1
|
Nguyen TT, Kane MA, Swaan PW. Determination of Site-Specific Phosphorylation Occupancy Using Targeted Mass Spectrometry Reveals the Regulation of Human Apical Bile Acid Transporter, ASBT. ACS OMEGA 2024; 9:38477-38489. [PMID: 39310206 PMCID: PMC11411523 DOI: 10.1021/acsomega.4c02999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024]
Abstract
The human apical bile acid transporter (hASBT, SLC10A2) reabsorbs bile acids in the distal ileum, facilitating their recycling to the liver and resecretion. Its activity has been implicated in various disease states, including Crohn's disease, hypercholesterolemia, cholestasis, and type-2 diabetes. Post-translational modifications such as N-glycosylation, ubiquitination, and S-acylation regulate ASBT function by controlling its translocation and stability. However, the precise role of phosphorylation and its relationship with activity remains unknown. Here, we employed parallel reaction monitoring targeted mass spectrometry to investigate ASBT phosphorylation in the presence of various kinase inhibitors and activators. Our study ascertains phosphorylation at multiple sites (Thr330, Ser334, and Ser335), with Ser335 being the predominant phosphosite. We further demonstrate the critical involvement of PKC in regulating ASBT activity by phosphorylation at Ser335. Importantly, we establish a proportional relationship between the phosphorylation level of Ser335 and ASBT bile acid uptake activity. Collectively, our findings shed light on the molecular mechanisms underlying phosphorylation-mediated regulation of ASBT.
Collapse
Affiliation(s)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
2
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
3
|
Abstract
Costunolide, a natural sesquiterpene lactone, has multiple pharmacological activities such as neuroprotection or induction of apoptosis and eryptosis. However, the effects of costunolide on pro-survival factors and enzymes in human erythrocytes, e.g. glutathione and glucose-6-phosphate dehydrogenase (G6PDH) respectively, have not been studied yet. Our aim was to determine the mechanisms underlying costunolide-induced eryptosis and to reverse this process. Phosphatidylserine exposure was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry, and intracellular glutathione [GSH]i from high performance liquid chromatography. The oxidized status of intracellular glutathione and enzyme activities were measured by spectrophotometry. Treatment of erythrocytes with costunolide dose-dependently enhanced the percentage of annexin-V-binding cells, decreased the cell volume, depleted [GSH]i and completely inhibited G6PDH activity. The effects of costunolide on annexin-V-binding and cell volume were significantly reversed by pre-treatment of erythrocytes with the specific PKC-α inhibitor chelerythrine. The latter, however, had no effect on costunolide-induced GSH depletion. Costunolide induces eryptosis, depletes [GSH]i and inactivates G6PDH activity. Furthermore, our study reveals an inhibitory effect of chelerythrine on costunolide-induced eryptosis, indicating a relationship between costunolide and PKC-α. In addition, chelerythrine acts independently of the GSH depletion. Understanding the mechanisms of G6PDH inhibition accompanied by GSH depletion should be useful for development of anti-malarial therapeutic strategies or for synthetic lethality-based approaches to escalate oxidative stress in cancer cells for their sensitization to chemotherapy and radiotherapy.
Collapse
|
4
|
Wang H, Liang Y, Yin Y, Zhang J, Su W, White AM, Bin Jiang, Xu J, Zhang Y, Stewart S, Lu X, He X. Carbon nano-onion-mediated dual targeting of P-selectin and P-glycoprotein to overcome cancer drug resistance. Nat Commun 2021; 12:312. [PMID: 33436622 PMCID: PMC7803730 DOI: 10.1038/s41467-020-20588-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The transmembrane P-glycoprotein (P-gp) pumps that efflux drugs are a major mechanism of cancer drug resistance. They are also important in protecting normal tissue cells from poisonous xenobiotics and endogenous metabolites. Here, we report a fucoidan-decorated silica-carbon nano-onion (FSCNO) hybrid nanoparticle that targets tumor vasculature to specifically release P-gp inhibitor and anticancer drug into tumor cells. The tumor vasculature targeting capability of the nanoparticle is demonstrated using multiple models. Moreover, we reveal the superior light absorption property of nano-onion in the near infrared region (NIR), which enables triggered drug release from the nanoparticle at a low NIR power. The released inhibitor selectively binds to P-gp pumps and disables their function, which improves the bioavailability of anticancer drug inside the cells. Furthermore, free P-gp inhibitor significantly increases the systemic toxicity of a chemotherapy drug, which can be resolved by delivering them with FSCNO nanoparticles in combination with a short low-power NIR laser irradiation.
Collapse
Affiliation(s)
- Hai Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Yutong Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Wen Su
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yuntian Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics and Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
5
|
Steelman LS, Chappell WH, Akula SM, Abrams SL, Cocco L, Manzoli L, Ratti S, Martelli AM, Montalto G, Cervello M, Libra M, Candido S, McCubrey JA. Therapeutic resistance in breast cancer cells can result from deregulated EGFR signaling. Adv Biol Regul 2020; 78:100758. [PMID: 33022466 DOI: 10.1016/j.jbior.2020.100758] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The epidermal growth factor receptor (EGFR) interacts with various downstream molecules including phospholipase C (PLC)/protein kinase C (PKC), Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/GSK-3, Jak/STAT and others. Often these pathways are deregulated in human malignancies such as breast cancer. Various therapeutic approaches to inhibit the activity of EGFR family members including small molecule inhibitors and monoclonal antibodies (MoAb) have been developed. A common problem with cancer treatments is the development of drug-resistance. We examined the effects of a conditionally-activated EGFR (v-Erb-B:ER) on the resistance of breast cancer cells to commonly used chemotherapeutic drugs such as doxorubicin, daunorubicin, paclitaxel, cisplatin and 5-flurouracil as well as ionizing radiation (IR). v-Erb-B is similar to the EGFR-variant EGFRvIII, which is expressed in various cancers including breast, brain, prostate. Both v-Erb-B and EGFRvIII encode the EGFR kinase domain but lack key components present in the extracellular domain of EGFR which normally regulate its activity and ligand-dependence. The v-Erb-B oncogene was ligated to the hormone binding domain of the estrogen receptor (ER) which results in regulation of the activity of the v-Erb-ER construct by addition of either estrogen (E2) or 4-hydroxytamoxifen (4HT) to the culture media. Introduction of the v-Erb-B:ER construct into the MCF-7 breast cancer cell line increased the resistance to the cells to various chemotherapeutic drugs, hormonal-based therapeutics and IR. These results point to the important effects that aberrant expression of EGFR kinase domain can have on therapeutic resistance.
Collapse
Affiliation(s)
- Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - William H Chappell
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Massimo Libra
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
6
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
7
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbanzadeh A, Fotouhi A, Bisadi A, Aghebati-Maleki L, Baradaran B. Prospects for the involvement of cancer stem cells in the pathogenesis of osteosarcoma. J Cell Physiol 2019; 235:4167-4182. [PMID: 31709547 DOI: 10.1002/jcp.29344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
Osteosarcoma (OS) is one of the most common bone tumors in children and adolescents that cause a high rate of mortality in this age group and tends to be metastatic, in spite of chemotherapy and surgery. The main reason for this can be returned to a small group of malignant cells called cancer stem cells (CSCs). OS-CSCs play a key role in the resistance to treatment and relapse and metastasis through self-renewal and differentiation abilities. In this review, we intend to go through the different aspects of this malignant disease, including the cancer stem cell-phenotype, methods for isolating CSCs, signaling pathways, and molecular markers in this disease, and drugs showing resistance in treatment efforts of OS.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Bisadi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Liu T, Wei R, Zhang Y, Chen W, Liu H. Association between NF-κB expression and drug resistance of liver cancer. Oncol Lett 2018; 17:1030-1034. [PMID: 30655862 PMCID: PMC6312998 DOI: 10.3892/ol.2018.9640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Association between the expression of nuclear factor κB (NF-κB) and the drug resistance of hepatoma cells was investigated. HepG-2 cells and HepG2/ADM cells were cultured, respectively. The morphology and status of the two groups of cells were observed by cell white light. The immunofluorescence by NF-κB and MDR1 staining on HepG-2 cells and HepG2/ADM cells, respectively, was applied and the fluorescence expression in the two groups of cells was observed. RT-qPCR was used to detect the expression of NF-κB and MDR1 mRNA, the NF-κB and MDR1 protein expression was detected by western blot analysis. The results of cell white illumination showed that the structure of HepG-2 and HepG2/ADM cells was complete and the cell morphology was normal, and there was no significant difference, and could be used for comparative study. Immunofluorescence staining showed that the expression of NF-κB and MDR1 in HepG-2 cells was very low, while the expression of NF-κB and MDR1 in HepG2/ADM cells was increased significantly. The RT-qPCR results showed that NF-κB and MDR1 mRNA expression in HepG-2 cells was very low, while NF-κB and MDR1 mRNA expression in HepG-2/ADM cells was significantly increased, and western blot results showed that NF-κB and MDR1 protein expression in HepG-2 cells was very low, while NF-κB and MDR1 protein expression in HepG-2/ADM cells was increased significantly. The results of variance analysis showed that there was significant difference in the expression of the control group and paeonol group (P<0.01). In conclusion, the expression of NF-κB in the drug-resistant cells of liver cancer is closely related to the resistance-related gene MDR1. This result may provide a new solution for the drug resistance of liver cancer.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Rendong Wei
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Yiting Zhang
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Wen Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Haidong Liu
- Department of Digestive Diseases, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
9
|
Protein Kinases C-Mediated Regulations of Drug Transporter Activity, Localization and Expression. Int J Mol Sci 2017; 18:ijms18040764. [PMID: 28375174 PMCID: PMC5412348 DOI: 10.3390/ijms18040764] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023] Open
Abstract
Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug–drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs) in transporter regulations are summarized and discussed. Both solute carrier (SLC) and ATP-binding cassette (ABC) drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.
