1
|
Jatana S, Abbadi A, West GA, Ponti AK, Braga-Neto MB, Smith JL, Marino-Melendez A, Willard B, Nagy LE, Motte CDL. Hyperglycemic environments directly compromise intestinal epithelial barrier function in an organoid model and hyaluronan (∼35 kDa) protects via a layilin dependent mechanism. Matrix Biol 2024; 133:116-133. [PMID: 39187208 DOI: 10.1016/j.matbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Metabolic syndrome and diabetes in obese individuals are strong risk factors for development of inflammatory bowel disease (IBD) and colorectal cancer. The pathogenic mechanisms of low-grade metabolic inflammation, including chronic hyperglycemic stress, in disrupting gut homeostasis are poorly understood. In this study, we sought to understand the impact of a hyperglycemic environment on intestinal barrier integrity and the protective effects of small molecular weight (35 kDa) hyaluronan on epithelial barrier function. METHODS Intestinal organoids derived from mouse colon were grown in normal glucose media (5 mM) or high glucose media (25 mM) to study the impact of hyperglycemic stress on the intestinal barrier. Additionally, organoids were pretreated with 35 kDa hyaluronan (HA35) to investigate the effect of hyaluronan on epithelial barrier under high glucose stress. Immunoblotting as well as confocal imaging was used to understand changes in barrier proteins, quantitative as well as spatial distribution, respectively. Alterations in barrier function were measured using trans-epithelial electrical resistance and fluorescein isothiocyanate flux assays. Untargeted proteomics analysis was performed to elucidate mechanisms by which HA35 exerts a protective effect on the barrier. Intestinal organoids derived from receptor knockout mice specific to various HA receptors were utilized to understand the role of HA receptors in barrier protection under high glucose conditions. RESULTS We found that high glucose stress decreased the protein expression as well as spatial distribution of two key barrier proteins, zona occludens-1 (ZO-1) and occludin. HA35 prevented the degradation or loss of ZO-1 and maintained the spatial distribution of both ZO-1 and occludin under hyperglycemic stress. Functionally, we also observed a protective effect of HA35 on the epithelial barrier under high glucose conditions. We found that HA receptor, layilin, was involved in preventing barrier protein loss (ZO-1) as well as maintaining spatial distribution of ZO-1 and occludin. Additionally, proteomics analysis showed that cell death and survival was the primary pathway upregulated in organoids treated with HA35 under high glucose stress. We found that XIAP associated factor 1 (Xaf1) was modulated by HA35 thereby regulating apoptotic cell death in the intestinal organoid system. Finally, we observed that spatial organization of both focal adhesion kinase (FAK) as well as F-actin was mediated by HA35 via layilin. CONCLUSION Our results highlight the impact of hyperglycemic stress on the intestinal barrier function. This is of clinical relevance, as impaired barrier function has been observed in individuals with metabolic syndrome. Additionally, we demonstrate barrier protective effects of HA35 through its receptor layilin and modulation of cellular apoptosis under high glucose stress.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Amina Abbadi
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - András K Ponti
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Manuel B Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jordyn L Smith
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Armando Marino-Melendez
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Laura E Nagy
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Carol de la Motte
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Huang Y, Lang A, Yang S, Shahid MS, Yuan J. The Combined Use of Cinnamaldehyde and Vitamin C Is Beneficial for Better Carcass Character and Intestinal Health of Broilers. Int J Mol Sci 2024; 25:8396. [PMID: 39125968 PMCID: PMC11313147 DOI: 10.3390/ijms25158396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The use of cinnamaldehyde and Vitamin C can improve immunity and intestinal health. A two-way factorial design was employed to investigate the main and interactive effects of cinnamaldehyde and vitamin C on the growth, carcass, and intestinal health of broiler chickens. A total of 288 one-day-old female Arbor Acres broiler chicks were randomly distributed among four treatment groups, consisting of six replicate cages with 12 birds each. Four treatments were basal diet or control (CON), supplemental cinnamaldehyde (CA) 300 g/ton (g/t), vitamin C (VC) 300 g/t, and cinnamaldehyde 300 g/t, and vitamin C 300 g/t (CA + VC), respectively. The results showed that supplemental CA did not affect the growth performance or slaughter performance of broilers at 21 days (d), 42 days (d), and 1-42 days (d); however, it could improve intestinal barrier function at 42 d of age and reduce the mRNA expression of inflammatory factors in the intestine at 21 d and 42 d of age. Supplemental VC showed a trend towards increasing body weight gain (BWG) at 21 d (p = 0.094), increased breast muscle rate (at 21-d 5.33%, p < 0.05 and at 42-d 7.09%, p = 0.097), and decreased the abdominal fat (23.43%, p < 0.05) and drip loss (20.68%, p < 0.05) at 42-d. Moreover, VC improves intestinal morphology and intestinal barrier function and maintains a balanced immune response. The blend of CA and VC significantly upregulated the mRNA expression of myeloid differentiation factor 88 (MyD-88) in the intestine at 21 d of age, the mRNA expression of catalase (CAT), Occludin, Claudin-1, Mucin-2, nuclear factor-kappa B (NF-κB) and toll-like receptor 4 (TLR-4) in the intestine at 42 d of age (p < 0.01), and downregulated the mRNA expression of interleukin 10 (IL-10), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α) in the intestine at 21-d and 42-d of age, and interleukin-1 beta (IL-1β) mRNA in intestine at 42 d of age (p < 0.01). This study suggested that the combination of CA and VC had the potential to regulate intestinal health and result in better carcass character of broilers.
