1
|
Hu Q, Zhu B, Yang G, Jia J, Wang H, Tan R, Zhang Q, Wang L, Kantawong F. Calycosin pretreatment enhanced the therapeutic efficacy of mesenchymal stem cells to alleviate unilateral ureteral obstruction-induced renal fibrosis by inhibiting necroptosis. J Pharmacol Sci 2023; 151:72-83. [PMID: 36707181 DOI: 10.1016/j.jphs.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) show antifibrotic activity in various chronic kidney diseases. Here, we aimed to investigate whether Calycosin (CA), a phytoestrogen, could enhance the antifibrotic activity of MSCs in primary tubular epithelial cells (PTECs) induced by TGF-β1 and in a mouse model of unilateral ureteral obstruction (UUO). We found that MSCs treatment significantly inhibited fibrosis, and CA pretreatment enhanced the effects of MSCs on fibrosis in vitro. Consistent with the in vitro studies, MSCs alleviated tubular injury and renal fibrosis in mice after UUO, and CA-pretreated MSCs resulted in more significant improvements in tubular injury and renal fibrosis than MSCs after UUO. Moreover, MSCs treatment significantly inhibited necroptosis by repressing the elevation of MLKL, RIPK1, and RIPK3 in PTECs treated by TGF-β1and in mice after UUO, and CA-pretreated MSCs were superior to MSCs in alleviating necroptosis. MSCs significantly reduced TNF-α and TNFR1 expression induced by TGF-β1 in PTECs and inhibited TGF-β1, TNF-α, and TNFR1 expression induced by UUO in mice. These effects of MSCs were significantly enhanced after CA pretreatment. Therefore, our results suggest that CA pretreatment enhances the antifibrotic activity of MSCs by inhibiting TGF-β1/TNF-α/TNFR1 signaling-induced necroptosis.
Collapse
Affiliation(s)
- Qiongdan Hu
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Sichuan, China
| | - Bingwen Zhu
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Guoqiang Yang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China; Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Sichuan, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Honglian Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Ruizhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Qiong Zhang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Sichuan, China.
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Rieger AC, Tompkins BA, Natsumeda M, Florea V, Banerjee MN, Rodriguez J, Rosado M, Porras V, Valasaki K, Takeuchi LM, Collon K, Desai S, Bellio MA, Khan A, Kashikar ND, Landin AM, Hardin DV, Rodriguez DA, Balkan W, Hare JM, Schulman IH. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:59-72. [PMID: 35641169 PMCID: PMC8895493 DOI: 10.1093/stcltm/szab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background Left ventricular hypertrophy and heart failure with preserved ejection fraction (HFpEF) are primary manifestations of the cardiorenal syndrome in patients with chronic kidney disease (CKD). Therapies that improve morbidity and mortality in HFpEF are lacking. Cell-based therapies promote cardiac repair in ischemic and non-ischemic cardiomyopathies. We hypothesized that cell-based therapy ameliorates CKD-induced HFpEF. Methods and Results Yorkshire pigs (n = 26) underwent 5/6 embolization-mediated nephrectomy. CKD was confirmed by increased creatinine and decreased glomerular filtration rate (GFR). Mean arterial pressure (MAP) was not different between groups from baseline to 4 weeks. HFpEF was evident at 4 weeks by increased LV mass, relative wall thickening, end-diastolic pressure, and end-diastolic pressure-volume relationship, with no change in ejection fraction (EF). Four weeks post-embolization, allogeneic (allo) bone marrow-derived mesenchymal stem cells (MSC; 1 × 107 cells), allo-kidney-derived stem cells (KSC; 1 × 107 cells), allo-cell combination therapy (ACCT; MSC + KSC; 1:1 ratio; total = 1 × 107 cells), or placebo (Plasma-Lyte) was delivered via intra-renal artery. Eight weeks post-treatment, there was a significant increase in MAP in the placebo group (21.89 ± 6.05 mmHg) compared to the ACCT group. GFR significantly improved in the ACCT group. EF, relative wall thickness, and LV mass did not differ between groups at 12 weeks. EDPVR improved in the ACCT group, indicating decreased ventricular stiffness. Conclusions Intra-renal artery allogeneic cell therapy was safe in a CKD swine model manifesting the characteristics of HFpEF. The beneficial effect on renal function and ventricular compliance in the ACCT group supports further research of cell therapy for cardiorenal syndrome.
Collapse
Affiliation(s)
- Angela C Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bryon A Tompkins
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Makoto Natsumeda
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Monisha N Banerjee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jose Rodriguez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marcos Rosado
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Valeria Porras
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Collon
- Department of Orthopedic Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Sohil Desai
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Ana Marie Landin
- Cell Therapy and Vaccine Lab, Moffitt Cancer Center, Tampa, FL, USA
| | - Darrell V Hardin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel A Rodriguez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Corresponding author: Ivonne H. Schulman, MD, Program Director, Translational and Clinical Studies of Acute Kidney Injury, Division of Kidney, Urologic and Hematologic Diseases (KUH), National Institutes of Health (NIH), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Two Democracy Plaza, Room #6077, 6707 Democracy Blvd, Bethesda, MD 20892-5458, USA. Tel: 301-435-3350; Mobile: 301-385-5744; Fax: 301-480-3510, ,
| |
Collapse
|
3
|
Lei XY, Tan RZ, Jia J, Wu SL, Wen CL, Lin X, Wang H, Shi ZJ, Li B, Kang Y, Wang L. Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle-mediated necroptosis and inflammation to tubular epithelial cell. J Cell Mol Med 2021; 25:8775-8788. [PMID: 34337860 PMCID: PMC8435453 DOI: 10.1111/jcmm.16833] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 02/05/2023] Open
Abstract
Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti‐inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established a cisplatin‐induced AKI mouse model and a co‐culture system of BMDM and tubular epithelial cells (mTEC) to verify the renoprotective and anti‐inflammatory effects of artesunate on AKI, and explored the underlying mechanism. We found that artesunate strongly down‐regulated the serum creatinine and BUN levels in AKI mice, reduced the necroptosis of tubular cells and down‐regulated the expression of the tubular injury molecule Tim‐1. On the other hand, artesunate strongly inhibited the mRNA expression of inflammatory cytokines (IL‐1β, IL‐6 and TNF‐α), protein levels of inflammatory signals (iNOS and NF‐κB) and necroptosis signals (RIPK1, RIPK3 and MLKL) in kidney of AKI mouse. Notably, the co‐culture system proved that Mincle in macrophage can aggravate the inflammation and necroptosis of mTEC induced by LPS, and artesunate suppressed the expression of Mincle in macrophage of kidney in AKI mouse. Overexpression of Mincle in BMDM restored the damage and necroptosis inhibited by artesunate in mTEC, indicating Mincle in macrophage is the target of artesunate to protect tubule cells in AKI. Our findings demonstrated that artesunate can significantly improve renal function in AKI, which may be related to the inhibition of Mincle‐mediated macrophage inflammation, thereby reducing the damage and necroptosis to tubular cells that provide new option for the treatment of AKI.
