1
|
Ellakany AR, El Baz H, Shoheib ZS, Elzallat M, Ashour DS, Yassen NA. Stem cell-derived exosomes as a potential therapy for schistosomal hepatic fibrosis in experimental animals. Pathog Glob Health 2024; 118:429-449. [PMID: 37519008 PMCID: PMC11338202 DOI: 10.1080/20477724.2023.2240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease. Egg-induced granuloma formation and tissue fibrosis are the main causes of the high morbidity and mortality of schistosomiasis. Mesenchymal stem cells (MSCs)-derived exosomes play an important role with a superior safety profile than MSCs in the treatment of liver fibrosis. Therefore, the aim of this study was to investigate the potential therapeutic effect of MSCs-derived exosomes on schistosomal hepatic fibrosis. Exosomes were isolated from bone marrow MSCs and characterized. A total of 85 mice were divided into four groups: group I (control group), group II (PZQ group) infected and treated with PZQ, group III (EXO group) infected and treated with MSCs-derived exosomes and group IV (PZQ+EXO group) infected and treated with both PZQ and MSCs-derived exosomes. Assessment of treatment efficacy was evaluated by histopathological and immunohistochemical examination of liver sections by proliferating cell nuclear antigen (PCNA) and nuclear factor-κB (NF-κB). The results showed significant reduction of the number and diameter of hepatic granulomas, hepatic fibrosis, upregulation of PCNA expression and reduction of NF-κB expression in EXO and PZQ+EXO groups as compared to other groups at all durations post infection. Additionally, more improvement was observed in PZQ+EXO group. In conclusion, MSCs-derived exosomes are a promising agent for the treatment of schistosomal hepatic fibrosis, and their combination with PZQ shows a synergistic action including antifibrotic and anti-inflammatory effects. However, further studies are required to establish their functional components and their mechanisms of action.
Collapse
Affiliation(s)
- Asmaa R. Ellakany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hanan El Baz
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Zeinab S. Shoheib
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nabila A. Yassen
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Lightner AL, Irving PM, Lord GM, Betancourt A. Stem Cells and Stem Cell-Derived Factors for the Treatment of Inflammatory Bowel Disease with a Particular Focus on Perianal Fistulizing Disease: A Minireview on Future Perspectives. BioDrugs 2024; 38:527-539. [PMID: 38914783 PMCID: PMC11247053 DOI: 10.1007/s40259-024-00661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/26/2024]
Abstract
Inflammatory bowel disease remains a difficult disease to effectively treat, especially fistulizing Crohn's disease. Perianal fistulas in the setting of Crohn's disease remain an area of unmet need with significant morbidity in this patient population. Up to one third of Crohn's patients will have perianal fistulizing disease and current medical and surgical interventions are of limited efficacy. Thus, most patients experience significant morbidity, narcotic use, and loss of employment and end up with multiple surgical interventions. Mesenchymal stem cells (MSCs) have shown efficacy in phase 3 clinical trials, but considerable infrastructure challenges make MSCs limited with regard to scalability in clinical practice. Extracellular vesicles, being derived from MSCs and capturing the secretome functionality of MSCs, offer similar physiological utility regarding mechanism, while also providing an off the shelf regenerative medicine product that could be widely used in daily clinical practice.
Collapse
Affiliation(s)
- Amy L Lightner
- Surgery, Scripps Clinic, 10667 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
- Molecular Medicine, Scripps Research Institute, La Jolla, USA.