Collapse
Affiliation(s)
| | | | | | | | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (A.L.); (S.Y.); (M.S.S.)
| |
Collapse
|
3
|
Steiner K, Humpel C. Beta-Amyloid Enhances Vessel Formation in Organotypic Brain Slices Connected to Microcontact Prints. Biomolecules 2023; 14:3. [PMID: 38275744 PMCID: PMC10812928 DOI: 10.3390/biom14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
In Alzheimer's disease, the blood-brain barrier breakdown, blood vessel damage and re-organization are early events. Deposits of the small toxic peptide beta-amyloid (Aβ) cause the formation of extracellular plaques and accumulate in vessels disrupting the blood flow but may also play a role in blood clotting. In the present study, we aim to explore the impact of Aβ on the migration of endothelial cells and subsequent vessel formation. We use organotypic brain slices of postnatal day 10 wildtype mice (C57BL/6) and connect them to small microcontact prints (µCPs) of collagen. Our data show that laminin-positive endothelial cells migrate onto collagen µCPs, but without any vessel formation after 4 weeks. When the µCPs are loaded with human Aβ40, (aggregated) human Aβ42 and mouse Aβ42 peptides, the number and migration distance of endothelial cells are significantly reduced, but with a more pronounced subsequent vessel formation. The vessel formation is verified by zonula occludens (ZO)-1 and -2 stainings and confocal microscopy. In addition, the vessel formation is accompanied by a stronger GFAP-positive astroglial formation. Finally, we show that vessels can grow towards convergence when two opposed slices are connected via microcontact-printed lanes. In conclusion, our data show that Aβ promotes vessel formation, and organotypic brain slices connected to collagen µCPs provide a potent tool to study vessel formation.
Collapse
Affiliation(s)
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
4
|
Genet N, Genet G, Chavkin NW, Paila U, Fang JS, Vasavada HH, Goldberg JS, Acharya BR, Bhatt NS, Baker K, McDonnell SP, Huba M, Sankaranarayanan D, Ma GZM, Eichmann A, Thomas JL, Ffrench-Constant C, Hirschi KK. Connexin 43-mediated neurovascular interactions regulate neurogenesis in the adult brain subventricular zone. Cell Rep 2023; 42:112371. [PMID: 37043357 PMCID: PMC10564973 DOI: 10.1016/j.celrep.2023.112371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
The subventricular zone (SVZ) is the largest neural stem cell (NSC) niche in the adult brain; herein, the blood-brain barrier is leaky, allowing direct interactions between NSCs and endothelial cells (ECs). Mechanisms by which direct NSC-EC interactions in the adult SVZ control NSC behavior are unclear. We found that Cx43 is highly expressed by SVZ NSCs and ECs, and its deletion in either leads to increased NSC proliferation and neuroblast generation, suggesting that Cx43-mediated NSC-EC interactions maintain NSC quiescence. This is further supported by single-cell RNA sequencing and in vitro studies showing that ECs control NSC proliferation by regulating expression of genes associated with NSC quiescence and/or activation in a Cx43-dependent manner. Cx43 mediates these effects in a channel-independent manner involving its cytoplasmic tail and ERK activation. Such insights inform adult NSC regulation and maintenance aimed at stem cell therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Gael Genet
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Nicholas W Chavkin
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Umadevi Paila
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jennifer S Fang
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hema H Vasavada
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joshua S Goldberg
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Bipul R Acharya
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Neha S Bhatt
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kasey Baker
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA; Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Stephanie P McDonnell
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mahalia Huba
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Danya Sankaranarayanan
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Gerry Z M Ma
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jean-Leon Thomas
- Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Karen K Hirschi
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
5
|
Huang J, Ge S, Luo D, Du R, Wang Y, Liu W, Wang G, Yin T. The endothelium permeability after bioresorbable scaffolds implantation caused by the heterogeneous expression of tight junction proteins. Mater Today Bio 2022; 16:100410. [PMID: 36090609 PMCID: PMC9450163 DOI: 10.1016/j.mtbio.2022.100410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
As one of the main functions of vascular endothelial cells, Vascular permeability is determined by four tight junction proteins (TJPs): Zonula Occludens-1 (ZO-1), Claudin-5, Occludin and Tricellulin. The barrier function of blood vessels will be reconstructed after they are damaged by endothelial mechanical injuries caused by vascular interventions. In this study, the effects of balloon expansion (transient mechanical injury) on four TJPs and vascular permeability were compared with those of poly-l-lactic acid bioresorbable scaffolds (BRSs) implantation (continuous mechanical stimulation). We found that BRSs do not affect vascular permeability, while the recovery of vascular barrier function was found to be only related to the mechanical injuries and repair of endothelium. Mechanical stimulation affects and accelerates the recovery process of vascular permeability with the heterogeneous expression levels of TJPs induced after BRSs implantation. Different TJPs have different sensitivity to different loyal mechanical stimuli. ZO-1 is more sensitive to shear stress and tension than to static pressure. Occludin is sensitive to static pressure and shear stress. Tricellulin is more sensitive to tension stretching. Compared with the other three TJPs, Claudin-5 can respond to mechanical stimulation, with relatively low sensitivity, though. This difference in sensitivity determines the heterogeneous expression of TJPs. Mechanical stimulation of different kinds and strengths can also cause different cell morphological changes and inflammatory reactions. As an important element affecting endothelial function, the mechanical factors emerging after BRSs implantation are worthy of more attention. The repair of vascular permeability is directly related to the type of vascular injuries, while BRSs implantation has little effect on vascular permeability. Transient and persistent mechanical stimulation is the main reason to influence the expression of TJPs. Heterogeneous expression of TJPs caused by their different sensitivity to the form of mechanical stimuli.
