCs were cultured in porcine corneal stroma extract (pCSE) with RIFA medium including ROCK inhibitor Y27632, insulin-transferrin-selenium, fibroblast growth factor 2, L-ascorbate 2-phosphate and 0.5% FBS (RIFA medium + pCSE). Protein profiling of the pCSE was identified using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). After subculturing in RIFA medium + pCSE or 10% FBS normal medium (NM), hCSCs at P4 were transplanted into mouse corneal stroma. Compared with NM, ALDH3A1, keratocan and lumican were significantly more expressed in the RIFA medium + pCSE. ALDH3A1 was also more expressed in the RIFA medium + pCSE than in the RIFA medium. Fibronectin and α-SMA were less expressed in the RIFA medium + pCSE than in the NM. Using Metascape analysis, the pCSE with its anti-fibrosis, pro-proliferation and anti-apoptosis activities, was beneficial for hCSC cultivation. The intrastromally implanted hCSCs in the RIFA medium + pCSE had positive CD34 expression but negative CD45 expression 35 days after injection. We provide a valuable new medium that is advantageous for the proliferation of hCSCs with the properties of physiological keratocytes. Intrastromal injection of hCSCs in RIFA medium + pCSE has the potential for clinical cell therapy.
Collapse
Affiliation(s)
- Shenyang Li
- Aier School of OphthalmologyCentral South UniversityHunanChina
| | | | | | | | - Shibo Tang
- Aier School of OphthalmologyCentral South UniversityHunanChina
- Aier Eye InstituteChangshaChina
| | - Jiansu Chen
- Aier School of OphthalmologyCentral South UniversityHunanChina
- Aier Eye InstituteChangshaChina
| |
Collapse
|
48
|
Chia WK, Cheah FC, Abdul Aziz NH, Kampan NC, Shuib S, Khong TY, Tan GC, Wong YP. A Review of Placenta and Umbilical Cord-Derived Stem Cells and the Immunomodulatory Basis of Their Therapeutic Potential in Bronchopulmonary Dysplasia. Front Pediatr 2021; 9:615508. [PMID: 33791258 PMCID: PMC8006350 DOI: 10.3389/fped.2021.615508] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
Collapse
Affiliation(s)
- Wai Kit Chia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fook Choe Cheah
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Haslinda Abdul Aziz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Salwati Shuib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yee Khong
- Department of Pathology, SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Xeno-free approach for the expansion of human adipose derived mesenchymal stem cells for ocular therapies. Exp Eye Res 2020; 202:108358. [PMID: 33207223 DOI: 10.1016/j.exer.2020.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022]
Abstract
To restore corneal transparency and vision loss after an injury on the ocular surface, the use of human stem cells from different origins has been recently proposed. Mesenchymal stem cells (MSCs) seem to be an appropriate adult source of autologous stem cells due to their accessibility, high proliferation rate, and multipotent capacity. In this work, we developed a simple culture system to prepare a graft based on a fibrin membrane seeded with human MSCs. A commercial kit, PRGF Endoret®, was used to prepare both, the growth factors used as culture media supplement and the fibrin membrane grafts. Adipose-derived MSCs (Ad-MSCs) were expanded, characterised by flow cytometry and their multilineage differentiation potential confirmed by inducing adipogenesis, osteogenesis and chondrogenesis. Ad-MSCs seeded on the fibrin membranes were grafted onto athymic mice showing good biocompatibility with no adverse reactions observed during the follow up period. These findings support the assumption that a system in which all the biological components (cells, grow factors and carrier) are autologous, could potentially be used for future ex vivo expansion of Ad-MSCs to treat ocular conditions such as an inflammatory milieu, traumatic scars and loss of the regenerative capacity of the corneal epithelium that compromise the quality of vision.
Collapse
|
50
|
Alió Del Barrio JL, Arnalich-Montiel F, De Miguel MP, El Zarif M, Alió JL. Corneal stroma regeneration: Preclinical studies. Exp Eye Res 2020; 202:108314. [PMID: 33164825 DOI: 10.1016/j.exer.2020.108314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Corneal grafting is one of the most common and successful forms of human tissue transplantation in the world, but the need for corneal grafting is growing and availability of human corneal donor tissue to fulfill this increasing demand is not assured worldwide. The stroma is responsible for many features of the cornea, including its strength, refractive power and transparency, so enormous efforts have been put into replicating the corneal stroma in the laboratory to find an alternative to classical corneal transplantation. Unfortunately this has not been yet accomplished due to the extreme difficulty in mimicking the highly complex ultrastructure of the corneal stroma, and none of the obtained substitutes that have been assayed has been able to replicate this complexity yet. In general, they can neither match the mechanical properties nor recreate the local nanoscale organization and thus the transparency and optical properties of a normal cornea. In this context, there is an increasing interest in cellular therapy of the corneal stroma using Induced Pluripotent Stem Cells (iPSCs) or mesenchymal stem cells (MSCs) from either ocular or extraocular sources, as they have proven to be capable of producing new collagen within the host stroma, modulate preexisting scars and enhance transparency by corneal stroma remodeling. Despite some early clinical data is already available, in the current article we will summary the available preclinical evidence about the topic corneal stroma regeneration. Both, in vitro and in vivo experiments in the animal model will be shown.
Collapse
Affiliation(s)
- Jorge L Alió Del Barrio
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Arnalich-Montiel
- IRYCIS. Ophthalmology Department. Ramón y Cajal University Hospital, Madrid, Spain; Cornea Unit. Hospital Vissum Madrid (Miranza Group), Madrid, Spain
| | - María P De Miguel
- Cell Engineering Laboratory, IdiPAZ, La Paz Hospital Research Institute, Madrid, Spain
| | | | - Jorge L Alió
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain.
| |
Collapse
|