1
|
Barbara L. Resilience and the shift of paradigm in ecology: a new name for an old concept or a different explanatory tool? HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 46:2. [PMID: 38153583 DOI: 10.1007/s40656-023-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
In the shift from the balance of nature to the flux of nature paradigm, the concept of resilience has gained great traction in ecology. While it has been suggested that the concept of resilience does not imply a genuine departure from the balance of nature paradigm, I shall argue against this stance. To do so, I first show that the balance of nature paradigm and the related conception of a single-state equilibrium relies on what Eliot Sober has named the "Natural State Model (NSM)", suggesting that the NSM has instead been dismissed in the flux of nature paradigm. I then focus on resilience as the main explanatory concept of the flux paradigm. After distinguishing between two main different understandings of "resilience", namely engineering resilience and ecological resilience, I argue that the former is close to the concept of balance or stability and still part of the NSM, while the latter is not. Finally, I claim that ecological resilience is inconsistent with the NSM, concluding that this concept-being incompatible with the NSM-is not part of the balance of nature paradigm but rather a genuinely new explanatory tool.
Collapse
Affiliation(s)
- Lara Barbara
- Department of Philosophy, Università del Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
2
|
Abstract
Maintaining the correct number of healthy red blood cells (RBCs) is critical for proper oxygenation of tissues throughout the body. Therefore, RBC homeostasis is a tightly controlled balance between RBC production and RBC clearance, through the processes of erythropoiesis and macrophage hemophagocytosis, respectively. However, during the inflammation associated with infectious, autoimmune, or inflammatory diseases this homeostatic process is often dysregulated, leading to acute or chronic anemia. In each disease setting, multiple mechanisms typically contribute to the development of inflammatory anemia, impinging on both sides of the RBC production and RBC clearance equation. These mechanisms include both direct and indirect effects of inflammatory cytokines and innate sensing. Here, we focus on common innate and adaptive immune mechanisms that contribute to inflammatory anemias using examples from several diseases, including hemophagocytic lymphohistiocytosis/macrophage activation syndrome, severe malarial anemia during Plasmodium infection, and systemic lupus erythematosus, among others.
Collapse
Affiliation(s)
- Susan P Canny
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Susana L Orozco
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
| | - Natalie K Thulin
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Bégay V, Cirovic B, Barker AJ, Klopfleisch R, Hart DW, Bennett NC, Lewin GR. Immune competence and spleen size scale with colony status in the naked mole-rat. Open Biol 2022; 12:210292. [PMID: 35382566 PMCID: PMC8984379 DOI: 10.1098/rsob.210292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Naked mole-rats (NM-R; Heterocephalus glaber) live in multi-generational colonies with a social hierarchy, and show low cancer incidence and long life-spans. Here we asked if an immune component might underlie such extreme physiology. The largest lymphoid organ is the spleen, which plays an essential role in responding to immunological insults and may participate in combating cancer and slowing ageing. We investigated the anatomy, molecular composition and function of the NM-R spleen using RNA-sequencing and histological analysis in healthy NM-Rs. Spleen size in healthy NM-Rs showed considerable inter-individual variability, with some animals displaying enlarged spleens. In all healthy NM-Rs, the spleen is a major site of adult haematopoiesis under normal physiological conditions. However, myeloid-to-lymphoid cell ratio is increased and splenic marginal zone showed markedly altered morphology when compared to other rodents. Healthy NM-Rs with enlarged spleens showed potentially better anti-microbial profiles and were much more likely to have a high rank within the colony. We propose that the anatomical plasticity of the spleen might be regulated by social interaction and gives immunological advantage to increase the lifespan of higher-ranked animals.
Collapse
Affiliation(s)
- Valérie Bégay
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory for Molecular Physiology of Somatic Sensation, Robert-Rössle Straße 10, D-13125 Berlin, Germany
| | - Branko Cirovic
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alison J. Barker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory for Molecular Physiology of Somatic Sensation, Robert-Rössle Straße 10, D-13125 Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University Berlin, Robert von Ostertag Strasse 15, 14163 Berlin, Germany
| | - Daniel W. Hart
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Republic of South Africa
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Republic of South Africa
| | - Gary R. Lewin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory for Molecular Physiology of Somatic Sensation, Robert-Rössle Straße 10, D-13125 Berlin, Germany
| |
Collapse
|
4
|
Liu X, Tao J, Yao Y, Yang P, Wang J, Yu M, Hou J, Zhang Y, Gui L. Resveratrol induces proliferation in preosteoblast cell MC3T3-E1 via GATA-1 activating autophagy. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1495-1504. [PMID: 34637502 DOI: 10.1093/abbs/gmab135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Indexed: 01/08/2023] Open
Abstract
Resveratrol (RSV) could promote osteogenic activity, but its clinical application has been hampered in view of its poor bioavailability. Therefore, it is desirable to identify with certainty the molecular target of its bone mass boosting function, which is crucial to the design of an effective therapeutic strategy for the optimal treatment of osteoporosis. Emerging evidence has indicated that GATA-1, an important transcription factor in megakaryocyte and erythrocyte differentiation, can directly activate autophagy in erythrocytes, alluding to its impact on bone metabolism. In light of this, we sought to determine whether GATA-1 would be a putative target by which RSV would act on osteoblast proliferation and, if so, to explore the underlying mechanism involved in the process. We examined the cell viability, colony formation, cell cyclin expression, autophagy level, and the expression levels of GATA-1 and adenosine 5'-monophosphate (AMP)-activated protein kinase α (AMPKα) in osteoblastic cell strain MC3T3-E1. The results showed that RSV promoted the proliferation process in MC3T3-E1 coupled with increased expression of GATA-1 and phosphorylated AMPKα and activated autophagy. When GATA-1 was interfered with siRNA, both autophagy and proliferation were decreased. Administration of the agonist of phosphorylated AMPKα1 (Thr172) promoted the translocation of GATA-1 into the nucleus. Based on the above results, we concluded that RSV induces the proliferation of MC3T3-E1 by increasing GATA-1 expression, which thence activates autophagy; and of note, AMPKα is one of the upstream regulators of GATA-1.