Collapse
|
10
|
van Gijn R, Zuidema X, Bult A, Beijnen JH. Protein kinase C as a target for new anti-cancer agents. J Oncol Pharm Pract 2016. [DOI: 10.1177/107815529900500402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer joins the category of diseases involving abnormalities in the rate of proliferation of cells and is associated with uncontrolled cell division, where cells either generate their own growth-promoting stimuli or neighboring cells or do not respond to growth inhibitory signals. Protein kinase C (PKC) is one of the key elements in the tumor growth signal transduction pathways and is found to be overexpressed in several malignant cell types. A way to control cell proliferation and cell differentiation is by influencing signal transduction pathways by modulation of PKC. PKC encloses 12 different isoenzymes, and each isoenzyme is found to have a different functional property. Because specific PKC isoenzyme types are present in different (malignant) cell species, they may be an attractive target in the development of anti-cancer agents. Classification and identification of the available PKC isoenzymes in different tumor cells could be useful in targeting specific tumors. PKC also tends to be overexpressed in association with the multidrug resistance pheno-type. This concise review deals with the role of PKC isoenzymes in (tumor) cell biology and evaluates the antineoplastic agents interacting on PKC isoenzymes.
Collapse
Affiliation(s)
- Roel van Gijn
- Department of Pharmacy and Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Xander Zuidema
- Department of Pharmaceutical Analysis and Toxicology, Faculty of Pharmacy, Utrecht University, Utrecht, The Netherlands
| | - Auke Bult
- Department of Pharmaceutical Analysis and Toxicology, Faculty of Pharmacy, Utrecht University, Utrecht, The Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy and Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands, Department of Pharmaceutical Analysis and Toxicology, Faculty of Pharmacy, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Verebova V, Belej D, Joniova J, Jurasekova Z, Miskovsky P, Kozar T, Horvath D, Stanicova J, Huntosova V. Deeper insights into the drug defense of glioma cells against hydrophobic molecules. Int J Pharm 2016; 503:56-67. [PMID: 26940808 DOI: 10.1016/j.ijpharm.2016.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/28/2022]
Abstract
By means of fluorescence microscopy the intracellular distribution of fluorescent drugs with different hydrophobicity (quinizarin, emodin and hypericin) was studied. Selective photoactivation of these drugs in precisely defined position (nuclear envelope) allowed moderately hydrophobic emodin enter the nucleus. Highly hydrophobic hypericin was predominantly kept in the membranes with no fluorescence observed in the nucleus. The redistribution of quinizarin, emodin and hypericin between lipids, proteins and DNA was studied in solutions and cells. Based on these results was proposed theoretical model of hydrophobic drugs' nuclear internalization after photo-activation. Molecular docking models showed that hypericin has the strongest affinity to P-glycoprotein involved in the cell detoxification. Presence of 10 μM quinizarin, emodin or hypericin increased P-glycoprotein function in U87 MG cells. Moreover, emodin pretreatment allowed quinizarin nuclear internalization without photo-activation, which was not the case for hypericin. The synergy of such pretreatment and photo-activation should lessen the drug doses with simultaneous increase of drug efficacy triggering cell apoptosis/necrosis.
Collapse
Affiliation(s)
- Valeria Verebova
- Institute of Biophysics, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia.
| | - Dominik Belej
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| | - Jaroslava Joniova
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| | - Zuzana Jurasekova
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| | - Pavol Miskovsky
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| | - Tibor Kozar
- Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| | - Denis Horvath
- Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| | - Jana Stanicova
- Institute of Biophysics, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague 2, Czech Republic.
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| |
Collapse
|
12
|
Miklos W, Pelivan K, Kowol CR, Pirker C, Dornetshuber-Fleiss R, Spitzwieser M, Englinger B, van Schoonhoven S, Cichna-Markl M, Koellensperger G, Keppler BK, Berger W, Heffeter P. Triapine-mediated ABCB1 induction via PKC induces widespread therapy unresponsiveness but is not underlying acquired triapine resistance. Cancer Lett 2015; 361:112-20. [PMID: 25749419 DOI: 10.1016/j.canlet.2015.02.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Although triapine is promising for treatment of advanced leukemia, it failed against solid tumors due to widely unknown reasons. To address this issue, a new triapine-resistant cell line (SW480/tria) was generated by drug selection and investigated in this study. Notably, SW480/tria cells displayed broad cross-resistance against several known ABCB1 substrates due to high ABCB1 levels (induced by promoter hypomethylation). However, ABCB1 inhibition did not re-sensitize SW480/tria cells to triapine and subsequent analysis revealed that triapine is only a weak ABCB1 substrate without significant interaction with the ABCB1 transport function. Interestingly, in chemo-naive, parental SW480 cells short-time (24 h) treatment with triapine stimulated ABCB1 expression. These effects were based on activation of protein kinase C (PKC), a known response to cellular stress. In accordance, SW480/tria cells were characterized by elevated levels of PKC. Together, this led to the conclusion that increased ABCB1 expression is not the major mechanism of triapine resistance in SW480/tria cells. In contrast, increased ABCB1 expression was found to be a consequence of triapine stress-induced PKC activation. These data are especially of importance when considering the choice of chemotherapeutics for combination with triapine.
Collapse
Affiliation(s)
- W Miklos
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Pelivan
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - C R Kowol
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - C Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - R Dornetshuber-Fleiss
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Department of Pharmacology and Toxicology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - M Spitzwieser
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - B Englinger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S van Schoonhoven
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Cichna-Markl
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - G Koellensperger
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - B K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - W Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - P Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria.
| |
Collapse
|
13
|
Li S, Sun W, Wang H, Zuo D, Hua Y, Cai Z. Research progress on the multidrug resistance mechanisms of osteosarcoma chemotherapy and reversal. Tumour Biol 2015; 36:1329-38. [PMID: 25666750 DOI: 10.1007/s13277-015-3181-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/27/2015] [Indexed: 01/23/2023] Open
Abstract
Osteosarcoma (OS) is the most common and aggressive primary malignant type of bone cancer in children and adolescents. Chemotherapy is one of the most important treatments for OS. Although cancer therapy has improved over the past few decades, survival outcomes for OS patients remain unsatisfactory. One of the primary reasons for the failure of current treatments is that patients with stage IV cancer often develop resistance to anticancer agents. This article will review multidrug resistance (MDR) mechanisms of OS and strategies for overcoming resistance.
Collapse
Affiliation(s)
- Suoyuan Li
- Department of Orthopedics, Shanghai First People's Hospital, Nanjing Medical University, 100 Haining Rd, Shanghai, 200072, China,
| | | | | | | | | | | |
Collapse
|
14
|
Guo Y, An H, Feng L, Liu Q, Wang S, Zhang T. Sinapine as an active compound for inhibiting the proliferation of Caco-2 cells via downregulation of P-glycoprotein. Food Chem Toxicol 2014; 67:187-92. [PMID: 24607798 DOI: 10.1016/j.fct.2014.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/11/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Sinapine, an alkaloid from seeds of the cruciferous species, shows favorable biological activities such as antioxidant and radio-protective activities. However, the inhibitory effect of sinapine on tumors, and the molecular mechanisms have not been completely understood thus far. In this study, we determined anti-proliferative effects of sinapine. We examined the anti-tumor effects of the combination of sinapine and doxorubicin. The results of the MTT assay and apoptosis showed that sinapine increased the sensitivity of Caco-2 cells to doxorubicin in a dose-dependent manner, whereas no or less effect was observed in the cells treated with doxorubicin alone. The combination of sinapine and doxorubicin had a synergistic effect and increased the cytotoxicity of doxorubicin against Caco-2 cells. Doxorubicin accumulation assay showed that sinapine increased the intracellular accumulation of doxorubicin in dose-dependent manner. Immunoblotting and QT-PCR analysis showed that sinapine suppressed P-glycoprotein (P-gp) expression via ubiquitination. A significant correlation was observed between the expression of p-ERK1/2 and P-gp. These results indicated that sinapine played an important role in the down-regulation of P-gp expression through suppression of FGFR4-FRS2α-ERK1/2 signaling pathway. To our knowledge, this is the first study to show that sinapine can be used as an effective natural compound for chemo-resistance.