Collapse
|
6
|
Park S, Avera AD, Kim Y. BIOMANUFACTURING OF GLIOBLASTOMA ORGANOIDS EXHIBITING HIERARCHICAL AND SPATIALLY ORGANIZED TUMOR MICROENVIRONMENT VIA TRANSDIFFERENTIATION. Biotechnol Bioeng 2022; 119:3252-3274. [DOI: 10.1002/bit.28191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Seungjo Park
- Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaAlabama
| | - Alexandra D. Avera
- Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaAlabama
| | - Yonghyun Kim
- Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaAlabama
| |
Collapse
|
7
|
Kuo WT, Odenwald MA, Turner JR, Zuo L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann N Y Acad Sci 2022; 1514:21-33. [PMID: 35580994 PMCID: PMC9427709 DOI: 10.1111/nyas.14798] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epithelial cells are the first line of mucosal defense. In the intestine, a single layer of epithelial cells must establish a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing the leakage of potentially harmful luminal materials. Key to this is the tight junction, which seals the paracellular space and prevents unrestricted leakage. The tight junction is a protein complex established by interactions between members of the claudin, zonula occludens, and tight junction-associated MARVEL protein (TAMP) families. Claudins form the characteristic tight junction strands seen by freeze-fracture microscopy and create paracellular channels, but the functions of ZO-1 and occludin, founding members of the zonula occludens and TAMP families, respectively, are less well defined. Recent studies have revealed that these proteins have essential noncanonical (nonbarrier) functions that allow them to regulate epithelial apoptosis and proliferation, facilitate viral entry, and organize specialized epithelial structures. Surprisingly, neither is required for intestinal barrier function or overall health in the absence of exogenous stressors. Here, we provide a brief overview of ZO-1 and occludin canonical (barrier-related) functions, and a more detailed examination of their noncanonical functions.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Graduate Institute of Oral Biology, National Taiwan University, Taipei, Taiwan.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Kuo WT, Zuo L, Odenwald MA, Madha S, Singh G, Gurniak CB, Abraham C, Turner JR. The Tight Junction Protein ZO-1 Is Dispensable for Barrier Function but Critical for Effective Mucosal Repair. Gastroenterology 2021; 161:1924-1939. [PMID: 34478742 PMCID: PMC8605999 DOI: 10.1053/j.gastro.2021.08.047] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUNDS & AIMS Increased permeability is implicated in the pathogenesis of intestinal disease. In vitro and in vivo studies have linked down-regulation of the scaffolding protein ZO-1, encoded by the TJP1 gene, to increased tight junction permeability. This has not, however, been tested in vivo. Here, we assessed the contributions of ZO-1 to in vivo epithelial barrier function and mucosal homeostasis. METHODS Public Gene Expression Omnibus data sets and biopsy specimens from patients with inflammatory bowel disease (IBD) and healthy control individuals were analyzed. Tjp1f/f;vil-CreTg mice with intestinal epithelial-specific ZO-1 knockout (ZO-1KO.IEC) mice and Tjp1f/f mice littermates without Cre expression were studied using chemical and immune-mediated models of disease as well as colonic stem cell cultures. RESULTS ZO-1 transcript and protein expression were reduced in biopsy specimens from patients with IBD. Despite mildly increased intestinal permeability, ZO-1KO.IEC mice were healthy and did not develop spontaneous disease. ZO-1KO.IEC mice were, however, hypersensitive to mucosal insults and displayed defective repair. Furthermore, ZO-1-deficient colonic epithelia failed to up-regulate proliferation in response to damage in vivo or Wnt signaling in vitro. ZO-1 was associated with centrioles in interphase cells and mitotic spindle poles during division. In the absence of ZO-1, mitotic spindles failed to correctly orient, resulting in mitotic catastrophe and abortive proliferation. ZO-1 is, therefore, critical for up-regulation of epithelial proliferation and successful completion of mitosis. CONCLUSIONS ZO-1 makes critical, tight junction-independent contributions to Wnt signaling and mitotic spindle orientation. As a result, ZO-1 is essential for mucosal repair. We speculate that ZO-1 down-regulation may be one cause of ineffective mucosal healing in patients with IBD.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Anhui Medical University, Hefei, Anhui, China
| | | | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gurminder Singh
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Pathology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
9
|
Fan YL, Zhao HC, Feng XQ. Hypertonic pressure affects the pluripotency and self-renewal of mouse embryonic stem cells. Stem Cell Res 2021; 56:102537. [PMID: 34562798 DOI: 10.1016/j.scr.2021.102537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
As an important mechanical cue in the extracellular microenvironment, osmotic stress directly affects the proliferation, migration, and differentiation of cells. In this paper, we focused on the influence of hypertonic pressure on the colony morphology, stemness, and self-renew of mouse embryonic stem cells (mESCs). Our results showed that culture media with hypertonic pressure are more conducive to the maintenance of 3D colony morphology and pluripotency of mESCs after withdrawing the glycogen synthase kinase 3β (GSK3β) inhibitor CHIR99021 and the mitogen-activated protein kinase (MEK) inhibitor PD0325901 (hereinafter referred to as 2i) for 48 h. Furthermore, we revealed the microscopic mechanisms of the this finding: hypertonic pressure resulted in the depolymerization of F-actin cytoskeleton and limits Yes-associated protein (hereinafter referred to as YAP) transmission into the nucleus which play a vital role in the regulation of cell proliferation, and resulting in cell-cycle arrest at last.