Collapse
Affiliation(s)
- Xiang Liu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Jun Tao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Yueyi Yao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Ping Yang
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Juhui Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Mali Yu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Jianhong Hou
- Department of Orthopaedics, The Third People’s Hospital of Yunnan Province, Kunming 650101, China
| | - Ying Zhang
- Faculty of Nursing, Kunming Medical University, Kunming 650500, China
| | - Li Gui
- Department of Endocrinology, The Third People’s Hospital of Yunnan Province, Kunming 650101, China
| |
Collapse
|
5
|
Mandujano-Tinoco EA, Sultan E, Ottolenghi A, Gershoni-Yahalom O, Rosental B. Evolution of Cellular Immunity Effector Cells; Perspective on Cytotoxic and Phagocytic Cellular Lineages. Cells 2021; 10:1853. [PMID: 34440622 PMCID: PMC8394812 DOI: 10.3390/cells10081853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system has evolved to protect organisms from infections caused by bacteria, viruses, and parasitic pathogens. In addition, it provides regenerative capacities, tissue maintenance, and self/non-self recognition of foreign tissues. Phagocytosis and cytotoxicity are two prominent cellular immune activities positioned at the base of immune effector function in mammals. Although these immune mechanisms have diversified into a wide heterogeneous repertoire of effector cells, it appears that they share some common cellular and molecular features in all animals, but also some interesting convergent mechanisms. In this review, we will explore the current knowledge about the evolution of phagocytic and cytotoxic immune lineages against pathogens, in the clearance of damaged cells, for regeneration, for histocompatibility recognition, and in killing virally infected cells. To this end, we give different immune examples of multicellular organism models, ranging from the roots of bilateral organisms to chordate invertebrates, comparing to vertebrates' lineages. In this review, we compare cellular lineage homologies at the cellular and molecular levels. We aim to highlight and discuss the diverse function plasticity within the evolved immune effector cells, and even suggest the costs and benefits that it may imply for organisms with the meaning of greater defense against pathogens but less ability to regenerate damaged tissues and organs.
Collapse
Affiliation(s)
- Edna Ayerim Mandujano-Tinoco
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada Mexico-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico
| | - Eliya Sultan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| |
Collapse
|
6
|
Campbell CA, Fursova O, Cheng X, Snella E, McCune A, Li L, Solchenberger B, Schmid B, Sahoo D, Morton M, Traver D, Espín-Palazón R. A zebrafish model of granulin deficiency reveals essential roles in myeloid cell differentiation. Blood Adv 2021; 5:796-811. [PMID: 33560393 PMCID: PMC7876888 DOI: 10.1182/bloodadvances.2020003096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Granulin is a pleiotropic protein involved in inflammation, wound healing, neurodegenerative disease, and tumorigenesis. These roles in human health have prompted research efforts to use granulin to treat rheumatoid arthritis and frontotemporal dementia and to enhance wound healing. But how granulin contributes to each of these diverse biological functions remains largely unknown. Here, we have uncovered a new role for granulin during myeloid cell differentiation. We have taken advantage of the tissue-specific segregation of the zebrafish granulin paralogues to assess the functional role of granulin in hematopoiesis without perturbing other tissues. By using our zebrafish model of granulin deficiency, we revealed that during normal and emergency myelopoiesis, myeloid progenitors are unable to terminally differentiate into neutrophils and macrophages in the absence of granulin a (grna), failing to express the myeloid-specific genes cebpa, rgs2, lyz, mpx, mpeg1, mfap4, and apoeb. Functionally, macrophages fail to recruit to the wound, resulting in abnormal healing. Our CUT&RUN experiments identify Pu.1, which together with Irf8, positively regulates grna expression. In vivo imaging and RNA sequencing experiments show that grna inhibits the expression of gata1, leading to the repression of the erythroid program. Importantly, we demonstrated functional conservation between the mammalian granulin and the zebrafish ortholog grna. Our findings uncover a previously unrecognized role for granulin during myeloid cell differentiation, which opens a new field of study that can potentially have an impact on different aspects of human health and expand the therapeutic options for treating myeloid disorders such as neutropenia or myeloid leukemia.
Collapse
Affiliation(s)
- Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Oksana Fursova
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Abbigail McCune
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Liangdao Li
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | | | - Bettina Schmid
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA; and
| | - Mark Morton
- College of Veterinary Medicine, Iowa State University, Ames, IA
| | - David Traver
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | - Raquel Espín-Palazón
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| |
Collapse
|
7
|
Chronic lymphocytic leukemia B-cell-derived TNFα impairs bone marrow myelopoiesis. iScience 2020; 24:101994. [PMID: 33458625 PMCID: PMC7797930 DOI: 10.1016/j.isci.2020.101994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
TNFα is implicated in chronic lymphocytic leukemia (CLL) immunosuppression and disease progression. TNFα is constitutively produced by CLL B cells and is a negative regulator of bone marrow (BM) myelopoiesis. Here, we show that co-culture of CLL B cells with purified normal human hematopoietic stem and progenitor cells (HSPCs) directly altered protein levels of the myeloid and erythroid cell fate determinants PU.1 and GATA-2 at the single-cell level within transitional HSPC subsets, mimicking ex vivo expression patterns. Physical separation of CLL cells from control HSPCs or neutralizing TNFα abrogated upregulation of PU.1, yet restoration of GATA-2 required TNFα neutralization, suggesting both cell contact and soluble-factor-mediated regulation. We further show that CLL patient BM myeloid progenitors are diminished in frequency and function, an effect recapitulated by chronic exposure of control HSPCs to low-dose TNFα. These findings implicate CLL B-cell-derived TNFα in impaired BM myelopoiesis. CLL patient BM HSPCs exhibit aberrant molecular and functional characteristics CLL B-cell-derived TNFα upregulates PU.1 and GATA-2 in BM HSPCs The effects of CLL B-cell-derived TNFα are reversible upon TNFα neutralization Chronic TNFα exposure in vitro recapitulates ex vivo HSPC functional deficiencies
Collapse
|
8
|
Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21228460. [PMID: 33187090 PMCID: PMC7696854 DOI: 10.3390/ijms21228460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.