Collapse
Affiliation(s)
- Ying Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Hongli An
- Center for Translational Medicine, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liuxin Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Qi Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tao Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
15
|
Kim CW, Toita R, Kang JH, Li K, Lee EK, Zhao GX, Funamoto D, Nobori T, Nakamura Y, Mori T, Niidome T, Katayama Y. Stabilization of cancer-specific gene carrier via hydrophobic interaction for a clear-cut response to cancer signaling. J Control Release 2013; 170:469-76. [DOI: 10.1016/j.jconrel.2013.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/09/2013] [Accepted: 06/03/2013] [Indexed: 12/14/2022]
|
16
|
Germann UA, Chambers TC. Molecular analysis of the multidrug transporter, P-glycoprotein. Cytotechnology 2012; 27:31-60. [PMID: 19002782 DOI: 10.1023/a:1008023629269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity.
Collapse
Affiliation(s)
- U A Germann
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, MA, 02139-4242, U.S.A.,
| | | |
Collapse
|
17
|
Sun J, Yeung CA, Co NN, Tsang TY, Yau E, Luo K, Wu P, Wa JCY, Fung KP, Kwok TT, Liu F. Clitocine reversal of P-glycoprotein associated multi-drug resistance through down-regulation of transcription factor NF-κB in R-HepG2 cell line. PLoS One 2012; 7:e40720. [PMID: 22927901 PMCID: PMC3425549 DOI: 10.1371/journal.pone.0040720] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/12/2012] [Indexed: 01/31/2023] Open
Abstract
Multidrug resistance(MDR)is one of the major reasons for failure in cancer chemotherapy and its suppression may increase the efficacy of therapy. The human multidrug resistance 1 (MDR1) gene encodes the plasma membrane P-glycoprotein (P-gp) that pumps various anti-cancer agents out of the cancer cell. R-HepG2 and MES-SA/Dx5 cells are doxorubicin induced P-gp over-expressed MDR sublines of human hepatocellular carcinoma HepG2 cells and human uterine carcinoma MES-SA cells respectively. Herein, we observed that clitocine, a natural compound extracted from Leucopaxillus giganteus, presented similar cytotoxicity in multidrug resistant cell lines compared with their parental cell lines and significantly suppressed the expression of P-gp in R-HepG2 and MES-SA/Dx5 cells. Further study showed that the clitocine increased the sensitivity and intracellular accumulation of doxorubicin in R-HepG2 cells accompanying down-regulated MDR1 mRNA level and promoter activity, indicating the reversal effect of MDR by clitocine. A 5′-serial truncation analysis of the MDR1 promoter defined a region from position −450 to −193 to be critical for clitocine suppression of MDR1. Mutation of a consensus NF-κB binding site in the defined region and overexpression of NF-κB p65 could offset the suppression effect of clitocine on MDR1 promoter. By immunohistochemistry, clitocine was confirmed to suppress the protein levels of both P-gp and NF-κB p65 in R-HepG2 cells and tumors. Clitocine also inhibited the expression of NF-κB p65 in MES-SA/Dx5. More importantly, clitocine could suppress the NF-κB activation even in presence of doxorubicin. Taken together; our results suggested that clitocine could reverse P-gp associated MDR via down-regulation of NF-κB.
Collapse
Affiliation(s)
- Jianguo Sun
- Zhejiang University, Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zijinggang Campus, Hangzhou, People's Republic of China
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
| | - Chilam Au Yeung
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
- School of Biomedical Sciences (SBS), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Ngai Na Co
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
- School of Biomedical Sciences (SBS), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Tsun Yee Tsang
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
- School of Biomedical Sciences (SBS), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Esmond Yau
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
- School of Biomedical Sciences (SBS), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Kewang Luo
- Zhejiang University, Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zijinggang Campus, Hangzhou, People's Republic of China
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
| | - Ping Wu
- Zhejiang University, Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zijinggang Campus, Hangzhou, People's Republic of China
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
| | - Judy Chan Yuet Wa
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
- School of Biomedical Sciences (SBS), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Kwok-Pui Fung
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
- School of Biomedical Sciences (SBS), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Tim-Tak Kwok
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
- School of Biomedical Sciences (SBS), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
- * E-mail: (FL); (TTK)
| | - Feiyan Liu
- Zhejiang University, Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zijinggang Campus, Hangzhou, People's Republic of China
- Zhejiang University, Joint centre of Zhejiang University and The Chinese University of Hong Kong on Natural Products and Toxicology Research, Zijinggang Campus, Hangzhou , People's Republic of China
- * E-mail: (FL); (TTK)
| |
Collapse
|
18
|
Lee SK, Shehzad A, Jung JC, Sonn JK, Lee JT, Park JW, Lee YS. Protein kinase Cα protects against multidrug resistance in human colon cancer cells. Mol Cells 2012; 34:61-9. [PMID: 22639047 PMCID: PMC3887773 DOI: 10.1007/s10059-012-0087-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022] Open
Abstract
Multidrug resistance is the phenomenon by which, after exposure to a single chemotherapeutic agent, cancer cells evade the agent's cytotoxic effects as well as become resistant to several classes of diverse drugs. ATP-binding cassette (ABC) transporters are a family of transporter proteins that contribute to drug resistance via a n ATP - dependent drug efflux pump. P-glycoprotein (P-gp) is a prominent ABC superfamily protein encoded by the mdr gene which has the ability to mediate the cellular extrusion of xenobiotics and anticancer drugs from tumor cells. Exclusively expressed P-gp cells from the human colon cancer HCT15/DOX line showed resistance to doxorubicin while parental HCT15 cells treated with doxorubicin displayed typical signs of apoptosis. In order to verify the hypothesis that expression of MDR is controlled in part, by protein kinase C (PKC), expression patterns of different PKC isoforms were examined in both cell lines. Of the PKC isoforms evaluated, the membrane translocation and expression levels of PKCα were strikingly increased in HCT15/DOX cells. PKCα reversed doxorubicin-induced apoptosis through the scavenging of ROS as well as inhibition of PARP cleavage. In addition, inhibition of PKCα with Go6976, a specific inhibitor of classical PKC, led to reduced MDR expression and increased doxorubicin-induced apoptosis. Knockdown of PKCα by siRNA diminished the protective effects of PKCα for doxorubicin-induced apoptosis. These results suggested that over-expression and activity of PKCα is closely associated with the regulation of the MDR phenotype in human colon cancer HCT15 cells and provided insight into a new strategy for inhibiting doxorubicin resistance in human cancers.
Collapse
Affiliation(s)
- Se-Kyoung Lee
- School of Life Sciences, Kyungpook National University, Daegu 702-701,
Korea
| | - Adeeb Shehzad
- School of Life Sciences, Kyungpook National University, Daegu 702-701,
Korea
| | | | | | | | - Jeen-Woo Park
- School of Life Sciences, Kyungpook National University, Daegu 702-701,
Korea
| | - Young-Sup Lee
- School of Life Sciences, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
19
|
Zhou JX, Han JB, Chen SM, Xu Y, Kong YG, Xiao BK, Tao ZZ. γ-secretase inhibition combined with cisplatin enhances apoptosis of nasopharyngeal carcinoma cells. Exp Ther Med 2011; 3:357-361. [PMID: 22969896 DOI: 10.3892/etm.2011.410] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/02/2011] [Indexed: 11/06/2022] Open
Abstract
The Notch signaling pathway plays an important role in the proliferation and differentiation of cells. Although recent studies have shown that Notch plays a role in the mechanisms of cisplatin resistance, the mechanism by which Notch plays roles in intrinsic or acquired cisplatin resistance remains unclear. In the present study, poorly differentiated nasopharyngeal carcinoma cells were treated with a γ-secretase inhibitor (DAPT), which led to a decrease in the Notch intracellular domain and inhibition of Notch signaling. Treatment was not sufficient to induce pronounced apoptosis of CNE-2 cells, but did result in the down-regulation of the P-glycoprotein and ERCC1 protein. In contrast, the combined treatment of DAPT and cisplatin induced substantial cell apoptosis compared to cisplatin treatment alone.