Collapse
Affiliation(s)
- Yan-Lei Fan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Warsi S, Blank U, Dahl M, Hooi Min Grahn T, Schmiderer L, Andradottir S, Karlsson S. BMP signaling is required for postnatal murine hematopoietic stem cell self-renewal. Haematologica 2021; 106:2203-2214. [PMID: 32675226 PMCID: PMC8327730 DOI: 10.3324/haematol.2019.236125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Life-long production of blood from hematopoietic stem cells (HSC) is a process of strict modulation. Intrinsic and extrinsic signals govern fate options like self-renewal – a cardinal feature of HSC. Bone morphogenetic proteins (BMP) have an established role in embryonic hematopoiesis, but less is known about its functions in adulthood. Previously, SMAD-mediated BMP signaling has been proven dispensable for HSC. However, the BMP type-II receptor (BMPR-II) is highly expressed in HSC, leaving the possibility that BMP function via alternative pathways. Here, we establish that BMP signaling is required for selfrenewal of adult HSC. Through conditional knockout we show that BMPR-II deficient HSC have impaired self-renewal and regenerative capacity. BMPR-II deficient cells have reduced p38 activation, implying that non-SMAD pathways operate downstream of BMP in HSC. Indeed, a majority of primitive hematopoietic cells do not engage in SMADmediated responses downstream of BMP in vivo. Furthermore, deficiency of BMPR-II results in increased expression of TJP1, a known regulator of self-renewal in other stem cells, and knockdown of TJP1 in primitive hematopoietic cells partly rescues the BMPR-II null phenotype. This suggests TJP1 may be a universal stem cell regulator. In conclusion, BMP signaling, in part mediated through TJP1, is required endogenously by adult HSC to maintain self-renewal capacity and proper resilience of the hematopoietic system during regeneration.
Collapse
Affiliation(s)
- Sarah Warsi
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ulrika Blank
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Maria Dahl
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Tan Hooi Min Grahn
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ludwig Schmiderer
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Abou-Fadel J, Vasquez M, Grajeda B, Ellis C, Zhang J. Systems-wide analysis unravels the new roles of CCM signal complex (CSC). Heliyon 2019; 5:e02899. [PMID: 31872111 PMCID: PMC6909108 DOI: 10.1016/j.heliyon.2019.e02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial capillaries that result in increased susceptibility to stroke. Three genes have been identified as causes of CCMs; KRIT1 (CCM1), MGC4607 (CCM2) and PDCD10 (CCM3); one of them is disrupted in most CCM cases. It was demonstrated that both CCM1 and CCM3 bind to CCM2 to form a CCM signaling complex (CSC) to modulate angiogenesis. In this report, we deployed both RNA-seq and proteomic analysis of perturbed CSC after depletion of one of three CCM genes to generate interactomes for system-wide studies. Our results demonstrated a unique portrait detailing alterations in angiogenesis and vascular integrity. Interestingly, only in-direct overlapped alterations between RNA and protein levels were detected, supporting the existence of multiple layers of regulation in CSC cascades. Notably, this is the first report identifying that both β4 integrin and CAV1 signaling are downstream of CSC, conveying the angiogenic signaling. Our results provide a global view of signal transduction modulated by the CSC, identifies novel regulatory signaling networks and key cellular factors associated with CSC.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Mariana Vasquez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Brian Grajeda
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Cameron Ellis
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| |
Collapse
|
12
|
Hayes MN, McCarthy K, Jin A, Oliveira ML, Iyer S, Garcia SP, Sindiri S, Gryder B, Motala Z, Nielsen GP, Borg JP, van de Rijn M, Malkin D, Khan J, Ignatius MS, Langenau DM. Vangl2/RhoA Signaling Pathway Regulates Stem Cell Self-Renewal Programs and Growth in Rhabdomyosarcoma. Cell Stem Cell 2019; 22:414-427.e6. [PMID: 29499154 DOI: 10.1016/j.stem.2018.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Tumor growth and relapse are driven by tumor propagating cells (TPCs). However, mechanisms regulating TPC fate choices, maintenance, and self-renewal are not fully understood. Here, we show that Van Gogh-like 2 (Vangl2), a core regulator of the non-canonical Wnt/planar cell polarity (Wnt/PCP) pathway, affects TPC self-renewal in rhabdomyosarcoma (RMS)-a pediatric cancer of muscle. VANGL2 is expressed in a majority of human RMS and within early mononuclear progenitor cells. VANGL2 depletion inhibited cell proliferation, reduced TPC numbers, and induced differentiation of human RMS in vitro and in mouse xenografts. Using a zebrafish model of embryonal rhabdomyosarcoma (ERMS), we determined that Vangl2 expression enriches for TPCs and promotes their self-renewal. Expression of constitutively active and dominant-negative isoforms of RHOA revealed that it acts downstream of VANGL2 to regulate proliferation and maintenance of TPCs in human RMS. Our studies offer insights into pathways that control TPCs and identify new potential therapeutic targets.