Collapse
|
9
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
10
|
Koyanagi KO. Inferring changes in histone modification during cell differentiation by ancestral state estimation based on phylogenetic trees of cell types: Human hematopoiesis as a model case. Gene 2020; 721S:100021. [PMID: 32550550 PMCID: PMC7286071 DOI: 10.1016/j.gene.2019.100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
Revealing the landscape of epigenetic changes in cells during differentiation is important for understanding the development of organisms. In this study, to infer such epigenetic changes during human hematopoiesis, ancestral state estimation based on a phylogenetic tree was applied to map the epigenomic changes in six kinds of histone modifications onto the hierarchical cell differentiation process of hematopoiesis using epigenomes of eight types of differentiated hematopoietic cells. The histone modification changes inferred during hematopoiesis showed that changes that occurred on the branches separating different cell types reflected the characteristics of hematopoiesis in terms of genomic position and gene function. These results suggested that ancestral state estimation based on phylogenetic analysis of histone modifications in differentiated hematopoietic cells could reconstruct an appropriate landscape of histone modification changes during hematopoiesis. Since integration of the inferred changes of different histone modifications could reveal genes with specific histone marks such as active histone marks and bivalent histone marks on each internal branch of cell-type trees, this approach could provide valuable information for understanding the cell differentiation steps of each cell lineage.
Collapse
Key Words
- Ancestral state estimation
- B, B cell
- BED, browser extensible data
- CRISPR, clustered regularly interspaced short palindromic repeat
- Cell lineage
- Cell-type tree
- ChIP-seq, chromatin immunoprecipitation sequencing
- DNA, deoxyribonucleic acid
- Eo, eosinophil
- Er, erythroblast
- H3K27ac, acetylation of histone H3 at lysine 27
- H3K27me3, trimethylations of histone H3 at lysine 27
- H3K36me3, trimethylation of histone H3 at lysine 36
- H3K4me1, monomethylation of histone H3 at lysine 4
- H3K4me3, trimethylation of histone H3 at lysine 4
- H3K9me3, trimethylations of histone H3 at lysine 9
- Histone modification
- KEGG, Kyoto encyclopedia of genes and genomes
- L, lymphoid lineage
- M, myeloid lineage
- Me, megakaryocyte
- Mo, monocyte
- Ne, neutrophil
- Nk, natural killer cell
- Phyloepigenetics
- T, T cell
- TSS, transcription start sites
- kb, kilobase(s)
Collapse
|
11
|
Hypoxia-Inducible Factor 1A Upregulates HMGN5 by Increasing the Expression of GATA1 and Plays a Role in Osteosarcoma Metastasis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5630124. [PMID: 31930127 PMCID: PMC6942741 DOI: 10.1155/2019/5630124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/10/2019] [Indexed: 11/17/2022]
Abstract
Osteosarcoma is one of the most common malignant tumors in children and adolescents and is characterized by early metastasis. High-mobility group N (HMGN) domains are involved in the development of several tumors. Our previous study found that HMGN5 is highly expressed in osteosarcoma tissues and knockdown of HMGN5 inhibits migration and invasion of U-2 OS and Saos-2 cells. A hypoxic environment is commonly found in solid tumors such as osteosarcoma and is likely to be associated with tumor metastasis, so we further explored the relationship between HMGN5 and the hypoxic environment. Hypoxia-inducible factor 1A (HIF1A) is an adaptive factor in the hypoxic environment. We found that HIF1A and HMGN5 were upregulated in osteosarcoma (OS) cells cultured in the hypoxic environment, and the results of overexpression and knockdown experiments showed that HIF1A upregulated the transcription factor GATA1 and further promoted the expression of HMGN5. In addition, MMP2 and MMP9 were subsequently upregulated through the c-jun pathway, and finally, this promoted the migration and invasion of OS cells. It is suggested that HMGN5 may be an important downstream factor for HIF1A to promote osteosarcoma metastasis. It has an important clinical significance for the selection of therapeutic targets for osteosarcoma.