Collapse
Affiliation(s)
- Jun-Xu Zhou
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen Y, Yu G, Yu D, Zhu M. PKCalpha-induced drug resistance in pancreatic cancer cells is associated with transforming growth factor-beta1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:104. [PMID: 20684793 PMCID: PMC2924847 DOI: 10.1186/1756-9966-29-104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 08/05/2010] [Indexed: 12/11/2022]
Abstract
Background Drug resistance remains a great challenge in the treatment of pancreatic cancer. The goal of this study was to determine whether TGF-β1 is associated with drug resistance in pancreatic cancer. Methods Pancreatic cancer BxPC3 cells were stably transfected with TGF-β1 cDNA. Cellular morphology and cell cycle were determined and the suppressive subtracted hybridization (SSH) assay was performed to identify differentially expressed genes induced by TGF-β1. Western blotting and immunohistochemistry were used to detect expression of TGF-β1-related genes in the cells and tissue samples. After that, the cells were further treated with an anti-cancer drug (e.g., cisplatin) after pre-incubated with the recombinant TGF-β1 plus PKCα inhibitor Gö6976. TGF-β1 type II receptor, TβRII was also knocked down using TβRII siRNA to assess the effects of these drugs in the cells. Cell viability was assessed by MTT assay. Results Overexpression of TGF-β1 leads to a markedly increased invasion potential but a reduced growth rate in BxPC3 cells. Recombinant TGF-β1 protein increases expression of PKCα in BxPC3 cells, a result that we confirmed by SSH. Moreover, TGF-β1 reduced the sensitivity of BxPC3 cells to cisplatin treatment, and this was mediated by upregulation of PKCα. However, blockage of PKCα with Gö6976 and TβRII with siRNA reversed the resistance of BxPC3 cells to gemcitabine, even in the presence of TGF-β1. Immunohistochemical data show that pancreatic cancers overexpress TGF-β1 and P-gp relative to normal tissues. In addition, TGF-β1 expression is associated with P-gp and membranous PKCα expression in pancreatic cancer. Conclusions TGF-β1-induced drug resistance in pancreatic cancer cells was associated with PKCα expression. The PKCα inhibitor Gö6976 could be a promising agent to sensitize pancreatic cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Ying Chen
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | | | | | | |
Collapse
|
21
|
Kang JH, Asami Y, Murata M, Kitazaki H, Sadanaga N, Tokunaga E, Shiotani S, Okada S, Maehara Y, Niidome T. Gold nanoparticle-based colorimetric assay for cancer diagnosis. Biosens Bioelectron 2010; 25:1869-74. [DOI: 10.1016/j.bios.2009.12.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
22
|
Wu DL, Sui FY, Du C, Zhang CW, Hui B, Xu SL, Lu HZ, Song GJ. Antisense expression of PKCα improved sensitivity of SGC7901/VCR cells to doxorubicin. World J Gastroenterol 2009; 15:1259-63. [PMID: 19291828 PMCID: PMC2658854 DOI: 10.3748/wjg.15.1259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore whether antisense blocking of protein kinase C alpha (PKCα) would reverse multi-drug resistance (MDR) in the vincristine (VCR)-resistant human gastric cancer cell line SGC7901/VCR.
METHODS: SGC7901/VCR cells expressing antisense PKCα, SGC7901/VCR/aPKC, were established by transfection with a recombinant plasmid reversely inserted with PKCα cDNA. Empty vector (PCI-neo)-transfected cell clones, SGC7901/VCR/neo, served as the control. Western blot method was used to detect PKCα content in SGC7901, SGC7901/VCR, SGC7901/VCR/neo and SGC7901/VCR/aPKC cells, using PKCα-specific antibody. The sensitivity of SGC7901, SGC7901/VCR, SGC7901/VCR/neo and SGC7901/VCR/aPKC cells to doxorubicin (DOX) in vitro was determined by MTT assay. The uptake of DOX in these cells was detected with fluorescence spectrophotometer.
RESULTS: Western blot analysis showed that the PKCα protein level was about 8.7-fold higher in SGC7901/VCR cells than that in SGC7901 cells, whereas the protein expression of PKCα was reduced by 78% in SGC7901/VCR/aPKC cells when compared with the SGC7901/VCR cells. SGC7901/VCR/aPKC cells had a 4.2-fold increase in DOX cytotoxicity, accompanied by a 1.7-fold increase of DOX accumulation in comparison with SGC7901/VCR cells.
CONCLUSION: PKCα positively regulates MDR in SGC7901 cells, and inhibition of PKCα can partially attenuate MDR in human gastric cancer cells.
Collapse
|
23
|
Chen LM, Liang YJ, Ruan JW, Ding Y, Wang XW, Shi Z, Gu LQ, Yang XP, Fu LW. Reversal of P-gp mediated multidrug resistance in-vitro and in-vivo by FG020318. J Pharm Pharmacol 2004; 56:1061-6. [PMID: 15285852 DOI: 10.1211/0022357043879] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Overexpression of P-glycoprotein (P-gp) by tumours results in multidrug resistance (MDR) to structurally and functionally unrelated chemotherapeutic drugs. Combined therapy with MDR-related cytotoxins and MDR modulators is a promising strategy to overcome clinical MDR. This study was performed to explore the MDR reversal activity of a novel compound 2-[4-(2-pyridin-2-yl-vinyl) phenyl]-4,5-bis-(4-N,N-diethylaminophenyl)-1(H)-imidazole (FG020318) in-vitro and in-vivo. Tetrazolium (MTT) assay was used to evaluate the ability of FG020318 to reverse drug resistance in two P-gp-expressing tumour cell lines, KBv200 and MCF-7/adr. Intracellular doxorubicin accumulation was determined by fluorescence spectrophotometry in MCF-7/adr cell line. The effect of FG020318 on P-gp function was demonstrated by rhodamine 123 (Rh123) accumulation in KBv200 cells. KBv200 cell xenograft models were established to study the in-vivo effect of FG020318 on reversing MDR. FG020318 was not cytotoxic by itself against P-gp expressing KBv200 cells and MCF-7/adr cells and their parental drug-sensitive KB cells and MCF-7 cells. FG020318 could significantly increase the sensitivity of MDR cells to antitumour drugs including doxorubicin and vincristine in MCF-7/adr cells and KBv200 cells, respectively. It was much stronger than the positive control verapamil in reversal of MDR. FG020318 also increased the intracellular accumulation of doxorubicin in a concentration-dependent manner in MCF-7/adr cells, but did not affect the accumulation of doxorubicin in drug-sensitive MCF-7 cells. The Rh123 accumulation in resistant KBv200 cells was also increased by the addition of FG020318, but Rh123 accumulation was not affected by FG020318 in drug-sensitive KB cells. FG020318 potentiated the antitumour activity of vincristine to KBv200 xenografts and was an efficacious modulator in-vivo. Our results suggested that FG020318 was a highly potent, efficacious MDR modulator not only in-vitro but also in-vivo. The reversal of drug resistance by FG020318 was probably related to the increased anticancer drug accumulation and its inhibition of P-gp function of MDR tumour cells.