Collapse
Affiliation(s)
- Madeline N Hayes
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Karin McCarthy
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Alexander Jin
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Mariana L Oliveira
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sowmya Iyer
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Sara P Garcia
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Sivasish Sindiri
- Oncogenomics Section, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Berkley Gryder
- Oncogenomics Section, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Zainab Motala
- Division of Hematology/Oncology, Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON M5G1X8, Canada
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Inst Paoli Calmettes, UMR7258 CNRS, U1068 INSERM, "Cell Polarity, Cell signalling and Cancer - Equipe labellisée Ligue Contre le Cancer," Marseille, France
| | - Matt van de Rijn
- Department of Pathology, Stanford University Medical Center, Stanford, CA 94305, USA
| | - David Malkin
- Division of Hematology/Oncology, Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON M5G1X8, Canada
| | - Javed Khan
- Oncogenomics Section, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Myron S Ignatius
- Molecular Medicine and Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX 78229, USA
| | - David M Langenau
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Fan YL, Zhao HC, Li B, Zhao ZL, Feng XQ. Mechanical Roles of F-Actin in the Differentiation of Stem Cells: A Review. ACS Biomater Sci Eng 2019; 5:3788-3801. [PMID: 33438419 DOI: 10.1021/acsbiomaterials.9b00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development and differentiation of stem cells, mechanical forces associated with filamentous actin (F-actin) play a crucial role. The present review aims to reveal the relationship among the chemical components, microscopic structures, mechanical properties, and biological functions of F-actin. Particular attention is given to the functions of the cytoplasmic and nuclear microfilament cytoskeleton and their regulation mechanisms in the differentiation of stem cells. The distributions of different types of actin monomers in mammal cells and the functions of actin-binding proteins are summarized. We discuss how the fate of stem cells is regulated by intra/extracellular mechanical and chemical cues associated with microfilament-related proteins, intercellular adhesion molecules, etc. In addition, we also address the differentiation-induced variation in the stiffness of stem cells and the correlation between the fate and geometric shape change of stem cells. This review not only deepens our understanding of the biophysical mechanisms underlying the fates of stem cells under different culture conditions but also provides inspirations for the tissue engineering of stem cells.
Collapse
Affiliation(s)
- Yan-Lei Fan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Sart S, Bejoy J, Li Y. Characterization of 3D pluripotent stem cell aggregates and the impact of their properties on bioprocessing. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Zhang XD, Baladandayuthapani V, Lin H, Mulligan G, Li B, Esseltine DLW, Qi L, Xu J, Hunziker W, Barlogie B, Usmani SZ, Zhang Q, Crowley J, Hoering A, Shah JJ, Weber DM, Manasanch EE, Thomas SK, Li BZ, Wang HH, Zhang J, Kuiatse I, Tang JL, Wang H, He J, Yang J, Milan E, Cenci S, Ma WC, Wang ZQ, Davis RE, Yang L, Orlowski RZ. Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling. Cancer Cell 2016; 29:639-652. [PMID: 27132469 PMCID: PMC4983190 DOI: 10.1016/j.ccell.2016.03.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/26/2015] [Accepted: 03/25/2016] [Indexed: 01/15/2023]
Abstract
Proteasome inhibitors have revolutionized outcomes in multiple myeloma, but they are used empirically, and primary and secondary resistance are emerging problems. We have identified TJP1 as a determinant of plasma cell proteasome inhibitor susceptibility. TJP1 suppressed expression of the catalytically active immunoproteasome subunits LMP7 and LMP2, decreased proteasome activity, and enhanced proteasome inhibitor sensitivity in vitro and in vivo. This occurred through TJP1-mediated suppression of EGFR/JAK1/STAT3 signaling, which modulated LMP7 and LMP2 levels. In the clinic, high TJP1 expression in patient myeloma cells was associated with a significantly higher likelihood of responding to bortezomib and a longer response duration, supporting the use of TJP1 as a biomarker to identify patients most likely to benefit from proteasome inhibitors.