Collapse
|
12
|
Kato H, Igarashi K. To be red or white: lineage commitment and maintenance of the hematopoietic system by the "inner myeloid". Haematologica 2019; 104:1919-1927. [PMID: 31515352 PMCID: PMC6886412 DOI: 10.3324/haematol.2019.216861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Differentiation of hematopoietic stem and progenitor cells is tightly regulated depending on environmental changes in order to maintain homeostasis. Transcription factors direct the development of hematopoietic cells, such as GATA-1 for erythropoiesis and PU.1 for myelopoiesis. However, recent findings obtained from single-cell analyses raise the question of whether these transcription factors are "initiators" or just "executors" of differentiation, leaving the initiation of hematopoietic stem and progenitor cell differentiation (i.e. lineage commitment) unclear. While a stochastic process is likely involved in commitment, it cannot fully explain the homeostasis of hematopoiesis nor "on-demand" hematopoiesis in response to environmental changes. Transcription factors BACH1 and BACH2 may regulate both commitment and on-demand hematopoiesis because they control erythroid-myeloid and lymphoid-myeloid differentiation by repressing the myeloid program, and their activities are repressed in response to infectious and inflammatory conditions. We summarize possible mechanisms of lineage commitment of hematopoietic stem and progenitor cells suggested by recent findings and discuss the erythroid and lymphoid commitment of hematopoietic stem and progenitor cells, focusing on the gene regulatory network composed of genes encoding key transcription factors. Surprising similarity exists between commitment to erythroid and lymphoid lineages, including repression of the myeloid program by BACH factors. The suggested gene regulatory network of BACH factors sheds light on the myeloid-based model of hematopoiesis. This model will help to understand the tuning of hematopoiesis in higher eukaryotes in the steady-state condition as well as in emergency conditions, the evolutional history of the system, aging and hematopoietic disorders.
Collapse
Affiliation(s)
- Hiroki Kato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Present address, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Rosental B, Kowarsky M, Seita J, Corey DM, Ishizuka KJ, Palmeri KJ, Chen SY, Sinha R, Okamoto J, Mantalas G, Manni L, Raveh T, Clarke DN, Tsai JM, Newman AM, Neff NF, Nolan GP, Quake SR, Weissman IL, Voskoboynik A. Complex mammalian-like haematopoietic system found in a colonial chordate. Nature 2018; 564:425-429. [PMID: 30518860 PMCID: PMC6347970 DOI: 10.1038/s41586-018-0783-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Haematopoiesis is an essential process that evolved in multicellular animals. At the heart of this process are haematopoietic stem cells (HSCs), which are multipotent and self-renewing, and generate the entire repertoire of blood and immune cells throughout an animal's life1. Although there have been comprehensive studies on self-renewal, differentiation, physiological regulation and niche occupation in vertebrate HSCs, relatively little is known about the evolutionary origin and niches of these cells. Here we describe the haematopoietic system of Botryllus schlosseri, a colonial tunicate that has a vasculature and circulating blood cells, and interesting stem-cell biology and immunity characteristics2-8. Self-recognition between genetically compatible B. schlosseri colonies leads to the formation of natural parabionts with shared circulation, whereas incompatible colonies reject each other3,4,7. Using flow cytometry, whole-transcriptome sequencing of defined cell populations and diverse functional assays, we identify HSCs, progenitors, immune effector cells and an HSC niche, and demonstrate that self-recognition inhibits allospecific cytotoxic reactions. Our results show that HSC and myeloid lineage immune cells emerged in a common ancestor of tunicates and vertebrates, and also suggest that haematopoietic bone marrow and the B. schlosseri endostyle niche evolved from a common origin.
Collapse
Affiliation(s)
- Benyamin Rosental
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA.
| | - Mark Kowarsky
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- AI based Healthcare and Medical Data Analysis Standardization Unit, Medical Sciences Innovation Hub Program, RIKEN, Tokyo, Japan
| | - Daniel M Corey
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine J Ishizuka
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA
| | - Karla J Palmeri
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA
| | - Shih-Yu Chen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gary Mantalas
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Molecular Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - D Nathaniel Clarke
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA
| | - Jonathan M Tsai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen R Quake
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA.
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA.
| |
Collapse
|
14
|
Zhao H, Wang X, Yi P, Si Y, Tan P, He J, Yu S, Ren Y, Ma Y, Zhang J, Wang D, Wang F, Yu J. KSRP specifies monocytic and granulocytic differentiation through regulating miR-129 biogenesis and RUNX1 expression. Nat Commun 2017; 8:1428. [PMID: 29127290 PMCID: PMC5681548 DOI: 10.1038/s41467-017-01425-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/15/2017] [Indexed: 01/11/2023] Open
Abstract
RNA-binding proteins (RBPs) integrate the processing of RNAs into post-transcriptional gene regulation, but the direct contribution of them to myeloid cell specification is poorly understood. Here, we report the first global RBP transcriptomic analysis of myeloid differentiation by combining RNA-seq analysis with myeloid induction in CD34+ hematopoietic progenitor cells. The downregulated expression of the KH-Type Splicing Regulatory Protein (KSRP) during monocytopoiesis and up-regulated expression during granulopoiesis suggests that KSRP has divergent roles during monocytic and granulocytic differentiation. A further comparative analysis of miRNA transcripts reveals that KSRP promotes the biogenesis of miR-129, and the expression patterns and roles of miR-129 in myeloid differentiation are equivalent to those of KSRP. Finally, miR-129 directly blocks the expression of Runt Related Transcription Factor 1 (RUNX1), which evokes transcriptional modulation by RUNX1. Based on our findings, KSRP, miR-129, and RUNX1 participate in a regulatory axis to control the outcome of myeloid differentiation.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China.,State Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Puwen Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jinrong He
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Shan Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Junwu Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China. .,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China.
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China.
| |
Collapse
|
15
|
Moussy A, Cosette J, Parmentier R, da Silva C, Corre G, Richard A, Gandrillon O, Stockholm D, Páldi A. Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment. PLoS Biol 2017; 15:e2001867. [PMID: 28749943 PMCID: PMC5531424 DOI: 10.1371/journal.pbio.2001867] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/23/2017] [Indexed: 11/19/2022] Open
Abstract
Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34+ cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned). Hematopoietic stem cells are classically defined as a specific category of cells at the top of the hierarchy that can differentiate all blood cell types following step-by-step the instructions of a deterministic program. We have analysed this process, and our findings support a much more dynamic view than previously described. We apply time-lapse microscopy coupled to single-cell molecular analyses in human hematopoietic stem cells and find that fate decision is not a unique, programmed event but a process of spontaneous variation and selective stabilisation reminiscent of trial–error processes. We show that each cell explores (at its own pace and independently of cell division) many different possibilities before reaching a stable combination of genes to be expressed. Our results suggest, therefore, that multipotency seems to be more like a transitory state than a feature of a specific cell category.