Collapse
Affiliation(s)
- Li-ming Chen
- Cancer Center, Sun Yat-Sen University, Guangzhou 510060, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mahadevan D, List AF. Targeting the multidrug resistance-1 transporter in AML: molecular regulation and therapeutic strategies. Blood 2004; 104:1940-51. [PMID: 15217827 DOI: 10.1182/blood-2003-07-2490] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multidrug resistance-1 (MDR1) gene product, P-glycoprotein (P-gp), and the multidrug resistance-related proteins (MRPs) are members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter gene superfamily that regulates the trafficking of drugs, peptides, ions, and xenobiotics across cell membrane barriers. Three-dimensional modeling of human MDR1/P-gp indicates that these glycoproteins function as efficient, ATP-dependent gate-keepers, which scan the plasma membrane and its inner leaflet to flip lipophilic substrates to the outer membrane leaflet. Delineation of the adverse prognostic power of MDR1 in adult acute myeloid leukemia (AML) raised hopes that pharmacologic blockade of P-gp would improve the outcome of conventional cytotoxic therapy, perhaps more so than in any other human malignancy. Phase 3 clinical trials investigating first- and second-generation P-gp antagonists have yielded conflicting results, emphasizing the importance of applying preclinical principals to realistically appraise expectations for clinical benefit. Structure-based design strategies and the delineation of transcriptional regulators of survival gene cassettes promise to yield novel, more-effective strategies to overcome drug resistance. Lessons learned from investigations of these and other mechanisms of cellular defense hold promise for a renaissance in the development of targeted therapeutics in acute leukemia.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adenosine Triphosphate/chemistry
- Binding, Competitive
- Cell Survival
- Clinical Trials as Topic
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Membrane Transport Proteins
- Models, Chemical
- Models, Molecular
- Peptides/chemistry
Collapse
|
25
|
Plo I, Lehne G, Beckstrøm KJ, Maestre N, Bettaïeb A, Laurent G, Lautier D. Influence of ceramide metabolism on P-glycoprotein function in immature acute myeloid leukemia KG1a cells. Mol Pharmacol 2002; 62:304-12. [PMID: 12130682 DOI: 10.1124/mol.62.2.304] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have emphasized the role of glucosylceramide (Glu-Cer) synthase in multidrug resistance (MDR) regulation. However, the mechanism by which the inhibition of this enzyme results in increased drug retention and cytotoxicity remains unclear. In this study, we investigated the respective role of ceramide (Cer) accumulation and Glu-Cer derivatives depletion in MDR reversal effect of 1-phenyl-2-decanoylamino-3-morpholino-1-propanolol (PDMP), a Glu-Cer synthase inhibitor. We show here that treatment with PDMP resulted in increased rhodamine 123 (Rh123) retention and potent chemosensitization of P-glycoprotein (P-gp)-expressing cells, including KG1a cells, KG1a/200 cells, K562/138 cells, and K562/mdr-1 cells. Metabolic studies revealed that PDMP induced not only time-dependent Cer accumulation but also reduction of all glycosylated forms of Cer, including Glu-Cer, lactosylceramide (Lac-Cer), monosialo ganglioside (GM3) and disialo ganglioside (GD3). The influence of these metabolites on P-gp function was investigated by measuring Rh123 retention in PDMP-treated cells. P-gp function was found to be stimulated only by the addition of gangliosides in all resistant cell lines, whereas Glu-Cer, Lac-Cer, and Cer had no effect. Moreover, in KG1a/200 cells, GD3 and, to a lesser extent, GM3 were found to phosphorylate P-gp on serine residues. Altogether, these results suggest that, at least in leukemic cells, gangliosides depletion accounts for PDMP-mediated MDR reversal effect, and that gangliosides are important P-gp regulators perhaps through their capacity to modulate P-gp phosphorylation.
Collapse
Affiliation(s)
- Isabelle Plo
- Institut National de la Santé et de la Recherche Médicale (INSERM) E9910, Institut Claudius Régaud, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Felix RA, Barrand MA. P-glycoprotein expression in rat brain endothelial cells: evidence for regulation by transient oxidative stress. J Neurochem 2002; 80:64-72. [PMID: 11796744 DOI: 10.1046/j.0022-3042.2001.00660.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During ischaemia/reperfusion, cells of the blood-brain barrier are subjected to oxidative stress. This study uses primary cultured rat brain endothelial cells to examine the effect of such stresses on expression of multidrug transporters. H(2)O(2) up to 500 microm applied to cell monolayers caused a concentration-dependent increase in expression of P-glycoprotein (Pgp) but not of multidrug resistance-associated protein (Mrp1). Concentrations > 250 microm H(2)O(2) decreased cell viability. Application of 100 microm H(2)O(2) caused a significant increase after 48 h in Pgp functional activity, as assessed from [(3)H]vincristine accumulation experiments. At this concentration, H(2)O(2) produced a transient increase within 10 min followed by a sustained decrease in levels of intracellular reactive oxygen species (iROS), detectable by flow cytometry. Reoxygenation of cell monolayers after 6 h hypoxia gave rise to a similar transient increase in iROS and this also led to increased Pgp expression by 24 h. Increases were also observed within 4 h after both H(2)O(2) and hypoxia/reoxygenation treatments in mdr1a and mdr1b mRNA. Evidence suggests this was due to enhanced transcription rather than mRNA stabilization. Therefore, oxidative stress, by changing Pgp expression, may affect movement of Pgp substrates in and out of the brain.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- ATP-Binding Cassette Transporters/genetics
- Animals
- Cell Hypoxia/physiology
- Cell Survival/drug effects
- Cells, Cultured
- Cerebrovascular Circulation
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Hydrogen Peroxide/pharmacology
- Intracellular Membranes/metabolism
- Multidrug Resistance-Associated Proteins/genetics
- Osmolar Concentration
- Oxidants/pharmacology
- Oxidative Stress
- Oxygen/pharmacology
- RNA, Messenger/metabolism
- Rats
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Robert A Felix
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK.
| | | |
Collapse
|
27
|
Abstract
Protein kinase C (PKC) is a family of serine-threonine protein kinases that are involved in signal transduction pathways that regulate growth factor response, proliferation, and apoptosis. Its central role in these processes, which are closely involved in tumor initiation, progression, and response to antitumor agents, makes it an attractive therapeutic target in cancer. Despite initial activity seen in melanoma (bryostatin and UCN-01), non-Hodgkin's lymphoma (ISIS 3521, bryostatin, and UCN-01), and ovarian carcinoma (ISIS 3521 and bryostatin) in phase I studies, single-agent activity in those phase II studies reported to date has been limited. Preclinical data highlight a role for PKC in modulation of drug resistance and synergy with conventional cytotoxic drugs. A randomized phase III study of ISIS 3521 in combination with carboplatin and paclitaxel, compared with chemotherapy alone, in advanced non-small-cell lung cancer is underway. This paper reviews the rationale for using PKC inhibitors in cancer therapy, the challenges for clinical trial design, and the recent clinical experience with modulators of PKC activity.
Collapse
Affiliation(s)
- Helen C Swannie
- CRC Department of Medical Oncology, Royal Marsden Hospital, Sutton, Surrey, UK SM2 5NG.
| | | |
Collapse
|
28
|
Flescher E, Rotem R. Protein kinase C epsilon mediates the induction of P-glycoprotein in LNCaP prostate carcinoma cells. Cell Signal 2002; 14:37-43. [PMID: 11747987 DOI: 10.1016/s0898-6568(01)00215-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P-glycoprotein (P-gp) mediates drug resistance. Protein kinase C (PKC) expression correlates with drug resistance in several types of cancer. We determined whether PKC signals the induction of P-gp in LNCaP human prostate cancer cells, and identified a specific isozyme involved, in a model of aspirin-induced P-glycoprotein expression. An inhibitor of PKC activity, and a specific peptide inhibitor of PKC epsilon translocation, suppressed the induction of P-gp. The PKC activator ingenol, but not OAG, induced P-gp expression in a dose-dependent manner. Based on our results, we conclude that PKC epsilon mediates the induction of P-gp. Accordingly, PKC epsilon is activated and translocates from the membrane fraction to the cytoskeleton fraction in aspirin-treated cells. The findings of this study point to PKC epsilon as a signalling molecule for the induction of P-gp in LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- Eliezer Flescher
- Department of Human Microbiology, Sackler Faculty of Medicine, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
29
|
Gill PK, Gescher A, Gant TW. Regulation of MDR1 promoter activity in human breast carcinoma cells by protein kinase C isozymes alpha and theta. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4151-7. [PMID: 11488907 DOI: 10.1046/j.1432-1327.2001.02326.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increased levels of the protein kinase C (PKC) isoenzymes alpha and theta occur in conjunction with MDR1 gene expression in cells and tissues that have acquired a multidrug resistance (MDR) phenotype. Studies using PKC activators or antisense strategies against PKC suggest that activation of PKC engenders MDR1 gene transcription. In this study the potential roles of PKC-alpha and PKC-theta in MDR1 gene transcriptional regulation were explored. Human-derived MCF-7 breast cancer cells that lack constitutive expression of PKC-alpha or PKC-theta at detectable levels were transfected with full-length PKC-alpha or PKC-theta genes driven by the ecdysone promoter. Stable transfectants were selected by use of the appropriate antibiotics. Treatment of these cells with ponasterone A induced expression of PKC that was catalytically active and underwent translocation and down-regulation on exposure to 12-O-tetradecanoyl-13-phorbol acetate (TPA). These cells were used to analyse PKC-mediated regulation of the MDR1 promoter by further transient transfection with either 1073 bp of the MDR1 gene promoter or deletion fragments thereof to -8 bp, each linked to a chloramphenicol acetyl transferase (CAT) reporter gene. In PKC-alpha expressing cells TPA caused activation of all promoter fragments to -29 bp. This finding suggests that TPA-inducible MDR1 transcription mediated through the TPA responsive factor early growth response 1 (EGR-1) in this region of the promoter may be due to activation of PKC-alpha. In contrast, PKC-theta activated only two MDR1 fragments, -982 and -612 bp. The effect of TPA on reporter gene expression was attenuated by the PKC inhibitor GF 109203X. These data suggest that MDR1 promoter transcription can be regulated by PKC-alpha and PKC-theta. The results support the search for therapeutic strategies directed specifically against PKC-alpha to ameliorate resistance of tumours against cytotoxic agents.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Catalysis
- Chloramphenicol O-Acetyltransferase/metabolism
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors/pharmacology
- Gene Deletion
- Gene Expression Regulation, Enzymologic
- Genes, Reporter
- Humans
- Indoles/pharmacology
- Isoenzymes/metabolism
- Maleimides/pharmacology
- Phenotype
- Promoter Regions, Genetic
- Protein Isoforms
- Protein Kinase C/chemistry
- Protein Kinase C/metabolism
- Protein Kinase C-alpha
- Protein Kinase C-theta
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P K Gill
- MRC Toxicology Unit, Leicester, UK
| | | | | |
Collapse
|
30
|
Abstract
Drug resistance, to date, has primarily been attributed to increased drug export or detoxification mechanisms. Despite correlations between drug export and drug resistance, it is increasingly apparent that such mechanisms cannot fully account for chemoresistance in neoplasia. It is now widely accepted that chemotherapeutic drugs kill tumour cells by inducing apoptosis, a genetically regulated cell death programme. Evidence is emerging that the exploitation of survival pathways, which may have contributed to disease development in the first instance, may also be important in the development of the chemoresistance. This review discusses the components of and associations between multiple signalling cascades and their possible contribution to the development of neoplasia and the chemoresistant phenotype.