Collapse
Affiliation(s)
- Xing-Ding Zhang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China; Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, China
| | | | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George Mulligan
- Millennium: The Takeda Oncology Company, Cambridge, MA 02139, USA
| | - Bin Li
- Millennium: The Takeda Oncology Company, Cambridge, MA 02139, USA
| | | | - Lin Qi
- Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, China
| | - Jianliang Xu
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| | - Walter Hunziker
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Saad Z Usmani
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Hematologic Oncology, Levine Cancer Institute, Carolinas Healthcare System, Charlotte, NC 28204, USA
| | - Qing Zhang
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Hematologic Oncology, Levine Cancer Institute, Carolinas Healthcare System, Charlotte, NC 28204, USA
| | - John Crowley
- Cancer Research and Biostatistics, Seattle, WA 98101, USA
| | - Antje Hoering
- Cancer Research and Biostatistics, Seattle, WA 98101, USA
| | - Jatin J Shah
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donna M Weber
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabet E Manasanch
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sheeba K Thomas
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing-Zong Li
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Han Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexin Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Isere Kuiatse
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin-Le Tang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin He
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Yang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enrico Milan
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Simone Cenci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Wen-Cai Ma
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi-Qiang Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard Eric Davis
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China; Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, China.
| | - Robert Z Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Baker OJ. Current trends in salivary gland tight junctions. Tissue Barriers 2016; 4:e1162348. [PMID: 27583188 DOI: 10.1080/21688370.2016.1162348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Tight junctions form a continuous intercellular barrier between epithelial cells that is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. They are composed of strands containing integral membrane proteins (e.g., claudins, occludin and tricellulin, junctional adhesion molecules and the coxsackie adenovirus receptor). These proteins are anchored to the cytoskeleton via scaffolding proteins such as ZO-1 and ZO-2. In salivary glands, tight junctions are involved in polarized saliva secretion and barrier maintenance between the extracellular environment and the glandular lumen. This review seeks to provide an overview of what is currently known, as well as the major questions and future research directions, regarding tight junction expression, organization and function within salivary glands.
Collapse
Affiliation(s)
- Olga J Baker
- School of Dentistry, University of Utah , Salt Lake City, UT, USA
| |
Collapse
|
17
|
Lee SH, Paek AR, Yoon K, Kim SH, Lee SY, You HJ. Tight junction protein 1 is regulated by transforming growth factor-β and contributes to cell motility in NSCLC cells. BMB Rep 2015; 48:115-20. [PMID: 25027596 PMCID: PMC4352613 DOI: 10.5483/bmbrep.2015.48.2.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 01/15/2023] Open
Abstract
Tight junction protein 1 (TJP1), a component of tight junction, has been reported to play a role in protein networks as an adaptor protein, and TJP1 expression is altered during tumor development. Here, we found that TJP1 expression was increased at the RNA and protein levels in TGF-β-stimulated lung cancer cells, A549. SB431542, a type-I TGF-β receptor inhibitor, as well as SB203580, a p38 kinase inhibitor, significantly abrogated the effect of TGF-β on TJP1 expression. Diphenyleneiodonium, an NADPH oxidase inhibitor, also attenuated TJP1 expression in response to TGF-β in lung cancer cells. When TJP1 expression was reduced by shRNA lentiviral particles in A549 cells (A549-sh TJP1), wound healing was much lower than in cells infected with control viral particles. Taken together, these data suggest that TGF-β enhances TJP1 expression, which may play a role beyond structural support in tight junctions during cancer development.
Collapse
Affiliation(s)
- So Hee Lee
- Cancer Cell and Molecular Biology Branch, Div. of Cancer Biology, National Cancer Center, Goyang 410-769; Division of Molecular Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - A Rome Paek
- Cancer Cell and Molecular Biology Branch, Div. of Cancer Biology, National Cancer Center, Goyang 410-769, Korea
| | - Kyungsil Yoon
- Lung Cancer Branch, Div. of Translational and Clinical Research I, National Cancer Center, Goyang 410-769, Korea
| | - Seok Hyun Kim
- Cancer Cell and Molecular Biology Branch, Div. of Cancer Biology, National Cancer Center, Goyang 410-769, Korea
| | - Soo Young Lee
- Division of Molecular Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Hye Jin You
- Cancer Cell and Molecular Biology Branch, Div. of Cancer Biology, National Cancer Center, Goyang 410-769, Korea
| |
Collapse
|
18
|
Fadeev A, Krauss J, Frohnhöfer HG, Irion U, Nüsslein-Volhard C. Tight Junction Protein 1a regulates pigment cell organisation during zebrafish colour patterning. eLife 2015; 4. [PMID: 25915619 PMCID: PMC4446668 DOI: 10.7554/elife.06545] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/24/2015] [Indexed: 01/21/2023] Open
Abstract
