1
|
Dou X, Feng C, Li J, Jiang E, Shang Z. Extracellular vesicle-mediated crosstalk in tumor microenvironment dominates tumor fate. Trends Cell Biol 2024:S0962-8924(24)00186-7. [PMID: 39327161 DOI: 10.1016/j.tcb.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous system containing various cells cooperating and competing with each other. Extracellular vesicles (EVs) differing in form and content are important intercellular communication mediators in the TME. Previous studies have focused on the cargoes within EVs rather than on the donors from which they originate and the recipient cells that exert their effects. Therefore, we provide here a detailed overview of the important roles of EVs in shaping tumor fate, highlighting their various mechanisms of intercellular dialog within the TME. We evaluate recent advances and also raise unresolved challenges to provide new ideas for clinical treatment strategies using EVs.
Collapse
Affiliation(s)
- Xinyu Dou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China
| | - Chunyu Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China
| | - Ji Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China
| | - Erhui Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China.
| |
Collapse
|
2
|
Muskan M, Abeysinghe P, Cecchin R, Branscome H, Morris KV, Kashanchi F. Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles. Mol Ther 2024; 32:2939-2949. [PMID: 38414242 PMCID: PMC11403218 DOI: 10.1016/j.ymthe.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/21/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Exosomes are extracellular vesicles (EVs) (∼50-150 nm) that have emerged as promising vehicles for therapeutic applications and drug delivery. These membrane-bound particles, released by all actively dividing cells, have the ability to transfer effector molecules, including proteins, RNA, and even DNA, from donor cells to recipient cells, thereby modulating cellular responses. RNA-based therapeutics, including microRNAs, messenger RNAs, long non-coding RNAs, and circular RNAs, hold great potential in controlling gene expression and treating a spectrum of medical conditions. RNAs encapsulated in EVs are protected from extracellular degradation, making them attractive for therapeutic applications. Understanding the intricate biology of cargo loading and transfer within EVs is pivotal to unlocking their therapeutic potential. This review discusses the biogenesis and classification of EVs, methods for loading RNA into EVs, their advantages as drug carriers over synthetic-lipid-based systems, and the potential applications in treating neurodegenerative diseases, cancer, and viral infections. Notably, EVs show promise in delivering RNA cargo across the blood-brain barrier and targeting tumor cells, offering a safe and effective approach to RNA-based therapy in these contexts.
Collapse
Affiliation(s)
- Muskan Muskan
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Pevindu Abeysinghe
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Riccardo Cecchin
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Heather Branscome
- George Mason University, School of Systems Biology, Fairfax, VA 22030, USA
| | - Kevin V Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
| | - Fatah Kashanchi
- George Mason University, School of Systems Biology, Fairfax, VA 22030, USA.
| |
Collapse
|
3
|
Jiang S, Tian S, Wang P, Liu J, Sun K, Zhou X, Han Y, Shang Y. Native and engineered extracellular vesicles: novel tools for treating liver disease. J Mater Chem B 2024; 12:3840-3856. [PMID: 38532706 DOI: 10.1039/d3tb01921g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Liver diseases are classified as acute liver damage and chronic liver disease, with recurring liver damage causing liver fibrosis and progression to cirrhosis and hepatoma. Liver transplantation is the only effective treatment for end-stage liver diseases; therefore, novel therapies are required. Extracellular vesicles (EVs) are endogenous nanocarriers involved in cell-to-cell communication that play important roles in immune regulation, tissue repair and regeneration. Native EVs can potentially be used for various liver diseases owing to their high biocompatibility, low immunogenicity and tissue permeability and engineered EVs with surface modification or cargo loading could further optimize therapeutic effects. In this review, we firstly introduced the mechanisms and effects of native EVs derived from different cells and tissues to treat liver diseases of different etiologies. Additionally, we summarized the possible methods to facilitate liver targeting and improve cargo-loading efficiency. In the treatment of liver disease, the detailed engineered methods and the latest delivery strategies were also discussed. Finally, we pointed out the limitations and challenges of EVs for future development and applications. We hope that this review could provide a useful reference for the development of EVs and promote the clinical translation.
Collapse
Affiliation(s)
- Shuangshuang Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Siyuan Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Punan Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Keshuai Sun
- Department of Gastroenterology, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, Jiangsu, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
4
|
Hasoglu I, Karatug Kacar A. The therapeutic effects of exosomes the first time isolated from pancreatic islet-derived progenitor cells in the treatment of pancreatic cancer. PROTOPLASMA 2024; 261:281-291. [PMID: 37798610 DOI: 10.1007/s00709-023-01896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Insulinoma is an excessive insulin-released beta cell tumor. Pancreas cancer is one of the deadliest malignant neoplasms. Exosomes are secreted cell membrane vesicles containing a large number of proteins, lipids, and nucleic acids. The aim of this study is to investigate the effects of exosomes on two cell lines of benign and malignant character. For the first time, exosomes were isolated from pancreatic island-derived progenitor cells (PID-PCs) and applied to INS-1 and MiaPaCa-2 cells. In addition, exosomes isolated from PID-PC, MiaPaca-2, and INS-1 cells were characterized in order to compare their sizes with other previously isolated exosomes. Alix, TSG101, CD9, and CD81 were analyzed. The size and concentration of exosomes and the cell viability were detected. The cells were marked with HSP90, HSF-1, Kaspaz-8, Active-Kaspaz-3, Beclin, and p-Bcl-2. The cell cytotoxicity and insulin levels kit were measured. Alix in all exosomes, and PID-PC, MiaPaca-2 cell lysates; TSG101 in PID-PC and MiaPaca-2 cell lysates; CD9 in INS-1 exosomes were detected. The dimensions of isolated exosomes were 103.6 ± 28.6 nm, 100.7 ± 10 nm, and 147.2 ± 12.3 nm for PID-PCs, MiaPaca-2, and INS-1 cells. The cell viability decreased and HSP90 increased in the MiaPaca-2 cells. The HSF-1 was higher in the control MiaPaca-2 cell compared to the control INS-1 cell, and the exosome-treated MiaPaca-2 cell compared to the exosome-treated INS-1 cell. Beclin and p-Bcl-2 were decreased in the exosome-treated MiaPaca-2 cells. The insulin level in the cell lysates increased compared to cell secretion in INS-1 cells. In conclusion, exosomes isolated from the PID-PC caused cell death in the MiaPaca-2 cells in a time- and dose-dependent manner. The IC50 value determined for MiaPaca-2 cells has no effect on cell viability in INS-1 cells, which best mimics pancreatic beta cells and can be used instead of healthy pancreatic beta cells. Isolated exosomes can kill cancer cells without damaging healthy cells.
Collapse
Affiliation(s)
- Imren Hasoglu
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Ayse Karatug Kacar
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
5
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
6
|
Jahangiri B, Khalaj-Kondori M, Asadollahi E, Kian Saei A, Sadeghizadeh M. Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions. J Cell Commun Signal 2023:10.1007/s12079-023-00794-3. [PMID: 37973719 DOI: 10.1007/s12079-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell-cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system. Opposing effects of mesenchymal stem cells-derived exosomes on cancer cells.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Elahe Asadollahi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Lucchetti D, Colella F, Artemi G, Haque S, Sgambato A, Pellicano R, Fagoonee S. Smart nano-sized extracellular vesicles for cancer therapy: Potential theranostic applications in gastrointestinal tumors. Crit Rev Oncol Hematol 2023; 191:104121. [PMID: 37690633 DOI: 10.1016/j.critrevonc.2023.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/27/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Extracellular vesicles (EVs) have gained tremendous interest in the search for next-generation therapeutics for the treatment of a range of pathologies, including cancer, especially due to their small size, biomolecular cargo, ability to mediate intercellular communication, high physicochemical stability, low immunogenicity and biocompatibility. The theranostic potential of EVs have been enhanced by adopting several strategies such as genetic or metabolic engineering, parental cell modification or direct functionalization to incorporate therapeutic compounds into these nanoplatforms. The smart nano-sized EVs indeed offer huge opportunities in the field of cancer, and current research is set at overcoming the existing pitfalls. Smart EVs are already being applied in the clinics despite the challenges faced. We provide, herein, an update on the technologies employed for EV functionalization in order to achieve optimal tumor cell targeting and EV tracking in vivo with bio-imaging modalities, as well as the preclinical and clinical studies making use of these modified EVs, in the context of gastrointestinal tumors.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filomena Colella
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Giulia Artemi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Alessandro Sgambato
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Rinaldo Pellicano
- Gastroenterology Unit, Città della salute e della Scienza Hospital, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| |
Collapse
|
8
|
Shams F, Pourjabbar B, Hashemi N, Farahmandian N, Golchin A, Nuoroozi G, Rahimpour A. Current progress in engineered and nano-engineered mesenchymal stem cells for cancer: From mechanisms to therapy. Biomed Pharmacother 2023; 167:115505. [PMID: 37716113 DOI: 10.1016/j.biopha.2023.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as self-renewing multipotent stromal cells, have been considered promising agents for cancer treatment. A large number of studies have demonstrated the valuable properties of MSC-based treatment, such as low immunogenicity and intrinsic tumor-trophic migratory properties. To enhance the potency of MSCs for therapeutic purposes, equipping MSCs with targeted delivery functions using genetic engineering is highly beneficial. Genetically engineered MSCs can express tumor suppressor agents such as pro-apoptotic, anti-proliferative, anti-angiogenic factors and act as ideal delivery vehicles. MSCs can also be loaded with nanoparticle drugs for increased efficacy and externally moderated targeting. Moreover, exosomes secreted by MSCs have important physiological properties, so they can contribute to intercellular communication and transfer cargo into targeted tumor cells. The precise role of genetically modified MSCs in tumor environments is still up for debate, but the beginning of clinical trials has been confirmed by promising results from preclinical investigations of MSC-based gene therapy for a wide range of malignancies. This review highlights the advanced techniques of engineering/nano-engineering and MSC-derived exosomes in tumor-targeted therapy.