Collapse
Affiliation(s)
- Xian-Ying Lei
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,ICU, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Song-Lin Wu
- ICU, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng-Li Wen
- ICU, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao Lin
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Huan Wang
- ICU, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhang-Jing Shi
- ICU, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Li
- ICU, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Sávio-Silva C, Soinski-Sousa PE, Simplício-Filho A, Bastos RMC, Beyerstedt S, Rangel ÉB. Therapeutic Potential of Mesenchymal Stem Cells in a Pre-Clinical Model of Diabetic Kidney Disease and Obesity. Int J Mol Sci 2021; 22:1546. [PMID: 33557007 PMCID: PMC7913657 DOI: 10.3390/ijms22041546] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a worldwide microvascular complication of type 2 diabetes mellitus (T2DM). From several pathological mechanisms involved in T2DM-DKD, we focused on mitochondria damage induced by hyperglycemia-driven reactive species oxygen (ROS) accumulation and verified whether mesenchymal stem cells (MSCs) anti-oxidative, anti-apoptotic, autophagy modulation, and pro-mitochondria homeostasis therapeutic potential curtailed T2DM-DKD progression. For that purpose, we grew immortalized glomerular mesangial cells (GMCs) in hyper glucose media containing hydrogen peroxide. MSCs prevented these cells from apoptosis-induced cell death, ROS accumulation, and mitochondria membrane potential impairment. Additionally, MSCs recovered GMCs' biogenesis and mitophagy-related gene expression that were downregulated by stress media. In BTBRob/ob mice, a robust model of T2DM-DKD and obesity, MSC therapy (1 × 106 cells, two doses 4-weeks apart, intra-peritoneal route) led to functional and structural kidney improvement in a time-dependent manner. Therefore, MSC-treated animals exhibited lower levels of urinary albumin-to-creatinine ratio, less mesangial expansion, higher number of podocytes, up-regulation of mitochondria-related survival genes, a decrease in autophagy hyper-activation, and a potential decrease in cleaved-caspase 3 expression. Collectively, these novel findings have important implications for the advancement of cell therapy and provide insights into cellular and molecular mechanisms of MSC-based therapy in T2DM-DKD setting.
Collapse
Affiliation(s)
- Christian Sávio-Silva
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.S.-S.); (P.E.S.-S.); (A.S.-F.); (R.M.C.B.); (S.B.)
| | - Poliana E. Soinski-Sousa
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.S.-S.); (P.E.S.-S.); (A.S.-F.); (R.M.C.B.); (S.B.)
| | - Antônio Simplício-Filho
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.S.-S.); (P.E.S.-S.); (A.S.-F.); (R.M.C.B.); (S.B.)
| | - Rosana M. C. Bastos
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.S.-S.); (P.E.S.-S.); (A.S.-F.); (R.M.C.B.); (S.B.)
| | - Stephany Beyerstedt
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.S.-S.); (P.E.S.-S.); (A.S.-F.); (R.M.C.B.); (S.B.)
| | - Érika Bevilaqua Rangel
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.S.-S.); (P.E.S.-S.); (A.S.-F.); (R.M.C.B.); (S.B.)
- Nephrology Division, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo 04023-900, Brazil
| |
Collapse
|
5
|
Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease: A Review of the Studies Using Syngeneic, Autologous, Allogeneic, and Xenogeneic Cells. Stem Cells Int 2020; 2020:8833725. [PMID: 33505469 PMCID: PMC7812547 DOI: 10.1155/2020/8833725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes mellitus (DM) and comprises multifactorial pathophysiologic mechanisms. Despite current treatment, around 30-40% of individuals with type 1 and type 2 DM (DM1 and DM2) have progressive DKD, which is the most common cause of end-stage chronic kidney disease worldwide. Mesenchymal stem cell- (MSC-) based therapy has important biological and therapeutic implications for curtailing DKD progression. As a chronic disease, DM may impair MSC microenvironment, but there is compelling evidence that MSC derived from DM1 individuals maintain their cardinal properties, such as potency, secretion of trophic factors, and modulation of immune cells, so that both autologous and allogeneic MSCs are safe and effective. Conversely, MSCs derived from DM2 individuals are usually dysfunctional, exhibiting higher rates of senescence and apoptosis and a decrease in clonogenicity, proliferation, and angiogenesis potential. Therefore, more studies in humans are needed to reach a conclusion if autologous MSCs from DM2 individuals are effective for treatment of DM-related complications. Importantly, the bench to bedside pathway has been constructed in the last decade for assessing the therapeutic potential of MSCs in the DM setting. Laboratory research set the basis for establishing further translation research including preclinical development and proof of concept in model systems. Phase I clinical trials have evaluated the safety profile of MSC-based therapy in humans, and phase II clinical trials (proof of concept in trial participants) still need to answer important questions for treating DKD, yet metabolic control has already been documented. Therefore, randomized and controlled trials considering the source, optimal cell number, and route of delivery in DM patients are further required to advance MSC-based therapy. Future directions include strategies to reduce MSC heterogeneity, standardized protocols for isolation and expansion of those cells, and the development of well-designed large-scale trials to show significant efficacy during a long follow-up, mainly in individuals with DKD.
Collapse
|
6
|
Tan RZ, Li JC, Liu J, Lei XY, Zhong X, Wang C, Yan Y, Linda Ye L, Darrel Duan D, Lan HY, Wang L. BAY61-3606 protects kidney from acute ischemia/reperfusion injury through inhibiting spleen tyrosine kinase and suppressing inflammatory macrophage response. FASEB J 2020; 34:15029-15046. [PMID: 32964547 DOI: 10.1096/fj.202000261rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a highly prevalent clinical syndrome with high mortality and morbidity. Previous studies indicated that inflammation promotes tubular damage and plays a key role in AKI progress. Spleen tyrosine kinase (Syk) has been linked to macrophage-related inflammation in AKI. Up to date, however, no Syk-targeted therapy for AKI has been reported. In this study, we employed both cell model of LPS-induced bone marrow-derived macrophage (BMDM) and mouse model of ischemia/reperfusion injury (IRI)-induced AKI to evaluate the effects of a Syk inhibitor, BAY61-3606 (BAY), on macrophage inflammation in vitro and protection of kidney from AKI in vivo. The expression and secretion of inflammatory cytokines, both in vitro and in vivo, were significantly inhibited even back to normal levels by BAY. The upregulated serum creatinine and blood urea nitrogen levels in the AKI mice were significantly reduced after administration of BAY, implicating a protective effect of BAY on kidneys against IRI. Further analyses from Western blot, immunofluorescence staining and flow cytometry revealed that BAY inhibited the Mincle/Syk/NF-κB signaling circuit and reduced the inflammatory response. BAY also inhibited the reactive oxygen species (ROS), which further decreased the formation of inflammasome and suppressed the mature of IL-1β and IL-18. Notably, these inhibitory effects of BAY on inflammation and inflammasome in BMDM were significantly reversed by Mincle ligand, trehalose-6,6-dibehenate. In summary, these findings provided compelling evidence that BAY may be an efficient inhibitor of the Mincle/Syk/NF-κB signaling circuit and ROS-induced inflammasome, which may help to develop Syk-inhibitors as novel therapeutic agents for AKI.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian-Chun Li
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian Liu
- Department of Nephrology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xian-Ying Lei
- ICU, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chen Wang
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ying Yan
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Lingyu Linda Ye
- Center for Phenomics of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Ahmadi A, Rad NK, Ezzatizadeh V, Moghadasali R. Kidney Regeneration: Stem Cells as a New Trend. Curr Stem Cell Res Ther 2020; 15:263-283. [DOI: 10.2174/1574888x15666191218094513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022]
Abstract
Renal disease is a major worldwide public health problem that affects one in ten people.