Collapse
Affiliation(s)
- Alice Moussy
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS 951, INSERM, Univ-Evry, Evry, France
- Genethon, Evry, France
| | | | | | - Cindy da Silva
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS 951, INSERM, Univ-Evry, Evry, France
| | | | - Angélique Richard
- Laboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
| | - Olivier Gandrillon
- Laboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS 951, INSERM, Univ-Evry, Evry, France
| | - András Páldi
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS 951, INSERM, Univ-Evry, Evry, France
- * E-mail:
| |
Collapse
|
16
|
Jian W, Yan B, Huang S, Qiu Y. Histone deacetylase 1 activates PU.1 gene transcription through regulating TAF9 deacetylation and transcription factor IID assembly. FASEB J 2017; 31:4104-4116. [PMID: 28572446 DOI: 10.1096/fj.201700022r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/15/2017] [Indexed: 11/11/2022]
Abstract
Histone acetyltransferases and histone deacetylases (HDACs) are important epigenetic coregulators. It has been thought that HDACs associate with corepressor complexes and repress gene transcription; however, in this study, we have found that PU.1-a key master regulator for hematopoietic self-renewal and lineage specification-requires HDAC activity for gene activation. Deregulated PU.1 gene expression is linked to dysregulated hematopoiesis and the development of leukemia. In this study, we used erythroid differentiation as a model to analyze how the PU.1 gene is regulated. We found that active HDAC1 is directly recruited to active PU.1 promoter in progenitor cells, whereas acetylated HDAC1, which is inactive, is on the silenced PU.1 promoter in differentiated erythroid cells. We then studied the mechanism of HDAC1-mediated activation. We discovered that HDAC1 activates PU.1 gene transcription via deacetylation of TATA-binding protein-associated factor 9 (TAF9), a component in the transcription factor IID (TFIID) complex. Treatment with HDAC inhibitor results in an increase in TAF9 acetylation. Acetylated TAF9 does not bind to the PU.1 gene promoter and subsequently leads to the disassociation of the TFIID complex and transcription repression. Thus, these results demonstrate a key role for HDAC1 in PU.1 gene transcription and, more importantly, uncover a novel mechanism of TFIID recruitment and gene activation.-Jian, W., Yan, B., Huang, S., Qiu, Y. Histone deacetylase 1 activates PU.1 gene transcription through regulating TAF9 deacetylation and transcription factor IID assembly.
Collapse
Affiliation(s)
- Wei Jian
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Bowen Yan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA; and.,Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Yi Qiu
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
17
|
Keightley MC, Carradice DP, Layton JE, Pase L, Bertrand JY, Wittig JG, Dakic A, Badrock AP, Cole NJ, Traver D, Nutt SL, McCoey J, Buckle AM, Heath JK, Lieschke GJ. The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger. Nat Commun 2017; 8:14911. [PMID: 28382966 PMCID: PMC5384227 DOI: 10.1038/ncomms14911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
In response to infection and injury, the neutrophil population rapidly expands and then quickly re-establishes the basal state when inflammation resolves. The exact pathways governing neutrophil/macrophage lineage outputs from a common granulocyte-macrophage progenitor are still not completely understood. From a forward genetic screen in zebrafish, we identify the transcriptional repressor, ZBTB11, as critical for basal and emergency granulopoiesis. ZBTB11 sits in a pathway directly downstream of master myeloid regulators including PU.1, and TP53 is one direct ZBTB11 transcriptional target. TP53 repression is dependent on ZBTB11 cys116, which is a functionally critical, metal ion-coordinating residue within a novel viral integrase-like zinc finger domain. To our knowledge, this is the first description of a function for this domain in a cellular protein. We demonstrate that the PU.1–ZBTB11–TP53 pathway is conserved from fish to mammals. Finally, Zbtb11 mutant rescue experiments point to a ZBTB11-regulated TP53 requirement in development of other organs. Neutrophils are increased in response to injury and infection but how they form from a common granulocyte-macrophage progenitor is unclear. Here, the authors identify a role for the transcriptional repressor ZBTB11 in zebrafish, which is regulated by master myeloid regulators and represses TP53.