Collapse
Affiliation(s)
- Forough Shams
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Navid Farahmandian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157993313, Iran; Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia 57157993313, Islamic Republic of Iran
| | - Ghader Nuoroozi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wang HC, Yin WX, Jiang M, Han JY, Kuai XW, Sun R, Sun YF, Ji JL. Function and biomedical implications of exosomal microRNAs delivered by parenchymal and nonparenchymal cells in hepatocellular carcinoma. World J Gastroenterol 2023; 29:5435-5451. [PMID: 37900996 PMCID: PMC10600808 DOI: 10.3748/wjg.v29.i39.5435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
Small extracellular vesicles (exosomes) are important components of the tumor microenvironment. They are small membrane-bound vesicles derived from almost all cell types and play an important role in intercellular communication. Exosomes transmit biological molecules obtained from parent cells, such as proteins, lipids, and nucleic acids, and are involved in cancer development. MicroRNAs (miRNAs), the most abundant contents in exosomes, are selectively packaged into exosomes to carry out their biological functions. Recent studies have revealed that exosome-delivered miRNAs play crucial roles in the tumorigenesis, progression, and drug resistance of hepatocellular carcinoma (HCC). In addition, exosomes have great industrial prospects in the diagnosis, treatment, and prognosis of patients with HCC. This review summarized the composition and function of exosomal miRNAs of different cell origins in HCC and highlighted the association between exosomal miRNAs from stromal cells and immune cells in the tumor microenvironment and the progression of HCC. Finally, we described the potential applicability of exosomal miRNAs derived from mesenchymal stem cells in the treatment of HCC.
Collapse
Affiliation(s)
- Hai-Chen Wang
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Xuan Yin
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Meng Jiang
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Jia-Yi Han
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Xing-Wang Kuai
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Rui Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Yu-Feng Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Ju-Ling Ji
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
10
|
Khani-Eshratabadi M, Mousavi SH, Zarrabi M, Motallebzadeh Khanmiri J, Zeinali Bardar Z. Human Umbilical Cord Mesenchymal Stem Cell-Derived Microvesicles Could Induce Apoptosis and Autophagy in Acute Myeloid Leukemia. IRANIAN BIOMEDICAL JOURNAL 2023; 27:247-56. [PMID: 37873637 PMCID: PMC10707811 DOI: 10.61186/ibj.27.5.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 12/17/2023]
Abstract
Background Microvesicles (MV) have been identified as candidate biomarkers for treating acute myeloid leukemia (AML). This study investigated the effects of human umbilical cord-derived mesenchymal stem cell (hUCMSC)-derived MVs on apoptosis and autophagy in the KG-1 leukemic cell line. Methods The hUCMSCs were cultured and characterized by flow cytometry. MVs were isolated by ultracentrifugation, and the concentration was determined using the Bradford method. The characteristics of MVs were confirmed using transmission electron microscopy, flow cytometry, and dynamic light scattering methods. KG-1 cells were treated with the desired concentrations of MVs for 24 h. The apoptosis induction and reactive oxygen species production were evaluated using flow cytometry. RT-PCR was performed to evaluate apoptosis- and autophagy-related genes expression. Results Following tretment of KG-1 cells with 25, 50, and 100 μg/ml concentrations of MVs, the apoptosis rates were 47.85%, 47.15%, and 51.35% (p < 0.0001), and the autophagy-induced ROS levels were 73.9% (p < 0.0002), 84.8% (p < 0.0001), and 85.4% (p < 0.0001), respectively. BAX and ATG7 gene expression increased significantly at all concentrations compared to the control, and this level was higher at 50 μg/ml than that of the other concentrations. In addition, LC3 and Beclin 1 expression increased significantly in a concentration-dependen manner. Conversely, BCL2 expression decreased compared to the control. Conclusion Our findings indicate that hUCMSC-MVs could induce cell death pathways of autophagy and apoptosis in the KG-1 cell lines and exert potent antiproliferative and proapoptotic effects on KG-1 cells in vitro. Therefore, hUCMSC-MVs may be a potential approach for cancer therapy as a novel cell-to-cell communication strategy.
Collapse
Affiliation(s)
- Mohammad Khani-Eshratabadi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jamal Motallebzadeh Khanmiri
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zeinali Bardar
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Dai ZT, Wu YL, Li XR, Liao XH. MKL-1 suppresses ferroptosis by activating system Xc- and increasing glutathione synthesis. Int J Biol Sci 2023; 19:4457-4475. [PMID: 37781038 PMCID: PMC10535709 DOI: 10.7150/ijbs.80666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
Chemotherapy is a standard method in traditional treatment for gastric cancer. It is well known that the anti-tumor effects of chemotherapy are achieved mainly through the direct killing of cancer cells via apoptosis. However, chemotherapy often fails due to drug resistance. Therefore, non-apoptotic cell death induction by ferroptosis has recently been proposed as a new therapeutic modality to ablate cancer. In this study, we determined the role of MKL-1 in ferroptosis. In vitro and in vivo experiments showed that inhibition of MKL-1 expression significantly enhanced cell sensitivity to ferroptosis-inducing agents. It functions by targeting system Xc- to affect the synthesis of GSH in cells. Therefore, we developed an exosome-based therapeutic approach targeting MKL-1, which provides a novel insight into the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhou-Tong Dai
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, College of Life and Health Science, Wuhan University of Science and Technology, Wuhan, China
| | - Yong-Lin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Science, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Hu Z, Zhao Y, Jiang J, Li W, Su G, Li L, Ran J. Exosome-derived miR-142-5p from liver stem cells improves the progression of liver fibrosis by regulating macrophage polarization through CTSB. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37209404 DOI: 10.1002/tox.23813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND This study aims to explore the effect of liver stem cells (LSCs)-derived exosomes and the miR-142a-5p carried by them on the process of fibrosis by regulating macrophages polarization. METHODS In this study, CCL4 was used to establish liver fibrosis model. The morphology and purity of exosomes (EVs) were verified by transmission electron microscopy, western blotting (WB) and nanoparticle tracing analysis (NTA). Real-time quantitative PCR (qRT-PCR), WB and enzyme-linked immunoadsorption (ELISA) were used to detect liver fibrosis markers, macrophage polarization markers and liver injury markers. Histopathological assays were used to verify the liver injury morphology in different groups. The cell co-culture model and liver fibrosis model were constructed to verify the expression of miR-142a-5p and ctsb. RESULTS Immunofluorescence of LSCs markers CK-18, epithelial cell adhesion molecule (EpCam), and AFP showed that these markers were up-regulated in LSCs. In addition, we evaluated the ability of LSCs to excrete EVs by labeling LSCs-EVs with PKH67. We found that CCL4 and EVs were simultaneously treated at 50 and 100 μg doses, and both doses of EVs could reduce the degree of liver fibrosis in mice. We tested markers of M1 or M2 macrophage polarization and found that EVs reduced M1 marker expression and promoted M2 marker expression. Further, ELISA was used to detect the secreted factors related to M1 and M2 in tissue lysates, which also verified the above views. Further analysis showed that the expression of miR-142a-5p increased significantly with the increase of EVs treatment concentration and time. Further, in vitro and in vivo LSCs-EVs regulate macrophage polarization through miR-142a-5p/ctsb pathway and affect the process of liver fibrosis. CONCLUSION Our data suggest that EVs-derived miR-142-5p from LSCs improves the progression of liver fibrosis by regulating macrophage polarization through ctsb.