Renal failure is caused by the irreversible loss of the structural and functional units of kidney (nephrons)
due to acute and chronic injuries. In humans, new nephrons (nephrogenesis) are generated until
the 36th week of gestation and no new nephron develops after birth. However, in rodents, nephrogenesis
persists until the immediate postnatal period. The postnatal mammalian kidney can partly repair
their nephrons. The kidney uses intrarenal and extra-renal cell sources for maintenance and repair.
Currently, it is believed that dedifferentiation of surviving tubular epithelial cells and presence of resident
stem cells have important roles in kidney repair. Many studies have shown that stem cells obtained
from extra-renal sites such as the bone marrow, adipose and skeletal muscle tissues, in addition
to umbilical cord and amniotic fluid, have potential therapeutic benefits. This review discusses the
main mechanisms of renal regeneration by stem cells after a kidney injury.
Collapse
Affiliation(s)
- Amin Ahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar K. Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Ezzatizadeh
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Sávio-Silva C, Soinski-Sousa PE, Balby-Rocha MTA, Lira ÁDO, Rangel ÉB. Mesenchymal stem cell therapy in acute kidney injury (AKI): review and perspectives. Rev Assoc Med Bras (1992) 2020; 66Suppl 1:s45-s54. [DOI: 10.1590/1806-9282.66.s1.45] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
9
|
Rangel ÉB, Gomes SA, Kanashiro-Takeuchi R, Hare JM. Progenitor/Stem Cell Delivery by Suprarenal Aorta Route in Acute Kidney Injury. Cell Transplant 2019; 28:1390-1403. [PMID: 31409111 PMCID: PMC6802150 DOI: 10.1177/0963689719860826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/14/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Progenitor/stem cell-based kidney regenerative strategies are a key step towards the development of novel therapeutic regimens for kidney disease treatment. However, the route of cell delivery, e.g., intravenous, intra-arterial, or intra-parenchymal, may affect the efficiency for kidney repair in different models of acute and chronic injury. Here, we describe a protocol of intra-aorta progenitor/stem cell injection in rats following either acute ischemia-reperfusion injury or acute proteinuria induced by puromycin aminonucleoside (PAN) - the experimental prototype of human minimal change disease and early stages of focal and segmental glomerulosclerosis. Vascular clips were applied across both renal pedicles for 35 min, or a single dose of PAN was injected via intra-peritoneal route, respectively. Subsequently, 2 x 106 stem cells [green fluorescent protein (GFP)-labeled c-Kit+ progenitor/stem cells or GFP-mesenchymal stem cells] or saline were injected into the suprarenal aorta, above the renal arteries, after application of a vascular clip to the abdominal aorta below the renal arteries. This approach contributed to engraftment rates of ∼10% at day 8 post ischemia-reperfusion injury, when c-Kit+ progenitor/stem cells were injected, which accelerated kidney recovery. Similar rates of engraftment were found after PAN-induced podocyte damage at day 21. With practice and gentle surgical technique, 100% of the rats could be injected successfully, and, in the week following injection, ∼ 85% of the injected rats will recover completely. Given the similarities in mammals, much of the data obtained from intra-arterial delivery of progenitor/stem cells in rodents can be tested in translational research and clinical trials with endovascular catheters in humans.
Collapse
Affiliation(s)
- Érika B. Rangel
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Federal University of São Paulo, Brazil
| | - Samirah A. Gomes
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal
Division, University of São Paulo, Brazil
| | - Rosemeire Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Department of Molecular and Cellular Pharmacology, Leonard M Miller
School of Medicine, University of Miami, USA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Department of Molecular and Cellular Pharmacology, Leonard M Miller
School of Medicine, University of Miami, USA
- Division of Cardiology, Leonard M Miller School of Medicine,
University of Miami, USA
| |
Collapse
|
10
|
Gomes SA, Hare JM, Rangel EB. Kidney-Derived c-Kit + Cells Possess Regenerative Potential. Stem Cells Transl Med 2019; 7:317-324. [PMID: 29575816 PMCID: PMC5866938 DOI: 10.1002/sctm.17-0232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/15/2017] [Accepted: 01/14/2018] [Indexed: 12/27/2022] Open
Abstract
Kidney‐derived c‐Kit+ cells exhibit progenitor/stem cell properties in vitro (self‐renewal capacity, clonogenicity, and multipotentiality). These cells can regenerate epithelial tubular cells following ischemia‐reperfusion injury and accelerate foot processes effacement reversal in a model of acute proteinuria in rats. Several mechanisms are involved in kidney regeneration by kidney‐derived c‐Kit+ cells, including cell engraftment and differentiation into renal‐like structures, such as tubules, vessels, and podocytes. Moreover, paracrine mechanisms could also account for kidney regeneration, either by stimulating proliferation of surviving cells or modulating autophagy and podocyte cytoskeleton rearrangement through mTOR‐Raptor and ‐Rictor signaling, which ultimately lead to morphological and functional improvement. To gain insights into the functional properties of c‐Kit+ cells during kidney development, homeostasis, and disease, studies on lineage tracing using transgenic mice will unveil their fate. The results obtained from these studies will set the basis for establishing further investigation on the therapeutic potential of c‐Kit+ cells for treatment of kidney disease in preclinical and clinical studies. stemcellstranslationalmedicine2018;7:317–324
Collapse
Affiliation(s)
- Samirah A Gomes
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of Medicine, University of Miami, Miami, Florida, USA.,Department of Molecular and Cellular Pharmacology, Leonard M Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Cardiology, Leonard M Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Erika B Rangel
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil.,Division of Nephrology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Tan R, Wang C, Deng C, Zhong X, Yan Y, Luo Y, Lan H, He T, Wang L. Quercetin protects against cisplatin‐induced acute kidney injury by inhibiting Mincle/Syk/NF‐κB signaling maintained macrophage inflammation. Phytother Res 2019; 34:139-152. [DOI: 10.1002/ptr.6507] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Rui‐Zhi Tan
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| | - Chen Wang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| | - Chong Deng
- Clinical Laboratory, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| | - Xia Zhong
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| | - Ying Yan
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| | - Yi Luo
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical University Luzhou Sichuan China
| | - Hui‐Yao Lan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, and Shenzhen Research InstituteThe Chinese University of Hong Kong Hong Kong China
| | - Tao He
- School of Basic Medical SciencesSouthwest Medical University Luzhou Sichuan China
| | - Li Wang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| |
Collapse
|
12
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
13
|
Kidney-derived c-kit + progenitor/stem cells contribute to podocyte recovery in a model of acute proteinuria. Sci Rep 2018; 8:14723. [PMID: 30283057 PMCID: PMC6170432 DOI: 10.1038/s41598-018-33082-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