Zebrafish display a prominent pattern of alternating dark and light stripes generated by the precise positioning of pigment cells in the skin. This arrangement is the result of coordinated cell movements, cell shape changes, and the organisation of pigment cells during metamorphosis. Iridophores play a crucial part in this process by switching between the dense form of the light stripes and the loose form of the dark stripes. Adult schachbrett (sbr) mutants exhibit delayed changes in iridophore shape and organisation caused by truncations in Tight Junction Protein 1a (ZO-1a). In sbr mutants, the dark stripes are interrupted by dense iridophores invading as coherent sheets. Immuno-labelling and chimeric analyses indicate that Tjp1a is expressed in dense iridophores but down-regulated in the loose form. Tjp1a is a novel regulator of cell shape changes during colour pattern formation and the first cytoplasmic protein implicated in this process. DOI:http://dx.doi.org/10.7554/eLife.06545.001 The striking horizontal striped pattern of the zebrafish makes it a decorative addition to many home aquariums. The stripes are a result of three different pigment cells interacting with each other, and first begin to emerge when the animal is two to three weeks old. At that time, iridescent cells called iridophores begin to multiply and spread in the skin. In the light-coloured stripes, the iridophores are compact and ‘dense’; in the dark stripes the cells change into a ‘loose’ shape and organisation. Black-pigmented cells fill in the dark stripes, and a third cell type with a yellow hue condenses over the light stripes. How the three types of cell work together to make the striped pattern is not fully understood. Fadeev et al. examined a zebrafish variant with a genetic mutation that disrupts the function of a protein called Tight Junction Protein 1a (or Tjp1a)—a fish variant of a mammalian protein called ZO-1. This protein helps cells to interact with each other. The mutant fish appear spotted rather than striped, because light regions containing sheets of the dense iridophores interrupt the dark stripes. Experiments using fluorescent markers showed that Tjp1a is produced in much lower amounts in the loose iridophores in the dark stripes than in the dense iridophores of the light stripes. This led Fadeev et al. to suggest that the transition from the dense to the loose shape is dependent on the presence of Tjp1a in the cell. Tjp1a is likely to regulate how colour patterns form by controlling how iridophores interact with other types of pigment cell. The Tjp1a mutant fish provides the first glimpse into the machinery inside cells that underlies colour pattern formation, and will help to identify other components and cues responsible for cell interactions. DOI:http://dx.doi.org/10.7554/eLife.06545.002
Collapse
Affiliation(s)
- Andrey Fadeev
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jana Krauss
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
19
|
Huang T, Barnett JV, Camenisch TD. Cardiac epithelial-mesenchymal transition is blocked by monomethylarsonous acid (III). Toxicol Sci 2014; 142:225-38. [PMID: 25145660 DOI: 10.1093/toxsci/kfu170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Arsenic exposure during embryonic development can cause ischemic heart pathologies later in adulthood which may originate from impairment in proper blood vessel formation. The arsenic-associated detrimental effects are mediated by arsenite (iAs(III)) and its most toxic metabolite, monomethylarsonous acid [MMA (III)]. The impact of MMA (III) on coronary artery development has not yet been studied. The key cellular process that regulates coronary vessel development is the epithelial-mesenchymal transition (EMT). During cardiac EMT, activated epicardial progenitor cells transform to mesenchymal cells to form the cellular components of coronary vessels. Smad2/3 mediated TGFβ2 signaling, the key regulator of cardiac EMT, is disrupted by arsenite exposure. In this study, we compared the cardiac toxicity of MMA (III) with arsenite. Epicardial progenitor cells are 15 times more sensitive to MMA (III) cytotoxicity when compared with arsenite. MMA (III) caused a significant blockage in epicardial cellular transformation and invasion at doses 10 times lower than arsenite. Key EMT genes including TGFβ ligands, TβRIII, Has2, CD44, Snail1, TBX18, and MMP2 were down regulated by MMA (III) exposure. MMA (III) disrupted Smad2/3 activation at a dose 20 times lower than arsenite. Both arsenite and MMA (III) significantly inhibited Erk1/2 and Erk5 phosphorylation. Nuclear translocation of Smad2/3 and Erk5 was also blocked by arsenical exposure. However, p38 activation, as well as smooth muscle differentiation, was refractory to the inhibition by the arsenicals. Collectively, these findings revealed that MMA (III) is a selective disruptor of cardiac EMT and as such may predispose to arsenic-associated cardiovascular disorders.
Collapse
Affiliation(s)
- Tianfang Huang
- Department of Pharmacology and Toxicology College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Todd D Camenisch
- Department of Pharmacology and Toxicology College of Pharmacy, University of Arizona, Tucson, Arizona 85721 Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona 85721 Steele Children's Research Center, University of Arizona, Tucson, Arizona 85724 Sarver Heart Center Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
20
|
Phua DCY, Xu J, Ali SM, Boey A, Gounko NV, Hunziker W. ZO-1 and ZO-2 are required for extra-embryonic endoderm integrity, primitive ectoderm survival and normal cavitation in embryoid bodies derived from mouse embryonic stem cells. PLoS One 2014; 9:e99532. [PMID: 24905925 PMCID: PMC4048262 DOI: 10.1371/journal.pone.0099532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/15/2014] [Indexed: 12/14/2022] Open
Abstract
The Zonula Occludens proteins ZO-1 and ZO-2 are cell-cell junction-associated adaptor proteins that are essential for the structural and regulatory functions of tight junctions in epithelial cells and their absence leads to early embryonic lethality in mouse models. Here, we use the embryoid body, an in vitro peri-implantation mouse embryogenesis model, to elucidate and dissect the roles ZO-1 and ZO-2 play in epithelial morphogenesis and de novo tight junction assembly. Through the generation of individual or combined ZO-1 and ZO-2 null embryoid bodies, we show that their dual deletion prevents tight junction formation, resulting in the disorganization and compromised barrier function of embryoid body epithelial layers. The disorganization is associated with poor microvilli development, fragmented basement membrane deposition and impaired cavity formation, all of which are key epithelial tissue morphogenetic processes. Expression of Podocalyxin, which positively regulates the formation of microvilli and the apical membrane, is repressed in embryoid bodies lacking both ZO-1 and ZO-2 and this correlates with an aberrant submembranous localization of Ezrin. The null embryoid bodies thus give an insight into how the two ZO proteins influence early mouse embryogenesis and possible mechanisms underlying the embryonic lethal phenotype.