Collapse
Affiliation(s)
- Zongqiang Hu
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yingpeng Zhao
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Jiang
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wang Li
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Gang Su
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Li
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianghua Ran
- First People's Hospital of Kunming City, Kunming, China
| |
Collapse
|
13
|
Gondaliya P, Sayyed AA, Driscoll J, Patel K, Patel T. Extracellular vesicle RNA signaling in the liver tumor microenvironment. Cancer Lett 2023; 558:216089. [PMID: 36758739 PMCID: PMC9992346 DOI: 10.1016/j.canlet.2023.216089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
The tumor microenvironment (TME) in liver cancers such as hepatocellular cancer (HCC) consists of a complex milieu of liver tissue-resident cells, infiltrated immune cells, and secreted factors that collectively serve to promote tumor growth and progression. Intercellular crosstalk contributes to tissue homeostasis, and perturbations during injury, inflammation and tumorigenesis that are important for tumor progression. Extracellular vesicle (EV)-mediated transfer of a payload of RNA molecules that serve as an intercellular signaling is an important contributor to tissue homeostasis within the TME. Several types of RNA have been implicated in EV-mediated signaling. Biological processes that can be modulated by EV RNA signaling within the liver include tumor growth, invasion, metastasis, angiogenesis, and modulation of the immune cell activities. This mini-review describes the liver TME, and the biological effects of EV RNA-mediated signaling within the liver to highlight the role of EV RNA in intercellular communication.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Adil Ali Sayyed
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Julia Driscoll
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Krishna Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
14
|
Wang S, Li C, Yuan Y, Xiong Y, Xu H, Pan W, Pan H, Zhu Z. Microvesicles as drug delivery systems: A new frontier for bionic therapeutics in cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Mesenchymal stem cell-derived exosomes and non-coding RNAs: Regulatory and therapeutic role in liver diseases. Biomed Pharmacother 2023; 157:114040. [PMID: 36423545 DOI: 10.1016/j.biopha.2022.114040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Liver disease has become a major health problem worldwide due to its high morbidity and mortality. In recent years, a large body of literature has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) are able to play similar physiological roles as mesenchymal stem cells (MSCs). More importantly, there is no immune rejection caused by transplanted cells and the risk of tumor formation, which has become a new strategy for the treatment of various liver diseases. Moreover, accumulating evidence suggests that non-coding RNAs (ncRNAs) are the main effectors by which they exert hepatoprotective effects. Therefore, by searching the databases of Web of Science, PubMed, ScienceDirect, Google Scholar and CNKI, this review comprehensively reviewed the therapeutic effects of MSC-Exo and ncRNAs in liver diseases, including liver injury, liver fibrosis, and hepatocellular carcinoma. According to the data, the therapeutic effects of MSC-Exo and ncRNAs on liver diseases are closely related to a variety of molecular mechanisms, including inhibition of inflammatory response, alleviation of liver oxidative stress, inhibition of apoptosis of hepatocytes and endothelial cells, promotion of angiogenesis, blocking the cell cycle of hepatocellular carcinoma, and inhibition of activation and proliferation of hepatic stellate cells. These important findings will provide a direction and basis for us to explore the potential of MSC-Exo and ncRNAs in the clinical treatment of liver diseases in the future.
Collapse
|
16
|
Ahmadi M, Mahmoodi M, Shoaran M, Nazari-Khanamiri F, Rezaie J. Harnessing Normal and Engineered Mesenchymal Stem Cells Derived Exosomes for Cancer Therapy: Opportunity and Challenges. Int J Mol Sci 2022; 23:ijms232213974. [PMID: 36430452 PMCID: PMC9699149 DOI: 10.3390/ijms232213974] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
There remains a vital necessity for new therapeutic approaches to combat metastatic cancers, which cause globally over 8 million deaths per year. Mesenchymal stem cells (MSCs) display aptitude as new therapeutic choices for cancer treatment. Exosomes, the most important mediator of MSCs, regulate tumor progression. The potential of harnessing exosomes from MSCs (MSCs-Exo) in cancer therapy is now being documented. MSCs-Exo can promote tumor progression by affecting tumor growth, metastasis, immunity, angiogenesis, and drug resistance. However, contradictory evidence has suggested that MSCs-Exo suppress tumors through several mechanisms. Therefore, the exact association between MSCs-Exo and tumors remains controversial. Accordingly, the applications of MSCs-Exo as novel drug delivery systems and standalone therapeutics are being extensively explored. In addition, engineering MSCs-Exo for targeting tumor cells has opened a new avenue for improving the efficiency of antitumor therapy. However, effective implementation in the clinical trials will need the establishment of standards for MSCs-Exo isolation and characterization as well as loading and engineering methods. The studies outlined in this review highlight the pivotal roles of MSCs-Exo in tumor progression and the promising potential of MSCs-Exo as therapeutic drug delivery vehicles for cancer treatment.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Monireh Mahmoodi
- Department of Biology, Faculty of Science, Arak University, Arak 3815688349, Iran
| | - Maryam Shoaran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Fereshteh Nazari-Khanamiri
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Correspondence: ; Tel.: +98-9148548503; Fax: +98-4432222010
| |
Collapse
|
17
|
Feng Y, Chen Q, Lau SY, Tsai BW, Groom K, Barrett CJ, Chamley LW. The Blocking of Integrin-Mediated Interactions with Maternal Endothelial Cells Reversed the Endothelial Cell Dysfunction Induced by EVs, Derived from Preeclamptic Placentae. Int J Mol Sci 2022; 23:13115. [PMID: 36361901 PMCID: PMC9657319 DOI: 10.3390/ijms232113115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 08/31/2023] Open
Abstract
Placental extracellular vesicles (EVs) have increasingly been recognized as a major mediator of feto-maternal communication. However, the cellular and molecular mechanisms of the uptake of placental EVs by recipient cells are still not well-understood. We previously reported that placental EVs target a limited number of organs in vivo. In the current study, we investigated the mechanisms underlying the uptake of placental EVs into target cells. Placental EVs were derived from explant cultures of normal or preeclamptic placentae. The mechanisms underlying the uptake of placental EVs were elucidated, using the phagocytosis or endocytosis inhibitor, trypsin-treatment or integrin-blocking peptides. The endothelial cell activation was studied using the monocyte adhesion assay after the preeclamptic EVs exposure, with and/or without treatment with the integrin blocking peptide, YIGSR. The cellular mechanism of the uptake of the placental EVs was time, concentration and energy-dependent and both the phagocytosis and endocytosis were involved in this process. Additionally, proteins on the surface of the placental EVs, including integrins, were involved in the EV uptake process. Furthermore, inhibiting the uptake of preeclamptic EVs with YIGSR, reduced the endothelial cell activation. The interaction between the placental EVs and the recipient cells is mediated by integrins, and the cellular uptake is mediated by a combination of both phagocytosis and endocytosis.
Collapse
Affiliation(s)
- Yourong Feng
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Sien Yee Lau
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Bridget W. Tsai
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Katie Groom
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | - Carolyn J. Barrett
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Lawrence W. Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Hub for Extracellular Vesicles Investigations (HEVI), University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
18
|
Wu B, Wang Q, Shi X, Jiang M. Targeting Endocytosis and Cell Communications in the Tumor Immune Microenvironment. Cell Commun Signal 2022; 20:161. [PMID: 36258231 PMCID: PMC9578241 DOI: 10.1186/s12964-022-00968-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
The existence of multiple endocytic pathways is well known, and their exact biological effects in tumors have been intensively investigated. Endocytosis can affect the connection between tumor cells and determine the fate of tumor cells. Many relationships between endocytosis and tumor cells have been elucidated, but the mechanism of endocytosis between different types of cells in tumors needs to be explored in greater depth. Endocytic receptors sense the environment and are induced by specific ligands to trigger communication between tumor and immune cells. Crosstalk in the tumor microenvironment can occur through direct contact between cell adhesion molecules or indirectly through exosomes. So a better understanding of the endocytic pathways that control cell adhesion molecules and function is expected to lead to new candidates for cancer treatment. In additional, tumor-derived exosomes may changes immune cell function, which may be a key role for tumors to evade immune detection and response. The overall understanding of exosomes through endocytosis is also expected to bring new candidates for therapeutic regulation of tumor immune microenvironment. In this case, endocytic pathways coordinate cell adhesion molecules and exosomes and can be used as targets in the tumor immune microenvironment for cancer treatment. Video Abstract
Collapse
|
19
|
Liu G, Yin XM. The Role of Extracellular Vesicles in Liver Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1358-1367. [PMID: 35752228 PMCID: PMC9552020 DOI: 10.1016/j.ajpath.2022.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are generated by cells in the form of exosomes, microvesicles, and apoptotic bodies. They can be taken up by neighboring cells, and their contents can have functional impact on the cells that engulf them. As the mediators of intercellular communication, EVs can play important roles in both physiological and pathologic contexts. In addition, early detection of EVs in different body fluids may offer a sensitive diagnostic tool for certain diseases, such as cancer. Furthermore, targeting specific EVs may also become a promising therapeutic approach. This review summarizes the latest findings of EVs in the field of liver research, with a focus on the different contents of the EVs and their impact on liver function and on the development of inflammation, fibrosis, and tumor in the liver. The goal of this review is to provide a succinct account of the various molecules that can mediate the function of EVs so the readers may apply this knowledge to their own research.
Collapse
Affiliation(s)
- Gang Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
20
|
Lee Y, Kim JH. The emerging roles of extracellular vesicles as intercellular messengers in liver physiology and pathology. Clin Mol Hepatol 2022; 28:706-724. [PMID: 35232008 PMCID: PMC9597227 DOI: 10.3350/cmh.2021.0390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles released from almost all cell types. EVs mediate intercellular communication by delivering their surface and luminal cargoes, including nucleic acids, proteins, and lipids, which reflect the pathophysiological conditions of their cellular origins. Hepatocytes and hepatic non-parenchymal cells utilize EVs to regulate a wide spectrum of biological events inside the liver and transfer them to distant organs through systemic circulation. The liver also receives EVs from multiple organs and integrates these extrahepatic signals that participate in pathophysiological processes. EVs have recently attracted growing attention for their crucial roles in maintaining and regulating hepatic homeostasis. This review summarizes the roles of EVs in intrahepatic and interorgan communications under different pathophysiological conditions of the liver, with a focus on chronic liver diseases including nonalcoholic steatohepatitis, alcoholic hepatitis, viral hepatitis, liver fibrosis, and hepatocellular carcinoma. This review also discusses recent progress for potential therapeutic applications of EVs by targeting or enhancing EV-mediated cellular communication for the treatment of liver diseases.