Abstract
Kidney-derived c-kit+ cells exhibit progenitor/stem cell properties and can regenerate epithelial tubular cells following ischemia-reperfusion injury in rats. We therefore investigated whether c-kit+ progenitor/stem cells contribute to podocyte repair in a rat model of acute proteinuria induced by puromycin aminonucleoside (PAN), the experimental prototype of human minimal change disease and early stages of focal and segmental glomerulosclerosis. We found that c-kit+ progenitor/stem cells accelerated kidney recovery by improving foot process effacement (foot process width was lower in c-kit group vs saline treated animals, P = 0.03). In particular, these cells engrafted in small quantity into tubules, vessels, and glomeruli, where they occasionally differentiated into podocyte-like cells. This effect was related to an up regulation of α-Actinin-4 and mTORC2-Rictor pathway. Activation of autophagy by c-kit+ progenitor/stem cells also contributed to kidney regeneration and intracellular homeostasis (autophagosomes and autophagolysosomes number and LC3A/B-I and LC3A/B-II expression were higher in the c-kit group vs saline treated animals, P = 0.0031 and P = 0.0009, respectively). Taken together, our findings suggest that kidney-derived c-kit+ progenitor/stem cells exert reparative effects on glomerular disease processes through paracrine effects, to a lesser extent differentiation into podocyte-like cells and contribution to maintenance of podocyte cytoskeleton after injury. These findings have clinical implications for cell therapy of glomerular pathobiology.
Collapse
|
14
|
Amin J, Xu B, Badkhshan S, Creighton TT, Abbotoy D, Murekeyisoni C, Attwood KM, Schwaab T, Hendler C, Petroziello M, Roche CL, Kauffman EC. Identification and Validation of Radiographic Enhancement for Reliable Differentiation of CD117(+) Benign Renal Oncocytoma and Chromophobe Renal Cell Carcinoma. Clin Cancer Res 2018; 24:3898-3907. [PMID: 29752278 DOI: 10.1158/1078-0432.ccr-18-0252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/23/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Purpose: The diagnostic differential for CD117/KIT(+) oncocytic renal tumor biopsies is limited to benign renal oncocytoma versus chromophobe renal cell carcinoma (ChRCC); however, further differentiation is often challenging and requires surgical resection. We investigated clinical variables that might improve preoperative differentiation of CD117(+) renal oncocytoma versus ChRCC to avoid the need for benign tumor resection.Experimental Design: A total of 124 nephrectomy patients from a single institute with 133 renal oncocytoma or ChRCC tumors were studied. Patients from 2003 to 2012 comprised a retrospective cohort to identify clinical/radiographic variables associated with renal oncocytoma versus ChRCC. Prospective validation was performed among consecutive renal oncocytoma/ChRCC tumors resected from 2013 to 2017.Results: Tumor size and younger age were associated with ChRCC, and multifocality with renal oncocytoma; however, the most reliable variable for ChRCC versus renal oncocytoma differentiation was the tumor:cortex peak early-phase enhancement ratio (PEER) using multiphase CT. Among 54 PEER-evaluable tumors in the retrospective cohort [19 CD117(+), 13 CD117(-), 22 CD117-untested], PEER classified each correctly as renal oncocytoma (PEER >0.50) or ChRCC (PEER ≤0.50), except for four misclassified CD117(-) ChRCC variants. Prospective study of PEER confirmed 100% accuracy of renal oncocytoma/ChRCC classification among 22/22 additional CD117(+) tumors. Prospective interobserver reproducibility was excellent for PEER scoring (intraclass correlation coefficient, ICC = 0.97) and perfect for renal oncocytoma/ChRCC assignment (ICC = 1.0).Conclusions: In the largest clinical comparison of renal oncocytoma versus ChRCC to our knowledge, we identified and prospectively validated a reproducible radiographic measure that differentiates CD117(+) renal oncocytoma from ChRCC with potentially 100% accuracy. PEER may allow reliable biopsy-based diagnosis of CD117(+) renal oncocytoma, avoiding the need for diagnostic nephrectomy. Clin Cancer Res; 24(16); 3898-907. ©2018 AACR.
Collapse
Affiliation(s)
- Jay Amin
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| | - Bo Xu
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Shervin Badkhshan
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Daniel Abbotoy
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Kristopher M Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York
| | - Thomas Schwaab
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York.,Department of Urology, State University of New York at Buffalo, Buffalo, New York
| | - Craig Hendler
- Department of Diagnostic Radiology, Roswell Park Cancer Institute, Buffalo, New York
| | - Michael Petroziello
- Department of Diagnostic Radiology, Roswell Park Cancer Institute, Buffalo, New York
| | - Charles L Roche
- Department of Diagnostic Radiology, Roswell Park Cancer Institute, Buffalo, New York
| | - Eric C Kauffman
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York. .,Department of Urology, State University of New York at Buffalo, Buffalo, New York.,Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
15
|
Andrade L, Rodrigues CE, Gomes SA, Noronha IL. Acute Kidney Injury as a Condition of Renal Senescence. Cell Transplant 2018; 27:739-753. [PMID: 29701108 PMCID: PMC6047270 DOI: 10.1177/0963689717743512] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI), characterized by a sharp drop in glomerular filtration, continues to be a significant health burden because it is associated with high initial mortality, morbidity, and substantial health-care costs. There is a strong connection between AKI and mechanisms of senescence activation. After ischemic or nephrotoxic insults, a wide range of pathophysiological events occur. Renal tubular cell injury is characterized by cell membrane damage, cytoskeleton disruption, and DNA degradation, leading to tubular cell death by necrosis and apoptosis. The senescence mechanism involves interstitial fibrosis, tubular atrophy, and capillary rarefaction, all of which impede the morphological and functional recovery of the kidneys, suggesting a strong link between AKI and the progression of chronic kidney disease. During abnormal kidney repair, tubular epithelial cells can assume a senescence-like phenotype. Cellular senescence can occur as a result of cell cycle arrest due to increased expression of cyclin kinase inhibitors (mainly p21), downregulation of Klotho expression, and telomere shortening. In AKI, cellular senescence is aggravated by other factors including oxidative stress and autophagy. Given this scenario, the main question is whether AKI can be repaired and how to avoid the senescence process. Stem cells might constitute a new therapeutic approach. Mesenchymal stem cells (MSCs) can ameliorate kidney injury through angiogenesis, immunomodulation, and fibrosis pathway blockade, as well as through antiapoptotic and promitotic processes. Young umbilical cord–derived MSCs are better at increasing Klotho levels, and thus protecting tissues from senescence, than are adipose-derived MSCs. Umbilical cord–derived MSCs improve glomerular filtration and tubular function to a greater degree than do those obtained from adult tissue. Although senescence-related proteins and microRNA are upregulated in AKI, they can be downregulated by treatment with umbilical cord–derived MSCs. In summary, stem cells derived from young tissues, such as umbilical cord–derived MSCs, could slow the post-AKI senescence process.