Collapse
Affiliation(s)
- D M O'Gorman
- Department of Biochemistry, University College Cork, Ireland
| | | |
Collapse
|
31
|
Meijer DK, Smit JW, Hooiveld GJ, van Montfoort JE, Jansen PL, Müller M. The molecular basis for hepatobiliary transport of organic cations and organic anions. PHARMACEUTICAL BIOTECHNOLOGY 2000; 12:89-157. [PMID: 10742973 DOI: 10.1007/0-306-46812-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D K Meijer
- Department of Pharmacokinetics and Drug Delivery, Groningen University Institute for Drug Exploration (GUIDE), The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Liu QY, Carson C, Ribecco M, Testolin L, Raptis L, Walker PR, Sikorska M. Effects of neoplastic transformation and teniposide (VM26) on protein kinase C isoform expression in rodent fibroblasts. Cancer Lett 2000; 153:13-23. [PMID: 10779625 DOI: 10.1016/s0304-3835(99)00417-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study examined changes in protein kinase C (PKC) isoforms in rodent fibroblasts (rat F111 and mouse NIH3T3), transformed by the polyoma virus middle T antigen (mT) and undergoing apoptosis in response to teniposide (VM26). The mT-transformed cells up-regulated PKC delta and down-regulated both PKC epsilon and PKC lambda expression, and were more sensitive to the drug than their non-transformed counterparts. The drug treatment further lowered the expression of PKC epsilon, triggered nuclear translocation of PKC delta and its site-specific proteolysis, consistent with the notion that changes in specific PKC isoforms play a role not only in the neoplastic transformation of fibroblasts, but also in their apoptotic response.
Collapse
Affiliation(s)
- Q Y Liu
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Idriss HT, Hannun YA, Boulpaep E, Basavappa S. Regulation of volume-activated chloride channels by P-glycoprotein: phosphorylation has the final say! J Physiol 2000; 524 Pt 3:629-36. [PMID: 10790147 PMCID: PMC2269906 DOI: 10.1111/j.1469-7793.2000.00629.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
P-glycoprotein (Pgp) is a transmembrane transporter causing efflux of a number of chemically unrelated drugs and is responsible for resistance to a variety of anticancer drugs during chemotherapy. Pgp overexpression in cells is also associated with volume-activated chloride channel activity; Pgp is thought to regulate such activity. Reversible phosphorylation is a possible mechanism for regulating the transport and chloride channel regulation functions of Pgp. Protein kinase C (PKC) is a good candidate for inducing such phosphorylation. Hierarchical multiple phosphorylation (e.g. of different serines and with different PKC isoforms) may shuttle the protein between its different states of activity (transport or channel regulation). Cell volume changes may trigger phosphorylation of Pgp at sites causing inhibition of transport. The possible regulation of chloride channels by Pgp and the potential involvement of reversible phosphorylation in such regulation is reviewed.
Collapse
Affiliation(s)
- H T Idriss
- School of Biomedical Sciences, Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, Scotland, UK.
| | | | | | | |
Collapse
|
34
|
Kantharidis P, El-Osta S, Silva MD, Lee G, Hu XF, Zalcberg J. Regulation of MDR1 gene expression: emerging concepts. Drug Resist Updat 2000; 3:99-108. [PMID: 11498374 DOI: 10.1054/drup.2000.0121] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Drug resistance genes, such as MDR1, involved in drug efflux, and their regulation have been the subject of intense research efforts in the past 10 years. Many factors and cellular signalling pathways play a role in the regulation of MDR1 gene expression. Commonly used chemotherapeutic agents activate in vitro and in vivo general stress response pathways, potential targets of which include MDR1 and other drug resistance genes. The contribution of these agents to the emergence of drug-resistant tumour cells is of concern. Recent evidence points to a role for the epigenetic regulation of MDR1 gene expression. The identification of key components in the DNA methylation/chromatin system of gene regulation may in time lead to more informed and targeted approaches to treating drug-resistant tumours. Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Phillip Kantharidis
- Sir Donald and Lady Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, St Andrews Place, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Neoplastic cell survival is governed by a balance between pro-apoptotic and anti-apoptotic signals. Noteworthy among several anti-apoptotic signaling elements is the protein kinase C (PKC) isoenzyme family, which mediates a central cytoprotective effect in the regulation of cell survival. Activation of PKC, and subsequent recruitment of numerous downstream elements such as the mitogen-activated protein kinase (MAPK) cascade, opposes initiation of the apoptotic cell death program by diverse cytotoxic stimuli. The understanding that the lethal actions of numerous antineoplastic agents are, in many instances, antagonized by cytoprotective signaling systems has been an important stimulus for the development of novel antineoplastic strategies. In this regard, inhibition of PKC, which has been shown to initiate apoptosis in a variety of malignant cell types, has recently been the focus of intense interest. Furthermore, there is accumulating evidence that selective targeting of PKC may prove useful in improving the therapeutic efficacy of established antineoplastic agents. Such chemosensitizing strategies can involve either (a) direct inhibition of PKC (e.g., following acute treatment with relatively specific inhibitors such as the synthetic sphingoid base analog safingol, or the novel staurosporine derivatives UCN-01 and CGP-41251) or (b) down-regulation (e.g., following chronic treatment with the non-tumor-promoting PKC activator bryostatin 1). In preclinical model systems, suppression of the cytoprotective function(s) of PKC potentiates the activity of cytotoxic agents (e.g., cytarabine) as well as ionizing radiation, and efforts to translate these findings into the clinical arena in humans are currently underway. Although the PKC-driven cytoprotective signaling systems affected by these treatments have not been definitively characterized, interference with PKC activity has been associated with loss of the mitogen-activated protein kinase (MAPK) response. Accordingly, recent pre-clinical studies have demonstrated that pharmacological disruption of the primary MEK-ERK module can mimic the chemopotentiating and radiopotentiating actions of PKC inhibition and/or down-regulation.
Collapse
Affiliation(s)
- W D Jarvis
- Department of Medicine, Medical College of Virginia, Richmond 23298, USA.
| | | |
Collapse
|
36
|
Sachs CW, Chambers TC, Fine RL. Differential phosphorylation of sites in the linker region of P-glycoprotein by protein kinase C isozymes alpha, betaI, betaII, gamma, delta, epsilon, eta, and zeta. Biochem Pharmacol 1999; 58:1587-92. [PMID: 10535749 DOI: 10.1016/s0006-2952(99)00240-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To determine whether individual protein kinase C (PKC) isozymes differentially phosphorylate sites in the linker region of human P-glycoprotein (P-gp), we used a synthetic peptide substrate, PG-2, exactly corresponding to amino acid residues spanning the region 656-689 of the multidrug resistance gene (MDRI). All tested PKC isozymes phosphorylated PG-2. The maximum phosphate incorporation by calcium-dependent PKC isozymes alpha, betaI, betaII, and gamma was 3, 2, 2, and 3 mol phosphate/mol PG-2, respectively. The maximum phosphate incorporation by calcium-independent isozymes delta, epsilon, eta, and zeta was 1.5, 0.5, 1.5, and 1.5 mol phosphate/mol PG-2, respectively. Two-dimensional tryptic phosphopeptide mapping indicated differential phosphorylation of the PKC consensus sites Ser-661, Ser-667, and Ser-671 by individual isozymes, which may be functionally significant. These data suggest that differential phosphorylation by PKC isoenzymes of PKC sites within the P-gp linker region may play a role in modulating P-gp activity.