Collapse
Affiliation(s)
- Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea,Corresponding author : Jong-Hoon Kim Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea Tel: +82-2-3290-3007, Fax: +82-2-3290-3040, E-mail:
| |
Collapse
|
21
|
Intercellular communication in the tumour microecosystem: Mediators and therapeutic approaches for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166528. [PMID: 36007784 DOI: 10.1016/j.bbadis.2022.166528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the most common tumours worldwide, is one of the main causes of mortality in cancer patients. There are still numerous problems hindering its early diagnosis, which lead to late patients receiving treatment, and these problems need to be solved urgently. The tumour microecosystem is a complex network system comprising seven parts: the hypoxia niche, immune microenvironment, metabolic microenvironment, acidic niche, innervated niche, mechanical microenvironment, and microbial microenvironment. Intercellular communication is divided into direct contact and indirect communication. Direct contact communication includes gap junctions, tunneling nanotubes, and receptor-ligand interactions, whereas indirect communication includes exosomes, apoptotic vesicles, and soluble factors. Mechanical communication and cytoplasmic exchange are further means of intercellular communication. Intercellular communication mediates the crosstalk between the tumour microecosystem and the host as well as that between cells and cell-free components in the tumour microecosystem, causing changes in the tumour hallmarks of the HCC microecosystem such as changes in tumour proliferation, invasion, apoptosis, angiogenesis, metastasis, inflammatory response, gene mutation, immune escape, metabolic reprogramming, and therapeutic resistance. Here, we review the role of the above-mentioned intercellular communication in the HCC microecosystem and discuss the advantages of targeted intercellular communication in the clinical diagnosis and treatment of HCC. Finally, the current problems and prospects are discussed.
Collapse
|
22
|
Talaat IM, Kim B. A brief glimpse of a tangled web in a small world: Tumor microenvironment. Front Med (Lausanne) 2022; 9:1002715. [PMID: 36045917 PMCID: PMC9421133 DOI: 10.3389/fmed.2022.1002715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
A tumor is a result of stepwise accumulation of genetic and epigenetic alterations. This notion has deepened the understanding of cancer biology and has introduced the era of targeted therapies. On the other hand, there have been a series of attempts of using the immune system to treat tumors, dating back to ancient history, to sporadic reports of inflamed tumors undergoing spontaneous regression. This was succeeded by modern immunotherapies and immune checkpoint inhibitors. The recent breakthrough has broadened the sight to other players within tumor tissue. Tumor microenvironment is a niche or a system orchestrating reciprocal and dynamic interaction of various types of cells including tumor cells and non-cellular components. The output of this complex communication dictates the functions of the constituent elements present within it. More complicated factors are biochemical and biophysical settings unique to TME. This mini review provides a brief guide on a range of factors to consider in the TME research.
Collapse
Affiliation(s)
- Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Byoungkwon Kim
- Department of Pathology, H.H. Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
23
|
Xie GY, Liu CJ, Guo AY. EVAtool: an optimized reads assignment tool for small ncRNA quantification and its application in extracellular vesicle datasets. Brief Bioinform 2022; 23:6651306. [PMID: 35901462 DOI: 10.1093/bib/bbac310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) carrying various small non-coding RNAs (sncRNAs) play a vital roles in cell communication and diseases. Correct quantification of multiple sncRNA biotypes simultaneously in EVs is a challenge due to the short reads (<30 bp) could be mapped to multiple sncRNA types. To address this question, we developed an optimized reads assignment algorithm (ORAA) to dynamically map multi-mapping reads to the sncRNA type with a higher proportion. We integrated ORAA with reads processing steps into EVAtool Python-package (http://bioinfo.life.hust.edu.cn/EVAtool) to quantify sncRNAs, especially for sncRNA-seq from EV samples. EVAtool allows users to specify interested sncRNA types in advanced mode or use default seven sncRNAs (microRNA, small nucleolar RNA, PIWI-interacting RNAs, small nuclear RNA, ribosomal RNA, transfer RNA and Y RNA). To prove the utilities of EVAtool, we quantified the sncRNA expression profiles for 200 samples from cognitive decline and multiple sclerosis. We found that more than 20% of short reads on average were mapped to multiple sncRNA biotypes in multiple sclerosis. In cognitive decline, the proportion of Y RNA is significantly higher than other sncRNA types. EVAtool is a flexible and extensible tool that would benefit to mine potential biomarkers and functional molecules in EVs.
Collapse
Affiliation(s)
- Gui-Yan Xie
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology; Wuhan, 430074, China
| | - Chun-Jie Liu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology; Wuhan, 430074, China
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology; Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
24
|
Psaraki A, Ntari L, Karakostas C, Korrou-Karava D, Roubelakis MG. Extracellular vesicles derived from mesenchymal stem/stromal cells: The regenerative impact in liver diseases. Hepatology 2022; 75:1590-1603. [PMID: 34449901 DOI: 10.1002/hep.32129] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Liver dysfunctions are classified into acute and chronic diseases, which comprise a heterogeneous group of pathological features and a high mortality rate. Liver transplantation remains the gold-standard therapy for most liver diseases, with concomitant limitations related to donor organ shortage and lifelong immunosuppressive therapy. A concept in liver therapy intends to overcome these limitations based on the secreted extracellular vesicles (EVs; microvesicles and exosomes) by mesenchymal stem/stromal cells (MSCs). A significant number of studies have shown that factors released by MSCs could induce liver repair and ameliorate systemic inflammation through paracrine effects. It is well known that this paracrine action is based not only on the secretion of cytokines and growth factors but also on EVs, which regulate pathways associated with inflammation, hepatic fibrosis, integrin-linked protein kinase signaling, and apoptosis. Herein, we extensively discuss the differential effects of MSC-EVs on different liver diseases and on cellular and animal models and address the complex molecular mechanisms involved in the therapeutic potential of EVs. In addition, we cover the crucial information regarding the type of molecules contained in MSC-EVs that can be effective in the context of liver diseases. In conclusion, outcomes on MSC-EV-mediated therapy are expected to lead to an innovative, cell-free, noninvasive, less immunogenic, and nontoxic alternative strategy for liver treatment and to provide important mechanistic information on the reparative function of liver cells.
Collapse
Affiliation(s)
- Adriana Psaraki
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Lydia Ntari
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Christos Karakostas
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Despoina Korrou-Karava
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Maria G Roubelakis
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
- Centre of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| |
Collapse
|
25
|
Weber B, Franz N, Marzi I, Henrich D, Leppik L. Extracellular vesicles as mediators and markers of acute organ injury: current concepts. Eur J Trauma Emerg Surg 2022; 48:1525-1544. [PMID: 33533957 PMCID: PMC7856451 DOI: 10.1007/s00068-021-01607-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Due to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.
Collapse
Affiliation(s)
- Birte Weber
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Niklas Franz
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Multifunctional role of exosomes in viral diseases: From transmission to diagnosis and therapy. Cell Signal 2022; 94:110325. [PMID: 35367363 PMCID: PMC8968181 DOI: 10.1016/j.cellsig.2022.110325] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Efforts to discover antiviral drugs and diagnostic platforms have intensified to an unprecedented level since the outbreak of COVID-19. Nano-sized endosomal vesicles called exosomes have gained considerable attention from researchers due to their role in intracellular communication to regulate the biological activity of target cells through cargo proteins, nucleic acids, and lipids. According to recent studies, exosomes play a vital role in viral diseases including covid-19, with their interaction with the host immune system opening the door to effective antiviral treatments. Utilizing the intrinsic nature of exosomes, it is imperative to elucidate how exosomes exert their effect on the immune system or boost viral infectivity. Exosome biogenesis machinery is hijacked by viruses to initiate replication, spread infection, and evade the immune response. Exosomes, however, also participate in protective mechanisms by triggering the innate immune system. Besides that, exosomes released from the cells can carry a robust amount of information about the diseased state, serving as a potential biomarker for detecting viral diseases. This review describes how exosomes increase virus infectivity, act as immunomodulators, and function as a potential drug delivery carrier and diagnostic biomarker for diseases caused by HIV, Hepatitis, Ebola, and Epstein-Barr viruses. Furthermore, the review analyzes various applications of exosomes within the context of COVID-19, including its management.