Collapse
Affiliation(s)
- Lucia Andrade
- 1 Laboratory of Basic Science LIM-12, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Camila E Rodrigues
- 1 Laboratory of Basic Science LIM-12, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Samirah A Gomes
- 2 Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Irene L Noronha
- 2 Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| |
Collapse
|
16
|
Paulini J, Higuti E, Bastos RMC, Gomes SA, Rangel ÉB. Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy. Stem Cells Int 2016; 2016:9521629. [PMID: 28058051 PMCID: PMC5187468 DOI: 10.1155/2016/9521629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess pleiotropic properties that include immunomodulation, inhibition of apoptosis, fibrosis and oxidative stress, secretion of trophic factors, and enhancement of angiogenesis. These properties provide a broad spectrum for their potential in a wide range of injuries and diseases, including diabetic nephropathy (DN). MSCs are characterized by adherence to plastic, expression of the surface molecules CD73, CD90, and CD105 in the absence of CD34, CD45, HLA-DR, and CD14 or CD11b and CD79a or CD19 surface molecules, and multidifferentiation capacity in vitro. MSCs can be derived from many tissue sources, consistent with their broad, possibly ubiquitous distribution. This article reviews the existing literature and knowledge of MSC therapy in DN, as well as the most appropriate rodent models to verify the therapeutic potential of MSCs in DN setting. Some preclinical relevant studies are highlighted and new perspectives of combined therapies for decreasing DN progression are discussed. Hence, improved comprehension and interpretation of experimental data will accelerate the progress towards clinical trials that should assess the feasibility and safety of this therapeutic approach in humans. Therefore, MSC-based therapies may bring substantial benefit for patients suffering from DN.
Collapse
Affiliation(s)
- Janaina Paulini
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Eliza Higuti
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Rosana M. C. Bastos
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Samirah A. Gomes
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- University of São Paulo, 01246 São Paulo, SP, Brazil
| | - Érika B. Rangel
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- Federal University of São Paulo, 04023 São Paulo, SP, Brazil
| |
Collapse
|
17
|
Cernaro V, Sfacteria A, Rifici C, Macrì F, Maricchiolo G, Lacquaniti A, Ricciardi CA, Buemi A, Costantino G, Santoro D, Buemi M. Renoprotective effect of erythropoietin in zebrafish after administration of gentamicin: an immunohistochemical study for β-catenin and c-kit expression. J Nephrol 2016; 30:385-391. [PMID: 27679401 DOI: 10.1007/s40620-016-0353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/11/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gentamicin is an aminoglycoside antibiotic widely used in the treatment of infections caused by Gram-negative bacteria. The main limitation to its therapeutic effectiveness is the potential nephrotoxicity. Erythropoietin has a tissue protective effect widely demonstrated in the kidney. The aim of the present study was to evaluate the renoprotective effects of erythropoietin in a model of zebrafish (Danio rerio) after administration of gentamicin. METHODS Sixty adult zebrafish were subdivided into three groups: group A was treated with gentamicin; group B received gentamicin and, 24 h later, epoetin alpha; group C received drug diluent only. In order to analyze the renoprotective activity of erythropoietin, the expression of c-kit and β-catenin was evaluated by immunohistochemistry. RESULTS Generally, the zebrafish renal tubule regenerates 15 days after an injury. Conversely, 7 days after gentamicin administration, animals treated with erythropoietin (group B) showed a better renal injury repair as documented by: increased expression of β-catenin, less degenerated tubules, greater number of centers of regeneration, positivity for c-kit only in immature-looking tubules and lymphohematopoietic cells. CONCLUSION The expression of c-kit and β-catenin suggests that erythropoietin may exert a role in regeneration reducing the extent of tubular damage from the outset after gentamicin administration.
Collapse
Affiliation(s)
- Valeria Cernaro
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy.
| | | | - Claudia Rifici
- Department of Veterinary Science, University of Messina, 98100, Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Science, University of Messina, 98100, Messina, Italy
| | - Giulia Maricchiolo
- IAMC (Institute for Coastal Marine Environment), CNR, U.O.S. Messina, Spianata S. Raineri, 86, 98122, Messina, Italy
| | - Antonio Lacquaniti
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Carlo Alberto Ricciardi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Antoine Buemi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Giuseppe Costantino
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Domenico Santoro
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Michele Buemi
- Chair of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| |
Collapse
|
18
|
Savilova AM, Yushina MN, Rudimova YV, Khil’kevich EG, Chuprynin VD. Characteristics of Multipotent Mesenchymal Stromal Cells Isolated from Human Endometrium. Bull Exp Biol Med 2016; 160:560-4. [DOI: 10.1007/s10517-016-3218-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 11/28/2022]
|
19
|
Bussolati B, Camussi G. Therapeutic use of human renal progenitor cells for kidney regeneration. Nat Rev Nephrol 2015; 11:695-706. [PMID: 26241019 DOI: 10.1038/nrneph.2015.126] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability of the human kidney to repair itself is limited. Consequently, repeated injury can trigger a maladaptive response that is characterized by fibrosis and loss of renal function. The transcription patterns that characterize nephrogenesis in fetal renal progenitor cells (RPCs) are only partially activated during renal repair in adults. Nevertheless, evidence suggests that segment-restricted progenitor resident cells support renal healing in adults. In this Review, we discuss the evidence for the existence of functional human RPCs in adults and their role in renal repair, and consider the controversial issue of whether RPCs are a fixed population or arise through phenotypical plasticity of tubular cells that is mediated by the microenvironment. We also discuss the strategies for generating renal progenitor cells from pluripotent stem cells or differentiated cells and their use in therapy. Finally, we examine preclinical data on the therapeutic use of human fetal cells, adult progenitor cells and adult renal cells.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
20
|