Collapse
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Duncan P Carradice
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Judith E Layton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Luke Pase
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva-CMU, 1211 Geneva 4, Switzerland
| | - Johannes G Wittig
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Aleksandar Dakic
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Andrew P Badrock
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Nicholas J Cole
- Motor Neuron Disease Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julia McCoey
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Joan K Heath
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| |
Collapse
|
18
|
Richard A, Boullu L, Herbach U, Bonnafoux A, Morin V, Vallin E, Guillemin A, Papili Gao N, Gunawan R, Cosette J, Arnaud O, Kupiec JJ, Espinasse T, Gonin-Giraud S, Gandrillon O. Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding Irreversible Commitment in a Differentiation Process. PLoS Biol 2016; 14:e1002585. [PMID: 28027290 PMCID: PMC5191835 DOI: 10.1371/journal.pbio.1002585] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/22/2016] [Indexed: 12/31/2022] Open
Abstract
In some recent studies, a view emerged that stochastic dynamics governing the switching of cells from one differentiation state to another could be characterized by a peak in gene expression variability at the point of fate commitment. We have tested this hypothesis at the single-cell level by analyzing primary chicken erythroid progenitors through their differentiation process and measuring the expression of selected genes at six sequential time-points after induction of differentiation. In contrast to population-based expression data, single-cell gene expression data revealed a high cell-to-cell variability, which was masked by averaging. We were able to show that the correlation network was a very dynamical entity and that a subgroup of genes tend to follow the predictions from the dynamical network biomarker (DNB) theory. In addition, we also identified a small group of functionally related genes encoding proteins involved in sterol synthesis that could act as the initial drivers of the differentiation. In order to assess quantitatively the cell-to-cell variability in gene expression and its evolution in time, we used Shannon entropy as a measure of the heterogeneity. Entropy values showed a significant increase in the first 8 h of the differentiation process, reaching a peak between 8 and 24 h, before decreasing to significantly lower values. Moreover, we observed that the previous point of maximum entropy precedes two paramount key points: an irreversible commitment to differentiation between 24 and 48 h followed by a significant increase in cell size variability at 48 h. In conclusion, when analyzed at the single cell level, the differentiation process looks very different from its classical population average view. New observables (like entropy) can be computed, the behavior of which is fully compatible with the idea that differentiation is not a “simple” program that all cells execute identically but results from the dynamical behavior of the underlying molecular network. A single-cell transcriptomics analysis offers a new dynamical view of the differentiation process, involving an increase in between-cell variability prior to commitment. The differentiation process has classically been seen as a stereotyped program leading from one progenitor toward a functional cell. This vision was based upon cell population-based analyses averaged over millions of cells. However, new methods have recently emerged that allow interrogation of the molecular content at the single-cell level, challenging this view with a new model suggesting that cell-to-cell gene expression stochasticity could play a key role in differentiation. We took advantage of a physiologically relevant avian cellular model to analyze the expression level of 92 genes in individual cells collected at several time-points during differentiation. We first observed that the process analyzed at the single-cell level is very different and much less well ordered than the population-based average view. Furthermore, we showed that cell-to-cell variability in gene expression peaks transiently before strongly decreasing. This rise in variability precedes two key events: an irreversible commitment to differentiation, followed by a significant increase in cell size variability. Altogether, our results support the idea that differentiation is not a “simple” series of well-ordered molecular events executed identically by all cells in a population but likely results from dynamical behavior of the underlying molecular network.
Collapse
Affiliation(s)
- Angélique Richard
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007, Lyon, France
| | - Loïs Boullu
- Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, France
- Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France
- Département de Mathématiques et de statistiques de l’Université de Montréal, Pavillon André-Aisenstadt, 2920, chemin de la Tour, Montréal (Québec) H3T 1J4 Canada
| | - Ulysse Herbach
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007, Lyon, France
- Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, France
- Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France
| | - Arnaud Bonnafoux
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007, Lyon, France
- Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, France
- The CoSMo company. 5 passage du Vercors – 69007 LYON – France
| | - Valérie Morin
- Univ Lyon, Univ Claude Bernard, CNRS UMR 5310 - INSERM U1217, Institut NeuroMyoGène, F-69622 Villeurbanne-Cedex, France
| | - Elodie Vallin
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007, Lyon, France
| | - Anissa Guillemin
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007, Lyon, France
| | - Nan Papili Gao
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, 1015 Lausanne Switzerland
| | - Rudiyanto Gunawan
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, 1015 Lausanne Switzerland
| | - Jérémie Cosette
- Genethon – Institut National de la Santé et de la Recherche Médicale – INSERM, Université d’Evry-Val-d’Essone – 1 rue de l’internationale 91000 Evry, France
| | - Ophélie Arnaud
- RIKEN - Center for Life Science Technologies (Division of Genomic Technologies)—CLST (DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | - Thibault Espinasse
- Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France
| | - Sandrine Gonin-Giraud
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007, Lyon, France
| | - Olivier Gandrillon
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007, Lyon, France
- Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, France
- * E-mail:
| |
Collapse
|
19
|
Yang Z, Shah K, Khodadadi-Jamayran A, Jiang H. Dpy30 is critical for maintaining the identity and function of adult hematopoietic stem cells. J Exp Med 2016; 213:2349-2364. [PMID: 27647347 PMCID: PMC5068233 DOI: 10.1084/jem.20160185] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
As the major histone H3K4 methyltransferases in mammals, the Set1/Mll complexes play important roles in animal development and are associated with many diseases, including hematological malignancies. However, the role of the H3K4 methylation activity of these complexes in fate determination of hematopoietic stem and progenitor cells (HSCs and HPCs) remains elusive. Here, we address this question by generating a conditional knockout mouse for Dpy30, which is a common core subunit of all Set1/Mll complexes and facilitates genome-wide H3K4 methylation in cells. Dpy30 loss in the adult hematopoietic system results in severe pancytopenia but striking accumulation of HSCs and early HPCs that are defective in multilineage reconstitution, suggesting a differentiation block. In mixed bone marrow chimeras, Dpy30-deficient HSCs cannot differentiate or efficiently up-regulate lineage-regulatory genes, and eventually fail to sustain for long term with significant loss of HSC signature gene expression. Our molecular analyses reveal that Dpy30 directly and preferentially controls H3K4 methylation and expression of many hematopoietic development-associated genes including several key transcriptional and chromatin regulators involved in HSC function. Collectively, our results establish a critical and selective role of Dpy30 and the H3K4 methylation activity of the Set1/Mll complexes for maintaining the identity and function of adult HSCs.