| | - Peter M Irving
- Guy's and St Thomas' Hospital, London, UK
- King's College London, London, UK
| | | | - Aline Betancourt
- Vitabolus Inc, San Diego, CA, USA
- Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
3
|
Wang H, Zhang N, Wang X, Tian J, Yi J, Yao L, Huang G. Emerging role of mesenchymal stem cell-derived exosome microRNA in radiation injury. Int J Radiat Biol 2024; 100:996-1008. [PMID: 38776447 DOI: 10.1080/09553002.2024.2347348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Radiation injury (RI) is a common occurrence in malignant tumors patients receiving radiation therapy. While killing tumor cells, normal tissue surrounding the target area is inevitably irradiated at a certain dose, which can cause varying results of radiation injury. Currently, there are limited clinical treatments available for radiation injuries. In recent years, the negative effects of stem cell therapy have been reported more clearly and non-cellular therapies such as exosomes have become a focus of attention for researchers. As a type of vesicle-like substances secreted by mesenchymal stem cells (MSC), MSC derived exosomes (MSC-exo) carry DNA, mRNA, microRNA (miRNAs), specific proteins, lipids, and other active substances involved in intercellular information exchange. miRNAs released by MSC-exo are capable of alleviating and repairing damaged tissues through anti-apoptosis, modulating immune response, regulating inflammatory response and promoting angiogenesis, which indicates that MSC-exo miRNAs have great potential for application in the prevention and treatment of radiation injury. Therefore, it is necessary to explore the underlying therapeutic mechanisms of MSC-exo miRNAs in this process, which may shed new lights on the treatment of radiation injury. CONCLUSIONS Increasing evidence confirms that MSC-exo has shown encouraging applications in tissue repair due to the anti-apoptotic, immunoreactive, and pro-angiogenesis effects of the miRNAs it carries as intercellular communication carriers. However, miRNA-based therapeutics are still in their infancy and many practical issues remain to be addressed for clinical applications.
Collapse
Affiliation(s)
- Huike Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Nini Zhang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Xue Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jia Tian
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jie Yi
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | | | - Guilin Huang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
4
|
Dawoud C, Widmann KM, Czipin S, Pramhas M, Scharitzer M, Stift A, Harpain F, Riss S. Efficacy of cx601 (darvadstrocel) for the treatment of perianal fistulizing Crohn's disease-A prospective nationwide multicenter cohort study. Wien Klin Wochenschr 2024; 136:289-294. [PMID: 37823920 PMCID: PMC11078846 DOI: 10.1007/s00508-023-02283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The use of mesenchymal stem cells is considered a novel and promising therapeutic option for patients with perianal fistulizing Crohn's disease; however, data on its clinical application remain scarce. This multicenter nationwide study aimed to assess the clinical efficacy of mesenchymal stem cells in closing complex anal fistulas. METHODS In this study 14 Crohn's disease patients (3 males, 11 females) with complex anal fistulas treated in 3 tertiary hospitals in Austria were included between October 2018 and April 2021. Injection of 120 million allogeneic expanded adipose-derived mesenchymal stem cells (Cx601-darvadstrocel) was performed in each patient. Closure of the external fistula opening without secretion by external manual compression was defined as treatment success. RESULTS The median age of the patient population at the time of surgery was 32 years (range 26-53 years) with a median body mass index of 21.7 kg/m2 (range 16.7-26.6 kg/m2). Of the patients 12 (86%) received monoclonal antibodies (infliximab, adalimumab, ustekinumab, vedolizumab) at the time of surgery. The median number of complex fistulas was 1.4 (range 1-2), The median operative time was 20 min (range 6-50 min) with no perioperative complications. After a median follow-up of 92 weeks, we found successful fistula closure in 57.1% (n = 8) of treated patients. The perianal disease activity index did not improve significantly from initially 7 to a median of 6 after 52 weeks (p = 0.495). CONCLUSION Darvadstrocel is a safe, minimally invasive surgical technique without significant perioperative complications. Clinical success can be expected in about half of the treated patients.