Francipane MG, Lagasse E. Pluripotent Stem Cells to Rebuild a Kidney: The Lymph Node as a Possible Developmental Niche. Cell Transplant 2015; 25:1007-23. [PMID: 26160801 DOI: 10.3727/096368915x688632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Kidney disease poses a global challenge. Stem cell therapy may offer an alternative therapeutic approach to kidney transplantation, which is often hampered by the limited supply of donor organs. While specific surface antigen markers have yet to be identified for the analysis and purification of kidney stem/progenitor cells for research or clinical use, the reprogramming of somatic cells to pluripotent cells and their differentiation into the various kidney lineages might represent a valuable strategy to create a renewable cell source for regenerative purposes. In this review, we first provide an overview of kidney development and explore current knowledge about the role of extra- and intrarenal cells in kidney repair and organogenesis. We then discuss recent advances in the 1) differentiation of rodent and human embryonic stem cells (ESCs) into renal lineages; 2) generation of induced pluripotent stem cells (iPSCs) from renal or nonrenal (kidney patient-derived) adult cells; 3) differentiation of iPSCs into renal lineages; and 4) direct transcriptional reprogramming of adult renal cells into kidney progenitor cells. Finally, we describe the lymph node as a potential three-dimensional (3D) in vivo environment for kidney organogenesis from pluripotent stem cells.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
21
|
Goss GM, Chaudhari N, Hare JM, Nwojo R, Seidler B, Saur D, Goldstein BJ. Differentiation potential of individual olfactory c-Kit+ progenitors determined via multicolor lineage tracing. Dev Neurobiol 2015; 76:241-51. [PMID: 26016700 DOI: 10.1002/dneu.22310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/14/2015] [Accepted: 05/22/2015] [Indexed: 11/10/2022]
Abstract
Olfactory tissue undergoes lifelong renewal, due to the presence of basal neural stem cells. Multiple categories of globose basal stem cells have been identified, expressing markers such as Lgr5, Ascl1, GBC-2, and c-Kit. The differentiation potential of individual globose cells has remained unclear. Here, we utilized Cre/loxP lineage tracing with a multicolor reporter system to define c-Kit+ cell contributions at clonal resolution. We determined that reporter expression permitted identification of c-Kit derived progeny with fine cellular detail, and that clones were found to be comprised by neurons only, microvillar cells only, microvillar cells and neurons, or gland/duct cells. Quantification of reporter-labeled cells indicated that c-Kit+ cells behave as transit amplifying or immediate precursors, although we also found evidence for longer-term c-Kit+ cell contributions. Our results from the application of multicolor fate mapping delineate the clonal contributions of c-Kit+ cells to olfactory epithelial renewal, and provide novel insight into tissue maintenance of an adult neuroepithelium.
Collapse
Affiliation(s)
- Garrett M Goss
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Nirupa Chaudhari
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Raphael Nwojo
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Barbara Seidler
- Department of Internal Medicine, Technical University of Munich, München, Germany
| | - Dieter Saur
- Department of Internal Medicine, Technical University of Munich, München, Germany
| | - Bradley J Goldstein
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
22
|
Zhou PY, Peng GH, Xu H, Yin ZQ. c-Kit+ cells isolated from human fetal retinas represent a new population of retinal progenitor cells. J Cell Sci 2015; 128:2169-78. [PMID: 25918122 DOI: 10.1242/jcs.169086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/20/2015] [Indexed: 12/26/2022] Open
Abstract
ABSTRACT
Definitive surface markers for retinal progenitor cells (RPCs) are still lacking. Therefore, we sorted c-Kit+ and stage-specific embryonic antigen-4− (SSEA4−) retinal cells for further biological characterization. RPCs were isolated from human fetal retinas (gestational age of 12–14 weeks). c-Kit+/SSEA4− RPCs were sorted by fluorescence-activated cell sorting, and their proliferation and differentiation capabilities were evaluated by using immunocytochemistry and flow cytometry. The effectiveness and safety were assessed following injection of c-Kit+/SSEA4− cells into the subretina of Royal College of Surgeons (RCS) rats. c-Kit+ cells were found in the inner part of the fetal retina. Sorted c-Kit+/SSEA4− cells expressed retinal stem cell markers. Our results clearly demonstrate the proliferative potential of these cells. Moreover, c-Kit+/SSEA4− cells differentiated into retinal cells that expressed markers of photoreceptor cells, ganglion cells and glial cells. These cells survived for at least 3 months after transplantation into the host subretinal space. Teratomas were not observed in the c-Kit+/SSEA4−-cell group. Thus, c-Kit can be used as a surface marker for RPCs, and c-Kit+/SSEA4− RPCs exhibit the ability to self-renew and differentiate into retinal cells.
Collapse
Affiliation(s)
- Peng-Yi Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450003, China
| | - Guang-Hua Peng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450003, China
- Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
- Key Lab of Ophthalmology of Chinese People's Liberation Army, Chongqing 400038, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
- Key Lab of Ophthalmology of Chinese People's Liberation Army, Chongqing 400038, China
| |
Collapse
|
23
|
Jiang MH, Li G, Liu J, Liu L, Wu B, Huang W, He W, Deng C, Wang D, Li C, Lahn BT, Shi C, Xiang AP. Nestin(+) kidney resident mesenchymal stem cells for the treatment of acute kidney ischemia injury. Biomaterials 2015; 50:56-66. [PMID: 25736496 DOI: 10.1016/j.biomaterials.2015.01.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/20/2015] [Indexed: 12/25/2022]
Abstract
Renal resident mesenchymal stem cells (MSCs) are important regulators of kidney homeostasis, repair or regeneration. However, natural distribution and the starting population properties of these cells remain elusive because of the lack of specific markers. Here, we identified post-natal kidney derived Nestin(+) cells that fulfilled all of the criteria as a mesenchymal stem cell. These isolated Nestin(+) cells expressed the typical cell-surface marker of MSC, including Sca-1, CD44, CD106, NG2 and PDGFR-α. They were capable of self-renewal, possessed high clonogenic potential and extensive proliferation for more than 30 passages. Under appropriate differentiation conditions, these cells could differentiate into adipocytes, osteocytes, chondrocytes and podocytes. After intravenous injection into acute kidney injury mice, Nestin(+) cells contributed to functional improvement by significantly decreasing the peak level of serum creatinine and BUN, and reducing the damaged cell apoptosis. Furthermore, conditioned medium from Nestin(+) cells could protect against ischemic acute renal failure partially through paracrine factor VEGF. Taken together, our findings indicate that renal resident Nestin(+) MSCs can be derived, propagated, differentiated, and repair the acute kidney injury, which may shed new light on understanding MSCs biology and developing cell replacement therapies for kidney disease.