Collapse
Affiliation(s)
- Zhenhua Yang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| | - Kushani Shah
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| |
Collapse
|
20
|
De Braekeleer M, Douet-Guilbert N, De Braekeleer E. Prognostic impact ofp15gene aberrations in acute leukemia. Leuk Lymphoma 2016; 58:257-265. [DOI: 10.1080/10428194.2016.1201574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Ward D, Carter D, Homer M, Marucci L, Gampel A. Mathematical modeling reveals differential effects of erythropoietin on proliferation and lineage commitment of human hematopoietic progenitors in early erythroid culture. Haematologica 2015; 101:286-96. [PMID: 26589912 DOI: 10.3324/haematol.2015.133637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023] Open
Abstract
Erythropoietin is essential for the production of mature erythroid cells, promoting both proliferation and survival. Whether erythropoietin and other cytokines can influence lineage commitment of hematopoietic stem and progenitor cells is of significant interest. To study lineage restriction of the common myeloid progenitor to the megakaryocyte/erythroid progenitor of peripheral blood CD34(+) cells, we have shown that the cell surface protein CD36 identifies the earliest lineage restricted megakaryocyte/erythroid progenitor. Using this marker and carboxyfluorescein succinimidyl ester to track cell divisions in vitro, we have developed a mathematical model that accurately predicts population dynamics of erythroid culture. Parameters derived from the modeling of cultures without added erythropoietin indicate that the rate of lineage restriction is not affected by erythropoietin. By contrast, megakaryocyte/erythroid progenitor proliferation is sensitive to erythropoietin from the time that CD36 first appears at the cell surface. These results shed new light on the role of erythropoietin in erythropoiesis and provide a powerful tool for further study of hematopoietic progenitor lineage restriction and erythropoiesis.
Collapse
Affiliation(s)
- Daniel Ward
- Department of Engineering Mathematics, Faculty of Engineering, University of Bristol
| | - Deborah Carter
- School of Biochemistry, Faculty of Medical and Veterinary Science, University of Bristol, UK
| | - Martin Homer
- Department of Engineering Mathematics, Faculty of Engineering, University of Bristol
| | - Lucia Marucci
- Department of Engineering Mathematics, Faculty of Engineering, University of Bristol
| | - Alexandra Gampel
- School of Biochemistry, Faculty of Medical and Veterinary Science, University of Bristol, UK
| |
Collapse
|
22
|
Amanatiadou EP, Papadopoulos GL, Strouboulis J, Vizirianakis IS. GATA1 and PU.1 Bind to Ribosomal Protein Genes in Erythroid Cells: Implications for Ribosomopathies. PLoS One 2015; 10:e0140077. [PMID: 26447946 PMCID: PMC4598024 DOI: 10.1371/journal.pone.0140077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022] Open
Abstract
The clear connection between ribosome biogenesis dysfunction and specific hematopoiesis-related disorders prompted us to examine the role of critical lineage-specific transcription factors in the transcriptional regulation of ribosomal protein (RP) genes during terminal erythroid differentiation. By applying EMSA and ChIP methodologies in mouse erythroleukemia cells we show that GATA1 and PU.1 bind in vitro and in vivo the proximal promoter region of the RPS19 gene which is frequently mutated in Diamond-Blackfan Anemia. Moreover, ChIPseq data analysis also demonstrates that several RP genes are enriched as potential GATA1 and PU.1 gene targets in mouse and human erythroid cells, with GATA1 binding showing an association with higher ribosomal protein gene expression levels during terminal erythroid differentiation in human and mouse. Our results suggest that RP gene expression and hence balanced ribosome biosynthesis may be specifically and selectively regulated by lineage specific transcription factors during hematopoiesis, a finding which may be clinically relevant to ribosomopathies.
Collapse
Affiliation(s)
- Elsa P. Amanatiadou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giorgio L. Papadopoulos
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- * E-mail: (JS); (ISV)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail: (JS); (ISV)
| |
Collapse
|
23
|
Pina C, Teles J, Fugazza C, May G, Wang D, Guo Y, Soneji S, Brown J, Edén P, Ohlsson M, Peterson C, Enver T. Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis. Cell Rep 2015; 11:1503-10. [PMID: 26051941 PMCID: PMC4528262 DOI: 10.1016/j.celrep.2015.05.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 04/02/2015] [Accepted: 05/10/2015] [Indexed: 10/29/2022] Open
Abstract
We explore cell heterogeneity during spontaneous and transcription-factor-driven commitment for network inference in hematopoiesis. Since individual genes display discrete OFF states or a distribution of ON levels, we compute and combine pairwise gene associations from binary and continuous components of gene expression in single cells. Ddit3 emerges as a regulatory node with positive linkage to erythroid regulators and negative association with myeloid determinants. Ddit3 loss impairs erythroid colony output from multipotent cells, while forcing Ddit3 in granulo-monocytic progenitors (GMPs) enhances self-renewal and impedes differentiation. Network analysis of Ddit3-transduced GMPs reveals uncoupling of myeloid networks and strengthening of erythroid linkages. RNA sequencing suggests that Ddit3 acts through development or stabilization of a precursor upstream of GMPs with inherent Meg-E potential. The enrichment of Gata2 target genes in Ddit3-dependent transcriptional responses suggests that Ddit3 functions in an erythroid transcriptional network nucleated by Gata2.
Collapse
Affiliation(s)
- Cristina Pina
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - José Teles
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK; Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Cristina Fugazza
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Gillian May
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Dapeng Wang
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Yanping Guo
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Shamit Soneji
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - John Brown
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Patrik Edén
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Mattias Ohlsson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Carsten Peterson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Tariq Enver
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK.
| |
Collapse
|
24
|
Systems mapping for hematopoietic progenitor cell heterogeneity. PLoS One 2015; 10:e0126937. [PMID: 25970338 PMCID: PMC4430299 DOI: 10.1371/journal.pone.0126937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/09/2015] [Indexed: 11/23/2022] Open
Abstract
Cells with the same genotype growing under the same conditions can show different phenotypes, which is known as “population heterogeneity”. The heterogeneity of hematopoietic progenitor cells has an effect on their differentiation potential and lineage choices. However, the genetic mechanisms governing population heterogeneity remain unclear. Here, we present a statistical model for mapping the quantitative trait locus (QTL) that affects hematopoietic cell heterogeneity. This strategy, termed systems mapping, integrates a system of differential equations into the framework for systems mapping, allowing hypotheses regarding the interplay between genetic actions and cell heterogeneity to be tested. A simulation approach based on cell heterogeneity dynamics has been designed to test the statistical properties of the model. This model not only considers the traditional QTLs, but also indicates the methylated QTLs that can illustrate non-genetic individual differences. It has significant implications for probing the molecular, genetic and epigenetic mechanisms of hematopoietic progenitor cell heterogeneity.