Collapse
|
27
|
Wang C, Liu J, Yan Y, Tan Y. Role of Exosomes in Chronic Liver Disease Development and Their Potential Clinical Applications. J Immunol Res 2022; 2022:1695802. [PMID: 35571570 PMCID: PMC9106457 DOI: 10.1155/2022/1695802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicular bodies (40-1000 nm) with double-layer membrane structures released by different cell types into extracellular environments, including apoptosis bodies, microvesicles, and exosomes. Exosomes (30-100 nm) are vesicles enclosed by extracellular membrane and contain effective molecules of secretory cells. They are derived from intracellular multivesicular bodies (MVBs) that fuse with the plasma membrane and release their intracellular vesicles by exocytosis. Research has shown that almost all human cells could secrete exosomes, which have a certain relationship with corresponding diseases. In chronic liver diseases, exosomes release a variety of bioactive components into extracellular spaces, mediating intercellular signal transduction and materials transport. Moreover, exosomes play a role in the diagnosis, treatment, and prognosis of various chronic liver diseases as potential biomarkers and therapeutic targets. Previous studies have found that mesenchymal stem cell-derived exosomes (MSC-ex) could alleviate acute and chronic liver injury and have the advantages of high biocompatibility and low immunogenicity. In this paper, we briefly summarize the role of exosomes in the pathogenesis of different chronic liver diseases and the latest research progresses of MSC-ex as the clinical therapeutic targets.
Collapse
Affiliation(s)
- Chen Wang
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Jiangsu University, Zhenjiang, 212005 Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Jinwen Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Yongmin Yan
- School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Youwen Tan
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Jiangsu University, Zhenjiang, 212005 Jiangsu, China
| |
Collapse
|
28
|
Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications. J Transl Med 2022; 20:125. [PMID: 35287692 PMCID: PMC8919142 DOI: 10.1186/s12967-022-03325-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Nanocarriers as drug/biomolecule delivery systems have been significantly developed during recent decades. Given the stability, reasonable delivery efficiency, and safety of nanocarriers, there are several barriers in the fulfillment of successful clinical application of these delivery systems. These challenges encouraged drug delivery researchers to establish innovative nanocarriers with longer circulation time, high stability, and high compatibility. Exosomes are extracellular nanometer-sized vesicles released through various cells. These vesicles serve as nanocarriers, possessing great potential to overcome some obstacles encountered in gene and drug delivery due to their natural affinity to recipient cells and the inherent capability to shuttle the genes, lipids, proteins, and RNAs between cells. So far, there has been a lot of valuable research on drug delivery by exosomes, but research on RNA delivery, especially mRNA, is very limited. Since mRNA-based vaccines and therapies have recently gained particular prominence in various diseases, it is essential to find a suitable delivery system due to the large size and destructive nature of these nucleic acids. That's why we're going to take a look at the unique features of exosomes and their isolation and loading methods, to embrace this idea that exosome-mediated mRNA-based therapies would be introduced as a very efficient strategy in disease treatment within the near future.
Collapse
Affiliation(s)
- Ala Amiri
- Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, 57147, Urmia, Iran.
| | - Reihaneh Ramezani
- Department of Biomedical Sciences, Women Research Center, Alzahra University, 1993893973, Tehran, Iran.
| |
Collapse
|
29
|
Fan Q, Yu Y, Zhou Y, Zhang S, Wu C. An emerging role of radiation‑induced exosomes in hepatocellular carcinoma progression and radioresistance (Review). Int J Oncol 2022; 60:46. [PMID: 35266016 PMCID: PMC8923655 DOI: 10.3892/ijo.2022.5336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence rates of hepatocellular carcinoma (HCC) worldwide are increasing, and the role of radiotherapy is currently under discussion. Radioresistance is one of the most important challenges in the therapy of HCC compared with other local advanced, recurrent and metastatic cancers. The mechanisms of radioresistance are complex and remain to be fully understood; however, extracellular vesicles have been investigated in recent studies. Exosomes, which are 40- to 150-nm extracellular vesicles released by cancer cells, contain multiple pathogenic components, including proteins, nucleic acids and lipids, and play critical functions in cancer progression. Emerging data indicate a diagnosis potential for exosomes in HCC, since radiation-derived exosomes promote radioresistance. Radiation-based therapy alters the contents and components of exosomes, suggesting that exosomes and their components may serve as prognostic and predictive biomarkers to monitor radiation response. Therefore, understanding the roles and mechanisms of exosomes in HCC progression and radiation response during HCC therapy may increase our knowledge concerning the roles of exosomes in radioresistance, and may lead to novel approaches for HCC prognosis and treatment. The current review summarizes recent studies on exosome involvement in HCC and the molecular changes in exosome components during HCC progression. It also discusses the functions of exosomes in HCC therapy, and highlights the importance of exosomes in HCC progression and resistance for the development of novel therapies.
Collapse
Affiliation(s)
- Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Yue Yu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Yueling Zhou
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Sheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Chunli Wu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
30
|
N V Lakshmi Kavya A, Subramanian S, Ramakrishna S. Therapeutic applications of exosomes in various diseases: A review. BIOMATERIALS ADVANCES 2022; 134:112579. [PMID: 35525729 DOI: 10.1016/j.msec.2021.112579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Exosomes (30-150 nm in diameter) a subset of extracellular vesicles, secreted by mostly all cells, have been gaining enormous recognition from the last decade. In recent times, several studies have included exosomes to design novel therapeutic applications along with their contribution to diagnostic evaluations and pathophysiological processes. Based on cell origin, they show diverse functions and characteristics. This article is classified into several sections that include exosomes biogenesis, isolation methods, and application as therapeutic tools, commercialized exosome products, clinical trials, benefits, and challenges faced in the progress of exosome-dependent therapeutics. This work aims to give a thorough review of the numerous studies where exosomes act as therapeutic tools in the treatment of various disorders including heart, kidney, liver, and lung illnesses. The clinical trials involving exosomes, their advantages, and hazards, and difficulties involved during storage and large-scale production, applications of nanotechnology in exosome research while applying for therapeutic applications, and future directions are summarized.
Collapse
Affiliation(s)
| | - Sundarrajan Subramanian
- Center for Nanofibers and Nanotechnology Lab, Mechanical Engineering, National University of Singapore, Blk E3 05-12, 2 Engineering Drive 3, Singapore 117581, Singapore.
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology Lab, Mechanical Engineering, National University of Singapore, Blk E3 05-12, 2 Engineering Drive 3, Singapore 117581, Singapore.
| |
Collapse
|
31
|
Coleman PS, Parlo RA. Cancer’s Camouflage — Microvesicle Shedding from Cholesterol-Rich Tumor Plasma Membranes Might Blindfold First-Responder Immunosurveillance Strategies. Eur J Cell Biol 2022; 101:151219. [DOI: 10.1016/j.ejcb.2022.151219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022] Open
|
32
|
Nafar S, Nouri N, Alipour M, Fallahi J, Zare F, Tabei SMB. Exosome as a target for cancer treatment. J Investig Med 2022; 70:1212-1218. [PMID: 35210328 DOI: 10.1136/jim-2021-002194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
Abstract
Exosomes are small vesicles covered by a lipid bilayer, ranging in size from 50 nm to 90 nm, secreted by different cell types in the body under normal and pathological conditions. They are surrounded by cell-segregated membrane complexes and play a role in the pathological and physiological environments of target cells by transfer of different molecules such as microRNA (miRNA). Exosomes have been detected in many body fluids, such as in the amniotic fluid, urine, breast milk, blood, saliva, ascites, semen, and bile. They include proteins, lipids, and nucleic acids such as DNA, RNA, and miRNA, which have many functions in target cells under pathological and physiological conditions. They participate in pathological processes such as tumor growth and survival, autoimmunity, neurodegenerative disorders, infectious diseases, inflammation conditions, and others. Biomarkers in exosomes isolated from body fluids have allowed for a more precise and consistent diagnostic method than previous approaches. Exosomes can be used in a variety of intracellular functions, and with advances in molecular techniques they can be used in the treatment and diagnosis of many diseases, including cancer. These vesicles play a significant role in various stages of cancer. Tumor-derived exosomes have an important role in tumor growth, survival, and metastasis. In contrast, the use of stem cells in cancer treatment is a relatively new scientific area. We hope to address targeted use of miRNA-carrying exosomes in cancer therapy in this review paper.