Collapse
Affiliation(s)
- Dominic C. Y. Phua
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Jianliang Xu
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Safiah Mohamed Ali
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Adrian Boey
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- IMB-IMCB Joint Electron Microscopy Suite, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Natalia V. Gounko
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- IMB-IMCB Joint Electron Microscopy Suite, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Physiology, National University of Singapore and Singapore Eye Research Institute (SERI), Singapore, Singapore
- * E-mail:
| |
Collapse
|
21
|
Mezzano V, Pellman J, Sheikh F. Cell junctions in the specialized conduction system of the heart. ACTA ACUST UNITED AC 2014; 21:149-59. [PMID: 24738884 DOI: 10.3109/15419061.2014.905928] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Anchoring cell junctions are integral in maintaining electro-mechanical coupling of ventricular working cardiomyocytes; however, their role in cardiomyocytes of the cardiac conduction system (CCS) remains less clear. Recent studies in genetic mouse models and humans highlight the appearance of these cell junctions alongside gap junctions in the CCS and also show that defects in these structures and their components are associated with conduction impairments in the CCS. Here we outline current evidence supporting an integral relationship between anchoring and gap junctions in the CCS. Specifically we focus on (1) molecular and ultrastructural evidence for cell-cell junctions in specialized cardiomyocytes of the CCS, (2) genetic mouse models specifically targeting cell-cell junction components in the heart which exhibit CCS conduction defects and (3) human clinical studies from patients with cell-cell junction-based diseases that exhibit CCS electrophysiological defects.
Collapse
Affiliation(s)
- Valeria Mezzano
- Leon H. Charney Division of Cardiology, New York University School of Medicine , New York , New York
| | | | | |
Collapse
|
22
|
Peng H, Luo P, Li Y, Wang C, Liu X, Ye Z, Li C, Lou T. Simvastatin alleviates hyperpermeability of glomerular endothelial cells in early-stage diabetic nephropathy by inhibition of RhoA/ROCK1. PLoS One 2013; 8:e80009. [PMID: 24244596 PMCID: PMC3828237 DOI: 10.1371/journal.pone.0080009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/04/2013] [Indexed: 02/03/2023] Open
Abstract
Background Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy (DN). There is increasing evidence that dysfunction of the endothelial tight junction is a crucial step in the development of endothelial hyperpermeability, but it is unknown whether this occurs in glomerular endothelial cells (GEnCs) during the progression of DN. We examined tight junction dysfunction of GEnCs during early-stage DN and the potential underlying mechanisms. We also examined the effect of simvastatin (3-Hydroxy-3-methylglutaryl CoA reductase inhibitor) on dysfunction of the tight junctions of cultured GEnCs and in db/db mice with early-stage DN. Methods We assessed the expression of occludin and ZO-1, two major components of the tight junction complex, in cultured rat GEnCs treated with high glucose and in 12 week-old db/db mice with early-stage DN. We also investigated activation of RhoA/ROCK1 signaling, GEnC permeability, and renal function of the mice. Results High glucose suppresses occludin expression and disrupts occludin/ZO-1 translocation in GEnCs. These changes were associated with increased permeability to albumin and activation of RhoA/ROCK1 signaling. Occludin and ZO-1 dysregulation also occurred in the glomeruli of mice with early-stage DN, and these abnormalities were accompanied by albuminuria and activation of RhoA/ROCK1 in isolated glomeruli. Simvastatin prevented high glucose or hyperglycemia-induced dysregulation of occludin and ZO-1 by inhibition of RhoA/ROCK1 signaling in cultured GEnCs and in db/db mice with early-stage DN. Conclusion Our results indicate that activation of RhoA/ROCK1 by high glucose disrupts the expression and translocation of occludin/ZO-1 and that simvastatin alleviates occludin/ZO-1 dysregulation and albuminuria by suppressing RhoA/ROCK1 signaling during early-stage DN. These results suggest a potential therapeutic strategy for preventing the onset of albuminuria in early-stage DN.
Collapse
Affiliation(s)
- Hui Peng
- Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Pengli Luo
- Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuanqing Li
- Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Cheng Wang
- Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Xun Liu
- Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Zengchun Ye
- Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Canming Li
- Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Tanqi Lou
- Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|