Collapse
|
25
|
Yin J, Madaan U, Park A, Aftab N, Savage-Dunn C. Multiple cis elements and GATA factors regulate a cuticle collagen gene in Caenorhabditis elegans. Genesis 2015; 53:278-84. [PMID: 25711168 DOI: 10.1002/dvg.22847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 01/05/2023]
Abstract
The cuticle of the nematode Caenorhabditis elegans is a specialized extracellular matrix whose major component is collagen. Cuticle collagens are encoded by a large multigene family consisting of more than 150 members. Cuticle collagen genes are expressed in epidermis (hypodermis) and may be stage-specific or cyclically expressed. We identified cuticle collagen genes as transcriptional targets of the DBL-1 TGF-β-related signaling pathway. These studies prompted us to investigate the cis-regulatory sequences required for transcription of one of the target genes, col-41. We generated reporter constructs that reproduce stage- and tissue-specific expression of fluorescent markers. We identify four conserved sequence elements that are required for transcription of reporters. Finally, we provide evidence that col-41 expression is controlled by a sequence element containing two GATA sites and by the epidermal GATA transcription factors ELT-1 and ELT-3.
Collapse
Affiliation(s)
- Jianghua Yin
- Department of Biology, Queens College, CUNY, Flushing, New York; The Graduate Center, CUNY, New York, New York
| | | | | | | | | |
Collapse
|
26
|
Humeniuk R, Koller R, Bies J, Aplan P, Wolff L. Brief report: Loss of p15Ink4b accelerates development of myeloid neoplasms in Nup98-HoxD13 transgenic mice. Stem Cells 2014; 32:1361-6. [PMID: 24449168 DOI: 10.1002/stem.1635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/13/2013] [Indexed: 12/26/2022]
Abstract
Homeostasis of hematopoietic stem and progenitor cells is a tightly regulated process. The disturbance of the balance in the hematopoietic progenitor pool can result in favorable conditions for development of diseases such as myelodysplastic syndromes and leukemia. It has been shown recently that mice lacking p15Ink4b have skewed differentiation of common myeloid progenitors toward the myeloid lineage at the expense of erythroid progenitors. The lack of p15INK4B expression in human leukemic blasts has been linked to poor prognosis and increased risk of myelodysplastic syndromes transformation to acute myeloid leukemia. However, the role of p15Ink4b in disease development is just beginning to be elucidated. This study examines the collaboration of the loss of p15Ink4b with Nup98-HoxD13 translocation in the development of hematological malignancies in a mouse model. Here, we report that loss of p15Ink4b collaborates with Nup98-HoxD13 transgene in the development of predominantly myeloid neoplasms, namely acute myeloid leukemia, myeloproliferative disease, and myelodysplastic syndromes. This mouse model could be a very valuable tool for studying p15Ink4b function in tumorigenesis as well as preclinical drug testing.
Collapse
Affiliation(s)
- Rita Humeniuk
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
27
|
Karpurapu M, Ranjan R, Deng J, Chung S, Lee YG, Xiao L, Nirujogi TS, Jacobson JR, Park GY, Christman JW. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation. PLoS One 2014; 9:e93362. [PMID: 24695324 PMCID: PMC3973678 DOI: 10.1371/journal.pone.0093362] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/05/2014] [Indexed: 11/25/2022] Open
Abstract
The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediated active demethylation of the KLF4 promoter is necessary for transcriptional regulation of KLF4 by PU.1 during monocyte/macrophage differentiation.
Collapse
Affiliation(s)
- Manjula Karpurapu
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Ravi Ranjan
- Section of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jing Deng
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Sangwoon Chung
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Yong Gyu Lee
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Lei Xiao
- Section of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Teja Srinivas Nirujogi
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Jeffrey R. Jacobson
- Institute for Personalized Respiratory Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gye Young Park
- Section of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - John W Christman
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| |
Collapse
|
28
|
Hematopoietic stem and progenitor cells acquire distinct DNA-hypermethylation during in vitro culture. Sci Rep 2013; 3:3372. [PMID: 24284763 PMCID: PMC3842544 DOI: 10.1038/srep03372] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HPCs) can be maintained invitro, but the vast majority of their progeny loses stemness during culture. In this study, we compared DNA-methylation (DNAm) profiles of freshly isolated and culture-expanded HPCs. Culture conditions of CD34+ cells - either with or without mesenchymal stromal cells (MSCs) - had relatively little impact on DNAm, although proliferation is greatly increased by stromal support. However, all cultured HPCs - even those which remained CD34+ - acquired significant DNA-hypermethylation. DNA-hypermethylation occurred particularly in up-stream promoter regions, shore-regions of CpG islands, binding sites for PU.1, HOXA5 and RUNX1, and it was reflected in differential gene expression and variant transcripts of DNMT3A. Low concentrations of DNAm inhibitors slightly increased the frequency of colony-forming unit initiating cells. Our results demonstrate that HPCs acquire DNA-hypermethylation at specific sites in the genome which is relevant for the rapid loss of stemness during in vitro manipulation.
Collapse
|