Collapse
Affiliation(s)
- Samira Nafar
- Department of Genetics, Shiraz University of Medical Science, Shiraz, Iran
| | - Negar Nouri
- Student Research Committee, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Maedeh Alipour
- MSc of Hematology and Blood Bank, Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
33
|
Yang L, Wang T, Zhang X, Zhang H, Yan N, Zhang G, Yan R, Li Y, Yu J, He J, Jia S, Wang H. Exosomes derived from human placental mesenchymal stem cells ameliorate myocardial infarction via anti-inflammation and restoring gut dysbiosis. BMC Cardiovasc Disord 2022; 22:61. [PMID: 35172728 PMCID: PMC8851843 DOI: 10.1186/s12872-022-02508-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) represents a severe cardiovascular disease with limited therapeutic agents. This study was aimed to elucidate the role of the exosomes derived from human placental mesenchymal stem cells (PMSCs-Exos) in MI. METHODS PMSCs were isolated and cultured in vitro, with identification by both transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). To further investigate the effects of PMSC-Exos on MI, C57BL/6 mice were randomly divided into Sham group, MI group, and PMSC-Exos group. After 4 weeks of the intervention, cardiac function was assessed by cardiac echocardiography, electrocardiogram and masson trichrome staining; lipid indicators were determined by automatic biochemical instrument; inflammatory cytokines were measured by cytometric bead array (CBA); gut microbiota, microbial metabolites short chain fatty acids (SCFAs) as well as lipopolysaccharide (LPS) were separately investigated by 16S rRNA high throughput sequencing, gas chromatography mass spectrometry (GC-MS) and tachypleus amebocyte lysate kit; transcriptome analysis was used to test the transcriptional components (mRNA\miRNA\cirRNA\lncRNA) of PMSC-Exos. RESULTS We found that human PMSC-Exos were obtained and identified with high purity and uniformity. MI model was successfully established. Compared to MI group, PMSC-Exos treatment ameliorated myocardial fibrosis and left ventricular (LV) remodeling (P < 0.05). Moreover, PMSC-Exos treatment obviously decreased MI molecular markers (AST/BNP/MYO/Tn-I/TC), pro-inflammatory indicators (IL-1β, IL-6, TNF-α, MCP-1), as well as increased HDL in comparison with MI group (all P < 0.05). Intriguingly, PMSC-Exos intervention notably modulated gut microbial community via increasing the relative abundances of Bacteroidetes, Proteobacteria, Verrucomicrobia, Actinobacteria, Akkermansia, Bacteroides, Bifidobacterium, Thauera and Ruminiclostridium, as well as decreasing Firmicutes (all P < 0.05), compared with MI group. Furthermore, PMSC-Exos supplementation increased gut microbiota metabolites SCFAs (butyric acid, isobutyric acid and valeric acid) and decreased LPS in comparison with MI group (all P < 0.05). Correlation analysis indicated close correlations among gut microbiota, microbial SCFAs and inflammation in MI. CONCLUSIONS Our study highlighted that PMSC-Exos intervention alleviated MI via modulating gut microbiota and suppressing inflammation.
Collapse
Affiliation(s)
- Libo Yang
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004 China
| | - Ting Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Hua Zhang
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Ning Yan
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004 China
| | - Guoshan Zhang
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Ru Yan
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004 China
| | - Yiwei Li
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Jingjing Yu
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jun He
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004 China
| | - Shaobin Jia
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Heart Centre and Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004 China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| |
Collapse
|
34
|
Belliveau J, Papoutsakis ET. Extracellular Vesicles Facilitate Large-Scale Dynamic Exchange of Proteins and RNA Among Cultured Chinese Hamster Ovary (CHO) and Human Cells. Biotechnol Bioeng 2022; 119:1222-1238. [PMID: 35120270 DOI: 10.1002/bit.28053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Cells in culture are viewed as unique individuals in a large population communicating through extracellular molecules and, more recently extracellular vesicles (EVs). Our data here paint a different picture: large-scale exchange of cellular material through EVs. To visualize the dynamic production and cellular uptake of EVs, we used correlative confocal microscopy and scanning electron microscopy, as well as flow cytometry to interrogate labeled cells. Using cells expressing fluorescent proteins (GFP, miRFP703) and cells tagged with protein and RNA dyes, we show that Chinese Hamster Ovary (CHO) cells dynamically produce and uptake EVs to exchange proteins and RNAs at a large scale. Applying a simple model to our data, we estimate, for the first time, the per cell specific rates of EV production (68 and 203 microparticles and exosomes, respectively, per day). This EV-mediated massive exchange of cellular material observed in CHO cultures was also observed in cultured human CHRF-288-11 and primary hematopoietic stem and progenitor cells. This study demonstrates an underappreciated massive protein and RNA exchange between cells mediated by EVs spanning cell type, suggesting that the proximity of cells in normal and tumor tissues may also result in prolific exchange of cellular material. This exchange would be expected to homogenize the cell-population cytosol and dynamically regulate cell proliferation and the cellular state. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica Belliveau
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19711.,Delaware Biotechnology Institute,, University of Delaware, Newark, DE, 19711
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19711.,Delaware Biotechnology Institute,, University of Delaware, Newark, DE, 19711.,Department of Biological Sciences, University of Delaware, Newark, DE, 19711
| |
Collapse
|
35
|
Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC. Non-viral vectors for RNA delivery. J Control Release 2022; 342:241-279. [PMID: 35016918 PMCID: PMC8743282 DOI: 10.1016/j.jconrel.2022.01.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
RNA-based therapy is a promising and potential strategy for disease treatment by introducing exogenous nucleic acids such as messenger RNA (mRNA), small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides (ASO) to modulate gene expression in specific cells. It is exciting that mRNA encoding the spike protein of COVID-19 (coronavirus disease 2019) delivered by lipid nanoparticles (LNPs) exhibits the efficient protection of lungs infection against the virus. In this review, we introduce the biological barriers to RNA delivery in vivo and discuss recent advances in non-viral delivery systems, such as lipid-based nanoparticles, polymeric nanoparticles, N-acetylgalactosamine (GalNAc)-siRNA conjugate, and biomimetic nanovectors, which can protect RNAs against degradation by ribonucleases, accumulate in specific tissue, facilitate cell internalization, and allow for the controlled release of the encapsulated therapeutics.
Collapse
Affiliation(s)
- Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiao-Yu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiang-Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lin-Xia Jiang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China..
| |
Collapse
|
36
|
Nimitrungtawee N, Inmutto N, Chattipakorn SC, Chattipakorn N. Extracellular vesicles as a new hope for diagnosis and therapeutic intervention for hepatocellular carcinoma. Cancer Med 2021; 10:8253-8271. [PMID: 34708589 PMCID: PMC8633266 DOI: 10.1002/cam4.4370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer with a high mortality rate. Early diagnosis and treatment before tumor progression into an advanced stage is ideal. The current diagnosis of HCC is mainly based on imaging modalities such as ultrasound, computed tomography, and magnetic resonance imaging. These methods have some limitations including diagnosis in the case of very small tumors with atypical imaging patterns. Extracellular vesicles (EVs) are nanosized vesicles which have been shown to act as an important vector for cell-to-cell communication. In the past decade, EVs have been investigated with regard to their roles in HCC formation. Since these EVs contain biomolecular cargo such as nucleic acid, lipids, and proteins, it has been proposed that they could be a potential source of tumor biomarkers and a vector for therapeutic cargo. In this review, reports on the roles of HCC-derived EVs in tumorigenesis, and clinical investigations using circulating EVs as a biomarker for HCC and their potential diagnostic roles have been comprehensively summarized and discussed. In addition, findings from in vitro and in vivo reports investigating the potential roles of EVs as therapeutic interventions are also presented. These findings regarding the potential benefits of EVs will encourage further investigations and may allow us to devise novel strategies using EVs in the early diagnosis as well as for treatment of HCC in the future.
Collapse
Affiliation(s)
- Natthaphong Nimitrungtawee
- Diagnostic Radiology UnitDepartment of RadiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Nakarin Inmutto
- Diagnostic Radiology UnitDepartment of RadiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
37
|
Zhang F, Guo J, Zhang Z, Qian Y, Wang G, Duan M, Zhao H, Yang Z, Jiang X. Mesenchymal stem cell-derived exosome: A tumor regulator and carrier for targeted tumor therapy. Cancer Lett 2021; 526:29-40. [PMID: 34800567 DOI: 10.1016/j.canlet.2021.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that have the ability to differentiate into multiple cell types. Several studies have shown that exosomes secreted by MSCs (MSCs-Exo) play an important role in tumor growth, angiogenesis, invasion, and drug resistance. However, contradictory results have suggested that MSCs-Exo can also suppress tumors through specific mechanisms, such as regulating immune responses and intercellular signaling. Consequently, the relationship between MSCs-Exo and tumors remains controversial. However, it is undeniable that exosomes, as natural vesicles, can be excellent drug carriers and show promise for application in targeted tumor therapy. Here, we review the current knowledge regarding the involvement of MSCs-Exo in tumor progression and their potential as drug delivery systems in targeted therapy. We argue that MSCs-Exo can be used as safe carriers of antitumor drugs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinshuai Guo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhenghou Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yiping Qian
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Guang Wang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meiqi Duan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaofeng Jiang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
38
|
Driscoll J, Wehrkamp C, Ota Y, Thomas JN, Yan IK, Patel T. Biological Nanotherapeutics for Liver Disease. Hepatology 2021; 74:2863-2875. [PMID: 33825210 DOI: 10.1002/hep.31847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of biological nano-sized vesicles that are released from cells and contribute to intercellular communication. Emerging knowledge about their biogenesis, composition, release, and uptake has resulted in broad interest in elucidating their potential roles in disease pathophysiology. The distinct biological properties of these biological nanoparticles emphasize several appealing advantages for potential therapeutic applications compared with the use of synthetic nanoparticles. When administered systemically, EVs are taken up and sequestered within the liver, further emphasizing opportunities for therapeutic use. Consequently, there is growing interest in their use for liver diseases. EVs can be used directly as therapeutics, and several studies have highlighted the intrinsic therapeutic properties of mesenchymal stem cell-derived EVs for chronic and acute liver diseases. Alternatively, EVs can be modified to facilitate their use for the delivery of therapeutic cargo. In this review, we discuss the cellular sources of EV, provide a concise overview of their potential use in diverse processes, and outline several promising applications for the use of EV-based therapeutics for liver diseases. The use of EV-based therapeutics provides a viable approach to target hepatic pathophysiology.