Collapse
Affiliation(s)
- C W Sachs
- Department of Medicine, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
37
|
van Gijn R, van Tellingen O, Haverkate E, Kettenes-van den Bosch JJ, Bult A, Beijnen JH. Pharmacokinetics and metabolism of the staurosporine analogue CGP 41 251 in mice. Invest New Drugs 1999; 17:29-41. [PMID: 10555120 DOI: 10.1023/a:1006260217400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies with CGP 41 251 (I), an N-benzoylstaurosporine derivative and PKC-alpha inhibitor, revealed that oral administration of 400 microg/day of the compound to wild type mice on four successive days reversed multi drug resistance (Killion et al. Oncology Research 7: 453-459, 1995). In our study, the same regimen of administration was followed with the primary objective to establish the pharmacokinetics and metabolism of the compound and to substantiate at which plasma concentrations of CGP 41 251 multi drug resistance (MDR) reversal can be expected. Concentrations of CGP 41 251 and metabolites in plasma were determined by a validated high performance liquid chromatography (HPLC) method with fluorescence detection. Structural characterization of the metabolites was performed with HPLC and mass spectrometric detection. In our experiment extensive metabolism of CGP 41 251 was found. The presence of five hydroxylated metabolites of CGP 41 251 (I) was confirmed and two metabolites were structurally elucidated as CGP 50 750 (III) and CGP 52 421 (V). Maximal concentrations of 73 ng/ml, 1.9 ng/ml and 126 ng/ml for CGP 41 251 (I), III and V were found, respectively. The mass spectra of the other three metabolites indicate that these are oxidized nitrogens or hydroxylated compounds. As yet, the oxidation or hydroxylation sites have not been established. This study has revealed new information about CGP 41 251 pharmacokinetics and metabolism. Target levels between 10-100 ng/ml may be important to achieve in further clinical trials with CGP 41 251 as MDR modulator.
Collapse
Affiliation(s)
- R van Gijn
- Department of Pharmacy and Pharmacology, Slotervaart Hospital, The Netherlands Cancer Institute, Amsterdam.
| | | | | | | | | | | |
Collapse
|
38
|
Altered Multidrug Resistance Phenotype Caused by Anthracycline Analogues and Cytosine Arabinoside in Myeloid Leukemia. Blood 1999. [DOI: 10.1182/blood.v93.12.4086.412k43_4086_4095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of P-glycoprotein (Pgp) is often increased in acute myeloid leukemia (AML). However, little is known of the regulation of Pgp expression by cytotoxics in AML. We examined whether Pgp expression and function in leukemic blasts was altered after a short exposure to cytotoxics. Blasts were isolated from 19 patients with AML (15 patients) or chronic myeloid leukemia in blastic transformation (BT-CML, 4 patients). Pgp expression and function were analyzed by flow cytometric analysis of MRK 16 binding and Rhodamine 123 retention, respectively. At equitoxic concentrations, ex vivo exposure for 16 hours to the anthracyclines epirubicin (EPI), daunomycin (DAU), idarubicin (IDA), or MX2 or the nucleoside analogue cytosine arabinoside (AraC) differentially upregulated MDR1/Pgp expression in Pgp-negative and Pgp-positive blast cells. In Pgp-negative blasts, all four anthracyclines and AraC significantly increased Pgp expression (P = .01) and Pgp function (P = .03). In contrast, MX2, DAU, and AraC were the most potent in inducing Pgp expression and function in Pgp positive blasts (P < .05). A good correlation between increased Pgp expression and function was observed in Pgp-negative (r = .90, P = .0001) and Pgp-positive blasts (r = .77,P = .0002). This increase in Pgp expression and function was inhibited by the addition of 1 μmol/L PSC 833 to blast cells at the time of their exposure to these cytotoxics. In 1 patient with AML, an increase in Pgp levels was observed in vivo at 4 and 16 hours after the administration of standard chemotherapy with DAU/AraC. Upregulation of Pgp expression was also demonstrated ex vivo in blasts harvested from this patient before the commencement of treatment. In 3 other cases (1 patient with AML and 2 with BT-CML) in which blasts were Pgp negative at the time of initial clinical presentation, serial samples at 1 to 5 months after chemotherapy showed the presence of Pgp-positive blasts. All 3 patients had refractory disease. Interestingly, in all 3 cases, upregulation of Pgp by cytotoxics was demonstrated ex vivo in blasts harvested at the time of presentation. These data suggest that upregulation of the MDR1 gene may represent a normal response of leukemic cells to cytotoxic stress and may contribute to clinical drug resistance.
Collapse
|
39
|
Altered Multidrug Resistance Phenotype Caused by Anthracycline Analogues and Cytosine Arabinoside in Myeloid Leukemia. Blood 1999. [DOI: 10.1182/blood.v93.12.4086] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe expression of P-glycoprotein (Pgp) is often increased in acute myeloid leukemia (AML). However, little is known of the regulation of Pgp expression by cytotoxics in AML. We examined whether Pgp expression and function in leukemic blasts was altered after a short exposure to cytotoxics. Blasts were isolated from 19 patients with AML (15 patients) or chronic myeloid leukemia in blastic transformation (BT-CML, 4 patients). Pgp expression and function were analyzed by flow cytometric analysis of MRK 16 binding and Rhodamine 123 retention, respectively. At equitoxic concentrations, ex vivo exposure for 16 hours to the anthracyclines epirubicin (EPI), daunomycin (DAU), idarubicin (IDA), or MX2 or the nucleoside analogue cytosine arabinoside (AraC) differentially upregulated MDR1/Pgp expression in Pgp-negative and Pgp-positive blast cells. In Pgp-negative blasts, all four anthracyclines and AraC significantly increased Pgp expression (P = .01) and Pgp function (P = .03). In contrast, MX2, DAU, and AraC were the most potent in inducing Pgp expression and function in Pgp positive blasts (P < .05). A good correlation between increased Pgp expression and function was observed in Pgp-negative (r = .90, P = .0001) and Pgp-positive blasts (r = .77,P = .0002). This increase in Pgp expression and function was inhibited by the addition of 1 μmol/L PSC 833 to blast cells at the time of their exposure to these cytotoxics. In 1 patient with AML, an increase in Pgp levels was observed in vivo at 4 and 16 hours after the administration of standard chemotherapy with DAU/AraC. Upregulation of Pgp expression was also demonstrated ex vivo in blasts harvested from this patient before the commencement of treatment. In 3 other cases (1 patient with AML and 2 with BT-CML) in which blasts were Pgp negative at the time of initial clinical presentation, serial samples at 1 to 5 months after chemotherapy showed the presence of Pgp-positive blasts. All 3 patients had refractory disease. Interestingly, in all 3 cases, upregulation of Pgp by cytotoxics was demonstrated ex vivo in blasts harvested at the time of presentation. These data suggest that upregulation of the MDR1 gene may represent a normal response of leukemic cells to cytotoxic stress and may contribute to clinical drug resistance.
Collapse
|
40
|
Sampaio-Maia B, Gomes R, Soares-da-Silva P. P-glycoprotein phosphorylation/dephosphorylation and cellular accumulation of L-DOPA in LLC-GA5 Col300 cells. JOURNAL OF AUTONOMIC PHARMACOLOGY 1999; 19:173-9. [PMID: 10511474 DOI: 10.1046/j.1365-2680.1999.00131.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The present work was aimed to study the effect of PKC activation and protein-serine/threonine phosphatase (PP1/PP2 A) inhibition on P-glycoprotein (P-gp) mediated transport of L-DOPA in LLC-GA5 Col300 cells, a renal cell line expressing the human P-glycoprotein in the apical membrane. 2. L-DOPA accumulation was a time-and concentration-dependent process with the following kinetic characteristics: kin, 57.3 +/- 1.2 pmol mg protein(-1) min(-1); k(out), 3.3 +/- 0.1 pmol mg(-1) protein min(-1); Amax, 10.6 +/- 0.8; Kn, 198 +/- 64 microM; Vmax, 5.2 +/- 0.7 nmol mg protein(-1). 3. Verapamil (25 microM), a P-glycoprotein inhibitor, markedly increased (approximately 40% increase) the accumulation of a non-saturating concentration of L-DOPA (2.5 microM) at both initial rate of uptake (IRU, 6 min incubation) and at steady-state (SS, 30 min incubation). 4. PKC activation with phorbol 12,13-dibutyrate (PDBu, 1, 3 and 10 nM) produced a concentration-dependent decrease in L-DOPA accumulation at SS, but not at IRU. The inactive phorbol ester, 4alpha-phorbol 12,13-didecanoate (100 nM), produced no change in L-DOPA accumulation. The effect of PDBu was completely reverted by staurosporine (100 nM). The phosphatase inhibitor okadaic acid (100 nM) reduced by 20% the accumulation of L-DOPA at IRU, but not at SS. 5. It is suggested that P-glycoprotein plays a role in regulation of intracellular availability of L-DOPA in renal epithelial cells, and phosphorylation/dephosphorylation of P-glycoprotein may be involved in the regulation of the transporter.