Collapse
Affiliation(s)
- Mei Hua Jiang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guilan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Junfeng Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingyuan Wu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Wen He
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension & Kidney Research, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bruce T Lahn
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Chenggang Shi
- Department of Nephrology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Andy Peng Xiang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Eirin A, Zhu XY, Ebrahimi B, Krier JD, Riester SM, van Wijnen AJ, Lerman A, Lerman LO. Intrarenal Delivery of Mesenchymal Stem Cells and Endothelial Progenitor Cells Attenuates Hypertensive Cardiomyopathy in Experimental Renovascular Hypertension. Cell Transplant 2014; 24:2041-53. [PMID: 25420012 DOI: 10.3727/096368914x685582] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Renovascular hypertension (RVH) leads to left ventricular (LV) hypertrophy and diastolic dysfunction, associated with increased cardiovascular mortality. Intrarenal delivery of endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) improves kidney function in porcine RVH, and the potent anti-inflammatory properties of MSCs may serve to blunt inflammatory mediators in the cardiorenal axis. However, their relative efficacy in attenuating cardiac injury and dysfunction remains unknown. This study tested the hypothesis that the cardioprotective effect of EPCs and MSCs delivered into the stenotic kidney in experimental RVH are comparable. Pigs (n = 7 per group) were studied after 10 weeks of RVH or control untreated or treated with a single intrarenal infusion of autologous EPCs or MSCs 4 weeks earlier. Cardiac and renal function (fast CT) and stenotic kidney release of inflammatory mediators (ELISA) were assessed in vivo, and myocardial inflammation, remodeling, and fibrosis ex vivo. After 10 weeks of RVH, blood pressure was not altered in cell-treated groups, yet stenotic kidney glomerular filtration rate (GFR), blunted in RVH, improved in RVH + EPC, and normalized in RVH + MSCs. Stenotic kidney release of monocyte chemoattractant protein (MCP)-1 and its myocardial expression were elevated in RVH + EPC, but normalized only in RVH + MSC pigs. RVH-induced LV hypertrophy was normalized in both EPC- and MSC-treated pigs, while diastolic function (E/A ratio) was restored to normal levels exclusively in RVH + MSCs. RVH-induced myocardial fibrosis and collagen deposition decreased in RVH + EPCs but further decreased in RVH + MSC-treated pigs. Intrarenal delivery of EPCs or MSCs attenuates RVH-induced myocardial injury, yet MSCs restore diastolic function more effectively than EPCs, possibly by greater improvement in renal function or reduction of MCP-1 release from the stenotic kidney. These observations suggest a therapeutic potential for EPCs and MSCs in preserving the myocardium in chronic experimental RVH.
Collapse
Affiliation(s)
- Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Oron U, Tuby H, Maltz L, Sagi-Assif O, Abu-Hamed R, Yaakobi T, Doenyas-Barak K, Efrati S. Autologous bone-marrow stem cells stimulation reverses post-ischemic-reperfusion kidney injury in rats. Am J Nephrol 2014; 40:425-33. [PMID: 25413586 DOI: 10.1159/000368721] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Low-level laser therapy (LLLT) has been found to modulate biological activity. The aim of the present study was to investigate the possible beneficial effects of LLLT application to stem cells in the bone marrow (BM), on the kidneys of rats that had undergone acute ischemia-reperfusion injury (IRI). METHODS Injury to the kidneys was induced by the excision of the left kidney and 60 min of IRI to the right kidney in each rat. Rats were then divided randomly into 2 groups: non-laser-treated and laser-treated. LLLT was applied to the BM 10 min and 24 h post-IRI and rats were sacrificed 4 days post-IRI. Blood was collected before the sacrifice and the kidney processed for histology. RESULTS Histological evaluation of kidney sections revealed the restored structural integrity of the renal tubules, and a significant reduction of 66% of pathological score in the laser-treated rats as compared to the non-laser-treated ones. C-kit positive cell density in kidneys post-IRI and laser-treatment was (p = 0.05) 2.4-fold higher compared to that of the non-laser treated group. Creatinine, blood urea nitrogen, and cystatin-C levels were significantly 55, 48, and 25% lower respectively in the laser-treated rats as compared to non-treated ones. CONCLUSION LLLT application to the BM causes induction of stem cells, which subsequently migrate and home in on the injured kidney. Consequently, a significant reduction in pathological features and improved kidney function post-IRI are evident. The results demonstrate a novel approach in cell-based therapy for acute ischemic injured kidneys.
Collapse
Affiliation(s)
- Uri Oron
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Franchi F, Peterson KM, Xu R, Miller B, Psaltis PJ, Harris PC, Lerman LO, Rodriguez-Porcel M. Mesenchymal Stromal Cells Improve Renovascular Function in Polycystic Kidney Disease. Cell Transplant 2014; 24:1687-98. [PMID: 25290249 DOI: 10.3727/096368914x684619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common cause of end-stage renal failure, for which there is no accepted treatment. Progenitor and stem cells have been shown to restore renal function in a model of renovascular disease, a disease that shares many features with PKD. The objective of this study was to examine the potential of adult stem cells to restore renal structure and function in PKD. Bone marrow-derived mesenchymal stromal cells (MSCs, 2.5 × 10(5)) were intrarenally infused in 6-week-old PCK rats. At 10 weeks of age, PCK rats had an increase in systolic blood pressure (SBP) versus controls (126.22 ± 2.74 vs. 116.45 ± 3.53 mmHg, p < 0.05) and decreased creatinine clearance (3.76 ± 0.31 vs. 6.10 ± 0.48 µl/min/g, p < 0.01), which were improved in PKD animals that received MSCs (SBP: 114.67 ± 1.34 mmHg, and creatinine clearance: 4.82 ± 0.24 µl/min/g, p = 0.001 and p = 0.003 vs. PKD, respectively). MSCs preserved vascular density and glomeruli diameter, measured using microcomputed tomography. PCK animals had increased urine osmolality (843.9 ± 54.95 vs. 605.6 ± 45.34 mOsm, p < 0.01 vs. control), which was improved after MSC infusion and not different from control (723.75 ± 56.6 mOsm, p = 0.13 vs. control). Furthermore, MSCs reduced fibrosis and preserved the expression of proangiogenic molecules, while cyst size and number were unaltered by MSCs. Delivery of exogenous MSCs improved vascular density and renal function in PCK animals, and the benefit was observed up to 4 weeks after a single infusion. Cell-based therapy constitutes a novel approach in PKD.
Collapse
Affiliation(s)
- Federico Franchi
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
DAB2IP regulates cancer stem cell phenotypes through modulating stem cell factor receptor and ZEB1. Oncogene 2014; 34:2741-52. [PMID: 25043300 DOI: 10.1038/onc.2014.215] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 04/22/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022]
Abstract
Cancer stem cell (CSC), the primary source of cancer-initiating population, is involved in cancer recurrence and drug-resistant phenotypes. This study demonstrates that the loss of DAB2IP, a novel Ras-GTPase activating protein frequently found in many cancer types, is associated with CSC properties. Mechanistically, DAB2IP is able to suppress stem cell factor receptor (c-kit or CD117) gene expression by interacting with a newly identified silencer in the c-kit gene. Moreover, DAB2IP is able to inhibit c-kit-PI3K-Akt-mTOR signaling pathway that increases c-myc protein to activate ZEB1 gene expression leading to the elevated CSC phenotypes. An inverse correlation between CD117 or ZEB1 and DAB2IP is also found in clinical specimens. Similarly, Elevated expression of ZEB1 and CD117 are found in the prostate basal cell population of DAB2IP knockout mice. Our study reveals that DAB2IP has a critical role in modulating CSC properties via CD117-mediated ZEB1 signaling pathway.