Collapse
Affiliation(s)
- Julia Driscoll
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| | - Cody Wehrkamp
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| | - Yu Ota
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| | | | - Irene K Yan
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
39
|
Zheng W, Ji D, Zhou Y, Yu L, Huang P, Zheng Y, Meng N, Wang H, Bai X, Huang Z, Chen W, Yam JWP, Xu Y, Cui Y. Exosomal non-coding RNAs in Hepatobiliary Cancer: A Rising Star. Mol Cancer Ther 2021; 20:1777-1788. [PMID: 34376575 DOI: 10.1158/1535-7163.mct-21-0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Hepatobiliary cancers are a heterogeneous group of malignancies with a dismal prognosis. Despite intensive research efforts focused on these tumors, methods for early diagnosis and effective targeted therapies are still lacking. Exosomes, released by most cells, exist in all kinds of body fluids and play an important role in cell-to-cell communication. They are small membranous vesicles containing biological molecules, such as noncoding RNAs (ncRNAs), which are not translated into proteins, but they exert effects on the regulation of gene transcription and translation. There is growing evidence for the essential roles of ncRNAs in exosomes in both physiological and pathological conditions of hepatobiliary cancers. They have been identified as sensitive diagnostic biomarkers as well as potential therapeutic targets. The present review discusses recent findings in the crosstalk between hepatobiliary cancers cells and the surrounding cells of the microenvironment and discuss their potential clinical usage.
Collapse
Affiliation(s)
- Wangyang Zheng
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Daolin Ji
- Forth Affiliated Hospital of Harbin Medical University
| | - Yongxu Zhou
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Liang Yu
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Peng Huang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Yuling Zheng
- Department of Pediatric, Second Affiliated Hospital of Harbin Medical University
| | - Nanfeng Meng
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Hang Wang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Xue Bai
- Department of Renal Cancer and Melanoma/Cancer Center, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute/Massachusetts General Hospital
| | - ZiYue Huang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Wangming Chen
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Judy W P Yam
- Department of Pathology, University of Hong Kong
| | - Yi Xu
- Department of Pathology, University of Hong Kong
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| |
Collapse
|
40
|
Lee J, Kim SR, Lee C, Jun YI, Bae S, Yoon YJ, Kim OY, Gho YS. Extracellular vesicles from in vivo liver tissue accelerate recovery of liver necrosis induced by carbon tetrachloride. J Extracell Vesicles 2021; 10:e12133. [PMID: 34401049 PMCID: PMC8357636 DOI: 10.1002/jev2.12133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles composed of proteolipid bilayers carrying various molecular signatures of the cells. As mediators of intercellular communications, EVs have gained great attention as new therapeutic agents in the field of nanomedicine. Therefore, many studies have explored the roles of cell-derived EVs isolated from cultured hepatocytes or stem cells as inducer of liver proliferation and regeneration under various pathological circumstances. However, study investigating the role of EVs directly isolated from liver tissue has not been performed. Herein, to understand the pathophysiological role and to investigate the therapeutic potential of in vivo liver EVs, we isolated EVs from both normal and carbon tetrachloride (CCl4)-induced damaged in vivo liver tissues. The in vivo EVs purified from liver tissues display typical features of EVs including spherical morphology, nano-size, and enrichment of tetraspanins. Interestingly, administration of both normal and damaged liver EVs significantly accelerated the recovery of liver tissue from CCl4-induced hepatic necrosis. This restorative action was through the induction of hepatocyte growth factor at the site of the injury. These results suggest that not only normal liver EVs but also damaged liver EVs play important pathophysiological roles of maintaining homeostasis after tissue damage. Our study, therefore, provides new insight into potentially developing in vivo EV-based therapeutics for preventing and treating liver diseases.
Collapse
Affiliation(s)
- Jaemin Lee
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Sae Rom Kim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Changjin Lee
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Ye In Jun
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Seoyoon Bae
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Yae Jin Yoon
- Genome Editing Research CentreKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Oh Youn Kim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
- Department of MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Yong Song Gho
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| |
Collapse
|
41
|
Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 2021; 173:252-278. [PMID: 33798644 DOI: 10.1016/j.addr.2021.03.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are submicron cell-secreted structures containing proteins, nucleic acids and lipids. EVs can functionally transfer these cargoes from one cell to another to modulate physiological and pathological processes. Due to their presumed biocompatibility and capacity to circumvent canonical delivery barriers encountered by synthetic drug delivery systems, EVs have attracted considerable interest as drug delivery vehicles. However, it is unclear which mechanisms and molecules orchestrate EV-mediated cargo delivery to recipient cells. Here, we review how EV properties have been exploited to improve the efficacy of small molecule drugs. Furthermore, we explore which EV surface molecules could be directly or indirectly involved in EV-mediated cargo transfer to recipient cells and discuss the cellular reporter systems with which such transfer can be studied. Finally, we elaborate on currently identified cellular processes involved in EV cargo delivery. Through these topics, we provide insights in critical effectors in the EV-cell interface which may be exploited in nature-inspired drug delivery strategies.
Collapse
|
42
|
Li S, Bi Y, Duan Z, Chang Y, Hong F, Chen Y. Stem cell transplantation for treating liver diseases: progress and remaining challenges. Am J Transl Res 2021; 13:3954-3966. [PMID: 34149992 PMCID: PMC8205777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
With the development of regenerative medicine, various stem cells are increasingly considered for treating liver diseases. Various stem cells have been reported to play an essential role in liver recovery, and studies have verified the preliminary effectiveness and safety of these therapies. Stem cell-based therapies will emerge as an effective treatment strategy for liver diseases. Thus, the research progress and challenges to the related stem cells were reviewed, namely the classification of stem cells, cell culture, transplantation, cell tracing in the body, therapies for various liver diseases.
Collapse
Affiliation(s)
- Shanshan Li
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical UniversityBeijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment ResearchBeijing 100069, China
| | - Yanzhen Bi
- Department of Infectious Disease, Qingdao Municipal HospitalQingdao 266011, Shandong, China
| | - Zhongping Duan
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical UniversityBeijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment ResearchBeijing 100069, China
| | - Yongkai Chang
- Department of Neurosurgery, Fuxing Hospital, Capital Medical UniversityBeijing 100038, China
| | - Feng Hong
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical UniversityJining 272000, Shandong, China
| | - Yu Chen
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical UniversityBeijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment ResearchBeijing 100069, China
| |
Collapse
|
43
|
Sorop A, Constantinescu D, Cojocaru F, Dinischiotu A, Cucu D, Dima SO. Exosomal microRNAs as Biomarkers and Therapeutic Targets for Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22094997. [PMID: 34066780 PMCID: PMC8125948 DOI: 10.3390/ijms22094997] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second most common cause of cancer-related death globally. This type of liver cancer is frequently detected at a late stage by current biomarkers because of the high clinical and biological heterogeneity of HCC tumours. From a plethora of molecules and cellular compounds, small nanoparticles with an endosomal origin are valuable cancer biomarkers or cargos for novel treatments. Despite their small sizes, in the range of 40–150 nm, these particles are delimited by a lipid bilayer membrane with a specific lipid composition and carry functional information—RNA, proteins, miRNAs, long non-coding RNAs (lncRNAs), or DNA fragments. This review summarizes the role of exosomal microRNA (miRNA) species as biomarkers in HCC therapy. After we briefly introduce the exosome biogenesis and the methods of isolation and characterization, we discuss miRNA’s correlation with the diagnosis and prognosis of HCC, either as single miRNA species, or as specific panels with greater clinical impact. We also review the role of exosomal miRNAs in the tumourigenic process and in the cell communication pathways through the delivery of cargos, including proteins or specific drugs.