Collapse
Affiliation(s)
- B Sampaio-Maia
- Institute of Pharmacology & Therapeutics, Faculty of Medicine, Porto, Portugal
| | | | | |
Collapse
|
41
|
Chen L, Burger RA, Zaunbrecher GM, Cheng H, Lincoln AJ, Mallarino MC, Monk BJ, Khan SA. Protein kinase C isoform expression and activity alter paclitaxel resistance in vitro. Gynecol Oncol 1999; 72:171-9. [PMID: 10021296 DOI: 10.1006/gyno.1998.5242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The aim of this study was to assess the relationship of protein kinase C (PKC) isoform expression and functional activity to the development of multidrug resistance in gynecologic malignancies. METHODS Paclitaxel-resistant subclones (T30 and T30-Res) of the Mes-sa human uterine sarcoma cell line were selected through exposure to paclitaxel in vitro. Indices of relative drug resistance were determined by the MTT (3-[4,5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide) assay. Differences in the expression pattern of PKC isoforms were assessed by Western blot of cell lysates. Finally, the influence of PKC activity (i.e., translocation to the plasma membrane, confirmed by Western blot of plasma membrane bound protein) on resistance to paclitaxel was examined with the MTT assay in cells preincubated with PMA. RESULTS The indices of relative paclitaxel resistance of Mes-sa, Mes-sa-T30, and Mes-sa-T30-Res were 1-, 5-, and 11-fold, respectively. Five (alpha, gamma, iota, lambda, and mu) of the 11 known PKC isoforms were detected in all cell lysates. Only PKC-alpha and PKC-gamma expression increased with increasing indices of paclitaxel resistance. Interestingly, PMA induction of PKC activity reversed resistance to paclitaxel in all cell lines by 2- to 3-fold, and this reversal of drug resistance was associated with a time-dependent translocation of PKC-alpha and PKC-gamma to the plasma membrane compartment. CONCLUSIONS Increased expression of only the PKC-alpha and PKC-gamma isoforms correlates with increasing levels of paclitaxel resistance in Mes-sa cells in this in vitro experimental model. However, increased functional activity of these and other PKC isoforms leads to reversal in paclitaxel resistance. Therefore, PKC activating mechanisms normally present in primary tumor cells may be compromised in drug-resistant clones.
Collapse
Affiliation(s)
- L Chen
- Southwest Cancer Center at University Medical Center, Lubbock, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
La Porta CA, Dolfini E, Comolli R. Inhibition of protein kinase C-alpha isoform enhances the P-glycoprotein expression and the survival of LoVo human colon adenocarcinoma cells to doxorubicin exposure. Br J Cancer 1998; 78:1283-7. [PMID: 9823967 PMCID: PMC2063188 DOI: 10.1038/bjc.1998.672] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of the present paper was to analyse the effect of long-term inhibitory treatment, for at least 7 days, of individual protein kinase C (PKC) isoforms on the survival of LoVo human colon adenocarcinoma cells to doxorubicin exposure. The treatment for 2 h, after plating the cells, and after 3 days with 1 microM Gö6976, a specific inhibitor of protein kinase C (PKC)-alpha and -betal isoforms, induced on day 7 in LoVo cell lines (WT) a significant increased survival when these cells were exposed to increasing doxorubicin concentrations. In contrast, resistant LoVo cells (DX) did not show significant changes in the survival to doxorubicin exposure when incubated with the inhibitor of the same specific PKC isoforms. In addition, Gö6976 reduced the PKC-alpha activity (the main calcium-dependent PKC isoforms expressed) in both cell lines with contemporary increased expression. Under such conditions, an increased nuclear activity and an increased P-glycoprotein expression occurred only in WT-treated cells with respect to untreated cells. Taken together, our data indicate a specific relationship between PKC-alpha inhibition, the increased nuclear PKC-alpha activity as well as the increased expression of P-glycoprotein, possibly causing the acquisition of a resistant phenotype in WT LoVo cells.
Collapse
Affiliation(s)
- C A La Porta
- Department of General Physiology and Biochemistry, University of Milan, Italy
| | | | | |
Collapse
|
43
|
Abstract
The role of protein kinases in the multidrug resistance phenotype of cancer cell lines is discussed with an emphasis on protein kinase C and protein kinase A. Evidence that P-glycoprotein is phosphorylated by these kinases is summarised and the relationship between P-glycoprotein phosphorylation and the multidrug-resistant phenotype discussed. Results showing that protein kinase C, particularly the alpha subspecies, is overexpressed in many MDR cell lines are described: this common but by no means universal finding seems to be drug- and cell line-dependent and in only in a few cases is there a direct correlation between protein kinase C activity and multidrug resistance. From co-immunoprecipitation results it is suggested that P-glycoprotein is a specific protein kinase C receptor, as well as being a substrate. Revertant experiments provide conflicting results as to a direct relationship between expression of P-glycoprotein and protein kinase C. Evidence that protein kinase A influences P-glycoprotein expression at the gene level is well documented and the mechanisms by which this occurs are becoming clarified. Results on the relationship between protein kinase C and multidrug resistance using many inhibitors and phorbol esters are difficult to interpret because such compounds bind to P-glycoprotein. In spite of huge effort, a direct involvement of protein kinase C in regulating multidrug resistance has not yet been firmly established. However, evidence that PKC regulates a Pgp-independent mechanism of drug resistance is accumulating.
Collapse
Affiliation(s)
- M G Rumsby
- Department of Biology, University of York, York, YO1 5YW, England.,
| | | | | |
Collapse
|
44
|
Hepatobiliary elimination of cationic drugs: the role of P-glycoproteins and other ATP-dependent transporters. Adv Drug Deliv Rev 1997. [DOI: 10.1016/s0169-409x(97)00498-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Cloud-Heflin BA, McMasters RA, Osborn MT, Chambers TC. Expression, subcellular distribution and response to phorbol esters of protein kinase C (PKC) isozymes in drug-sensitive and multidrug-resistant KB cells evidence for altered regulation of PKC-alpha. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:796-804. [PMID: 8774728 DOI: 10.1111/j.1432-1033.1996.0796u.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein kinase C (PKC) comprises a family of related phospholipid-dependent serine/threonine protein kinases. PKC has been implicated in the induction and maintenance of the multidrug-resistance (MDR) phenotype but the role of different isozymes is not well understood. We compared the expression and subcellular distribution, and membrane association and down-regulation induced by phorbol esters, of individual PKC isozymes in drug-sensitive KB-3 and multidrug-resistant KB-V1 human carcinoma cell lines. Immunoblotting with isozyme-specific antibodies indicated the presence of PKC alpha (cytosol only). PKC beta (membrane only). PKC epsilon (mainly membrane associated) and PKC zeta (both fractions). PKC delta and PKC gamma were not detected. The expression levels of PKC beta. PKC epsilon and PKC zeta were unchanged in KB-V1 cells; PKC alpha was modestly increased ( approximately 65%) in the resistant cells as further determined by enzyme assay. The cytosolic nature and increased expression of PKC alpha were confirmed by immunofluorescent localization studies. Revertant cells, obtained by culturing KB-V1 cells in a drug-free medium, regained drug sensitivity with a loss of P-glycoprotein and a concomitant decrease in expression of PKC alpha, KB-V1 cells were found to differ markedly from KB-3 cells with respect to the translocation and down-regulation specifically of PKC alpha upon exposure to 12-O-tetradecanoyl-1-phorbol-13-acetate (TPA). Treatment with 30 nM TPA for 24 h completely depleted KB-3 cells of PKC alpha whereas 1 microM TPA was required to deplete KB-V1 cells of PKC alpha. Similar results were obtained when phorbol-12, 13-dibutyrate was used instead of TPA. Defective TPA-mediated down-regulation of PKC alpha was also observed in another PKC alpha-overexpressing MDR cell line. KB-A1. Importantly, cellular uptake of radiolabeled phorbol ester was similar for both drug-sensitive and MDR cells. Sensitive and resistant cells exhibited similar expression levels of RACK1, a PKC-binding protein important in activation-induced translocation. These findings further highlight the importance of PKC alpha in the MDR phenotype, and suggest that this isozyme may be expressed in a modified form or be subject to an altered regulation in MDR cells.
Collapse
Affiliation(s)
- B A Cloud-Heflin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock 72205-7199, USA
| | | | | | | |
Collapse
|