Collapse
|
28
|
Using stem and progenitor cells to recapitulate kidney development and restore renal function. Curr Opin Organ Transplant 2014; 19:140-4. [PMID: 24480967 DOI: 10.1097/mot.0000000000000052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW There is considerable interest in the idea of generating stem and precursor cells that can differentiate into kidney cells and be used to treat kidney diseases. Within this field, we highlight recent research articles focussing on mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and kidney-derived stem/progenitor cells (KSPCs). RECENT FINDINGS In preclinical studies, MSCs ameliorate varied acute and chronic kidney diseases. Their efficacy depends on immunomodulatory and paracrine properties but MSCs do not differentiate into functional kidney epithelia. iPSCs can be derived from healthy individuals and from kidney patients by forced expression of precursor genes. Like ESCs, iPSCs are pluripotent and so theoretically they have the potential to form functional kidney epithelia when used therapeutically. KSPCs, existing as cell subsets within adult and developing kidneys, constitute attractive future therapeutic agents. SUMMARY Results from preclinical studies are encouraging but caution is required regarding potential human therapeutic applications because molecular, morphological and functional characterization of 'kidney cells' generated from ECSs, iPSCs, KSPCs have not been exhaustive. The long-term safety of renal stem and precursor cells needs more study, including potential negative effects on renal growth and their potential for tumor formation.
Collapse
|
29
|
Duran JM, Makarewich CA, Trappanese D, Gross P, Husain S, Dunn J, Lal H, Sharp TE, Starosta T, Vagnozzi RJ, Berretta RM, Barbe M, Yu D, Gao E, Kubo H, Force T, Houser SR. Sorafenib cardiotoxicity increases mortality after myocardial infarction. Circ Res 2014; 114:1700-1712. [PMID: 24718482 DOI: 10.1161/circresaha.114.303200] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Sorafenib is an effective treatment for renal cell carcinoma, but recent clinical reports have documented its cardiotoxicity through an unknown mechanism. OBJECTIVE Determining the mechanism of sorafenib-mediated cardiotoxicity. METHODS AND RESULTS Mice treated with sorafenib or vehicle for 3 weeks underwent induced myocardial infarction (MI) after 1 week of treatment. Sorafenib markedly decreased 2-week survival relative to vehicle-treated controls, but echocardiography at 1 and 2 weeks post MI detected no differences in cardiac function. Sorafenib-treated hearts had significantly smaller diastolic and systolic volumes and reduced heart weights. High doses of sorafenib induced necrotic death of isolated myocytes in vitro, but lower doses did not induce myocyte death or affect inotropy. Histological analysis documented increased myocyte cross-sectional area despite smaller heart sizes after sorafenib treatment, further suggesting myocyte loss. Sorafenib caused apoptotic cell death of cardiac- and bone-derived c-kit+ stem cells in vitro and decreased the number of BrdU+ (5-bromo-2'-deoxyuridine+) myocytes detected at the infarct border zone in fixed tissues. Sorafenib had no effect on infarct size, fibrosis, or post-MI neovascularization. When sorafenib-treated animals received metoprolol treatment post MI, the sorafenib-induced increase in post-MI mortality was eliminated, cardiac function was improved, and myocyte loss was ameliorated. CONCLUSIONS Sorafenib cardiotoxicity results from myocyte necrosis rather than from any direct effect on myocyte function. Surviving myocytes undergo pathological hypertrophy. Inhibition of c-kit+ stem cell proliferation by inducing apoptosis exacerbates damage by decreasing endogenous cardiac repair. In the setting of MI, which also causes large-scale cell loss, sorafenib cardiotoxicity dramatically increases mortality.
Collapse
Affiliation(s)
- Jason M Duran
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | | | - Danielle Trappanese
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Polina Gross
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Sharmeen Husain
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Jonathan Dunn
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Hind Lal
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Thomas E Sharp
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Timothy Starosta
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Ronald J Vagnozzi
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Remus M Berretta
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Mary Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA
| | - Daohai Yu
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Hajime Kubo
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Thomas Force
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Steven R Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
30
|
Wang X, Qi S, Wang J, Xia D, Qin L, Zheng Z, Wang L, Zhang C, Jin L, Ding G, Wang S, Fan Z. Spatial and temporal expression of c-Kit in the development of the murine submandibular gland. J Mol Histol 2014; 45:381-9. [PMID: 24554067 DOI: 10.1007/s10735-014-9570-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/11/2014] [Indexed: 02/06/2023]
Abstract
The c-Kit pathway is important in the development of many mammalian cells and organs and is indispensable for the development of hematopoiesis, melanocytes, and primordial germ cells. Loss-of-function mutations in c-Kit lead to perinatal death in mouse embryos. Previously, c-Kit has been used as one of salivary epithelial stem or progenitor cell markers in mouse, its specific temporo-spatial expression pattern and function in developing murine submandibular gland (SMG) is still unclear. Here we used quantitative real-time PCR, in situ hybridization, and immunohistochemistry analysis to detect c-Kit expression during the development of the murine SMG. We found that c-Kit was expressed in the epithelia of developing SMGs from embryonic day 11.5 (E11.5; initial bud stage) to postnatal day 90 (P90; when the SMG is completely mature). c-Kit expression in the end bud epithelium increased during prenatal development and then gradually decreased after birth until its expression was undetectable in mature acini at P30. Moreover, c-Kit was expressed in the SMG primordial cord at the initial bud, pseudoglandular, canacular, and terminal end bud stages. c-Kit was also expressed in the presumptive ductal cells adjacent to the developing acini. By the late terminal end bud stage on P14, c-Kit expression could not be detected in ductal cells. However, c-Kit expression was detected in ductal cells at P30, and its expression had increased dramatically at P90. Taken together, these findings describe the spatial and temporal expression pattern of c-Kit in the developing murine SMG and suggest that c-Kit may play roles in epithelial histo-morphogenesis and in ductal progenitor cell homeostasis in the SMG.
Collapse
Affiliation(s)
- Xuejiu Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Biancone L, Camussi G. Stem cells in 2013: Potential use of stem or progenitor cells for kidney regeneration. Nat Rev Nephrol 2013; 10:67-8. [PMID: 24296627 DOI: 10.1038/nrneph.2013.257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
2013 saw the publication of numerous studies that identified resident renal stem or progenitor cells, induced pluripotent stem cells and strategies based on stem cell paracrine action, which all might be suitable for kidney regeneration after injury.
Collapse
Affiliation(s)
- Luigi Biancone
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14, 10126 Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14, 10126 Turin, Italy
| |
Collapse
|