Collapse
Affiliation(s)
- Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Diana Constantinescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
| | - Florentina Cojocaru
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Anca Dinischiotu
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Dana Cucu
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
- Correspondence: ; Tel.: +40-728-257-607
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, 022238 Bucharest, Romania
| |
Collapse
|
44
|
Bruno S, Herrera Sanchez MB, Chiabotto G, Fonsato V, Navarro-Tableros V, Pasquino C, Tapparo M, Camussi G. Human Liver Stem Cells: A Liver-Derived Mesenchymal Stromal Cell-Like Population With Pro-regenerative Properties. Front Cell Dev Biol 2021; 9:644088. [PMID: 33981703 PMCID: PMC8107725 DOI: 10.3389/fcell.2021.644088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Human liver stem cells (HLSCs) were described for the first time in 2006 as a new stem cell population derived from healthy human livers. Like mesenchymal stromal cells, HLSCs exhibit multipotent and immunomodulatory properties. HLSCs can differentiate into several lineages under defined in vitro conditions, such as mature hepatocytes, osteocytes, endothelial cells, and islet-like cell organoids. Over the years, HLSCs have been shown to contribute to tissue repair and regeneration in different in vivo models, leading to more than five granted patents and over 15 peer reviewed scientific articles elucidating their potential therapeutic role in various experimental pathologies. In addition, HLSCs have recently completed a Phase 1 study evaluating their safety post intrahepatic injection in infants with inherited neonatal onset hyperammonemia. Even though a lot of progress has been made in understanding HLSCs over the past years, some important questions regarding the mechanisms of action remain to be elucidated. Among the mechanisms of interaction of HLSCs with their environment, a paracrine interface has emerged involving extracellular vesicles (EVs) as vehicles for transferring active biological materials. In our group, the EVs derived from HLSCs have been studied in vitro as well as in vivo. Our attention has mainly been focused on understanding the in vivo ability of HLSC–derived EVs as modulators of tissue regeneration, inflammation, fibrosis, and tumor growth. This review article aims to discuss in detail the role of HLSCs and HLSC-EVs in these processes and their possible future therapeutic applications.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Valentina Fonsato
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Victor Navarro-Tableros
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Chiara Pasquino
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
45
|
Microvesicles - promising tiny players' of cancer stem cells targeted liver cancer treatments: The interesting interactions and therapeutic aspects. Pharmacol Res 2021; 169:105609. [PMID: 33852962 DOI: 10.1016/j.phrs.2021.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
Liver cancer is one of the most malignant cancers worldwide with poor prognosis. Intracellular mediators like microvesicles (MVs) and cancer stem cells (CSCs) are considered as potential candidates in liver cancer progression. CSCs receive stimuli from the tumor microenvironment to initiate tumor formation in which it's secreted MVs play a noteworthy role. The phenotypic conversion of tumor cells during epithelial-to-mesenchymal transition (EMT) is a key step in tumor invasion and metastasis which indicates that the diverse cell populations within the primary tumor are in a dynamic balance and can be regulated by cell to cell communication via secreted microvesicles. Thus, in this review, we aim to highlight the evidences that suggest CSCs are crucial for liver cancer development where the microvesicles plays an important part in the maintenance of its stemness properties. In addition, we summarize the existing evidences that support the concept of microvesicles, the tiny particles have a big role behind the rare immortal CSCs which controls the tumor initiation, propagation and metastasis in liver cancer. Identifying interactions between CSCs and microvesicles may offer new insights into precise anti-cancer therapies in the future.
Collapse
|
46
|
Hosseini M, Roshangar L, Raeisi S, Ghahremanzadeh K, Negargar S, Tarmahi V, Hosseini V, Raeisi M, Rahimi E, Ebadi Z. The Therapeutic Applications of Exosomes in Different Types of Diseases: A Review. Curr Mol Med 2021; 21:87-95. [PMID: 32520687 DOI: 10.2174/1566524020666200610164743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
Exosomes are nano-sized vesicles secreted by nearly all cells and have received massive attention recently. In addition to their roles in pathophysiological processes and diagnostic evaluations, recently, several studies have applied exosomes to design novel therapeutic applications. Exosomes can be derived from a variety of cells and tissues and based on the source, they can carry different native contents such as DNAs, non-coding small RNAs, mRNAs, and proteins. They can also be engineered by adding desirable agents including specific biomolecules or drugs. Both forms can be therapeutically used for delivering their cargoes to the target cells and desirably alter their functions. The present study aimed to provide a comprehensive review of the various studies which applied exosomes as a therapeutic tool in the treatment of different types of diseases including cancer, cardiovascular, neurologic, psychiatric, liver, and kidney diseases.
Collapse
Affiliation(s)
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Ghahremanzadeh
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Negargar
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Tarmahi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Rahimi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zakiyeh Ebadi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Zivko C, Fuhrmann G, Luciani P. Liver-derived extracellular vesicles: A cell by cell overview to isolation and characterization practices. Biochim Biophys Acta Gen Subj 2021; 1865:129559. [DOI: 10.1016/j.bbagen.2020.129559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
|
48
|
Ding J, Wang J, Chen J. Exosomes as therapeutic vehicles in liver diseases. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:735. [PMID: 33987433 PMCID: PMC8106083 DOI: 10.21037/atm-20-5422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The diagnosis and treatment of various liver diseases have progressed greatly over the years, but clinical outcomes are still not satisfying. New research on the mechanisms and application thereof may effectuate positive changes. Exosomes are membrane-derived nanovesicles ranging in size from 40 to 160 nm and are released by a diversity of cells. They contain a variety of cargo, including lipids, proteins, coding RNAs, and noncoding RNAs. Recent studies have recognized exosomes as intercellular communication agents, which play important roles in physiological or biological processes in acute or chronic liver disorders by horizontal transferring of genetic bioinformation from donor cells to neighboring or distal target cells. In the hope that exosomes can potentially be used as vehicles for clinical intervention, this review aims to focus on the roles of exosomes and their cargo in the field of various liver disorders, including virus-related liver diseases, alcoholic liver diseases (ALD), nonalcoholic fatty liver diseases (NAFLD), and liver cancer. In addition, many studies have indicated that mesenchymal stem cell (MSC)-derived exosomes or engineered MSC-derived exosomes can also exert hepatoprotection, antioxidation, or enhance drug sensitivity on corresponding liver diseases with the advantage of low immunogenicity and high biocompatibility. Overall, exosomes are expected to serve as an important therapeutic tool for various liver diseases. However, there are still many problems that need to be resolved by further research and a greater body of evidence before exosomes are ready for clinical application.
Collapse
Affiliation(s)
- Jingyi Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
49
|
Tian Z, Liang G, Cui K, Liang Y, Wang Q, Lv S, Cheng X, Zhang L. Insight Into the Prospects for RNAi Therapy of Cancer. Front Pharmacol 2021; 12:644718. [PMID: 33796026 PMCID: PMC8007863 DOI: 10.3389/fphar.2021.644718] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi), also known as gene silencing, is a biological process that prevents gene expression in certain diseases such as cancer. It can be used to improve the accuracy, efficiency, and stability of treatments, particularly genetic therapies. However, challenges such as delivery of oligonucleotide drug to less accessible parts of the body and the high incidence of toxic side effects are encountered. It is therefore imperative to improve their delivery to target sites and reduce their harmful effects on noncancerous cells to harness their full potential. In this study, the role of RNAi in the treatment of COVID-19, the novel coronavirus disease plaguing many countries, has been discussed. This review aims to ascertain the mechanism and application of RNAi and explore the current challenges of RNAi therapy by identifying some of the cancer delivery systems and providing drug information for their improvement. It is worth mentioning that delivery systems such as lipid-based delivery systems and exosomes have revolutionized RNAi therapy by reducing their immunogenicity and improving their cellular affinity. A deeper understanding of the mechanism and challenges associated with RNAi in cancer therapy can provide new insights into RNAi drug development.
Collapse
Affiliation(s)
- Zhili Tian
- Institute of Molecular Medicine, Henan University, Kaifeng, China.,School of Clinical Medical Sciences, Henan University, Kaifeng, China
| | - Guohui Liang
- Institute of Molecular Medicine, Henan University, Kaifeng, China.,School of Clinical Medical Sciences, Henan University, Kaifeng, China
| | - Kunli Cui
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yayu Liang
- Institute of Molecular Medicine, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Qun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan University, Kaifeng, China
| | - Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
50
|
Coleman PS, Parlo RA. Warburg's Ghost-Cancer's Self-Sustaining Phenotype: The Aberrant Carbon Flux in Cholesterol-Enriched Tumor Mitochondria via Deregulated Cholesterogenesis. Front Cell Dev Biol 2021; 9:626316. [PMID: 33777935 PMCID: PMC7994618 DOI: 10.3389/fcell.2021.626316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Interpreting connections between the multiple networks of cell metabolism is indispensable for understanding how cells maintain homeostasis or transform into the decontrolled proliferation phenotype of cancer. Situated at a critical metabolic intersection, citrate, derived via glycolysis, serves as either a combustible fuel for aerobic mitochondrial bioenergetics or as a continuously replenished cytosolic carbon source for lipid biosynthesis, an essentially anaerobic process. Therein lies the paradox: under what conditions do cells control the metabolic route by which they process citrate? The Warburg effect exposes essentially the same dilemma—why do cancer cells, despite an abundance of oxygen needed for energy-generating mitochondrial respiration with citrate as fuel, avoid catabolizing mitochondrial citrate and instead rely upon accelerated glycolysis to support their energy requirements? This review details the genesis and consequences of the metabolic paradigm of a “truncated” Krebs/TCA cycle. Abundant data are presented for substrate utilization and membrane cholesterol enrichment in tumors that are consistent with criteria of the Warburg effect. From healthy cellular homeostasis to the uncontrolled proliferation of tumors, metabolic alterations center upon the loss of regulation of the cholesterol biosynthetic pathway. Deregulated tumor cholesterogenesis at the HMGR locus, generating enhanced carbon flux through the cholesterol synthesis pathway, is an absolute prerequisite for DNA synthesis and cell division. Therefore, expedited citrate efflux from cholesterol-enriched tumor mitochondria via the CTP/SLC25A1 citrate transporter is fundamental for sustaining the constant demand for cytosolic citrate that fuels the elevated flow of carbons from acetyl-CoA through the deregulated pathway of cholesterol biosynthesis.
Collapse
Affiliation(s)
| | - Risa A Parlo
- Kingsborough Community College, Brooklyn, NY, United States
| |
Collapse
|