Collapse
Affiliation(s)
- Christopher Dawoud
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kerstin Melanie Widmann
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sascha Czipin
- Department of Visceral, Transplant and Thoracic Surgery, Centre for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Pramhas
- First Surgical Department, Klinik Landstraße, Vienna, Austria
| | - Martina Scharitzer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Anton Stift
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Felix Harpain
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Riss
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Vu NBD, Pham ND, Tran TNM, Pham XH, Ngo DN, Nguyen MH. Possibility of nanostructured lipid carriers encapsulating astaxanthin from Haematococcus pluvialis to alleviate skin injury in radiotherapy. Int J Radiat Biol 2024; 100:209-219. [PMID: 37819928 DOI: 10.1080/09553002.2023.2267650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE The study aimed to protect patients' skin against ionizing irradiation during radiotherapy by using astaxanthin-encapsulated nanostructured lipid carriers (NLC-ATX). MATERIALS AND METHODS NLC-ATX was prepared by a combined method of hot homogenization and sonication. Cytotoxicity of NLC-ATX was evaluated by MTT colorimetric assay. The in vitro radioprotection of NLC-ATX for human fibroblast (HF) cells was investigated based on the level of ROS (reactive oxygen species), DNA damage, and cell death caused by X-irradiation. In addition, the in vivo radioprotection was evaluated based on the appearance and histological structure of the irradiated skin. RESULTS NLC-ATX was successfully prepared, with a mean particle size, zeta potential, and encapsulation efficiency of 114.4 nm, -34.1 mV, and 85.67%, respectively. Compared to the control, NLC-ATX, at an optimum ATX concentration under in vitro condition, reduced the amount of generated ROS and DNA damage of 81.6% and 41.6%, respectively, after X-radiation, resulting in a significant decrease in cell death by 62.69%. Under in vivo condition, after the 9th day of X-irradiation (equivalent to an accumulated dose of 14 Gy), the dorsal skin of five out of six NLC-ATX-untreated mice exhibited grade-1 skin damage, according to CTCAE v5.0, while treatment with NLC-ATX protected 6/6 mice from acute skin damage. Moreover, on the 28th day after the first X-irradiation, the histological images illustrated that NLC-ATX at an ATX concentration of 0.25 µg/mL exhibited good recovery of the skin, with barely any difference noted in the collagen fibers and sebaceous glands compared to normal skin. CONCLUSIONS NLC-ATX shows potential for application in skin protection against adverse effects of ionizing rays during radiotherapy.
Collapse
Affiliation(s)
- Ngoc-Bich-Dao Vu
- Department of Biochemistry, Faculty of Biology - Biotechnology, University of Science, Ho Chi Minh city, Vietnam
- Vietnam National University, Ho Chi Minh city, Vietnam
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Ngoc-Duy Pham
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Thi-Ngoc-Mai Tran
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Xuan-Hai Pham
- Training Center, Nuclear Research Institute, Dalat city, Vietnam
| | - Dai-Nghiep Ngo
- Department of Biochemistry, Faculty of Biology - Biotechnology, University of Science, Ho Chi Minh city, Vietnam
- Vietnam National University, Ho Chi Minh city, Vietnam
| | - Minh-Hiep Nguyen
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| |
Collapse
|
6
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
7
|
Helissey C, Cavallero S, Guitard N, Théry H, Chargari C, François S. Revolutionizing Radiotoxicity Management with Mesenchymal Stem Cells and Their Derivatives: A Focus on Radiation-Induced Cystitis. Int J Mol Sci 2023; 24:ijms24109068. [PMID: 37240415 DOI: 10.3390/ijms24109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Although radiation therapy plays a crucial role in cancer treatment, and techniques have improved continuously, irradiation induces side effects in healthy tissue. Radiation cystitis is a potential complication following the therapeutic irradiation of pelvic cancers and negatively impacts patients' quality of life (QoL). To date, no effective treatment is available, and this toxicity remains a therapeutic challenge. In recent times, stem cell-based therapy, particularly the use of mesenchymal stem cells (MSC), has gained attention in tissue repair and regeneration due to their easy accessibility and their ability to differentiate into several tissue types, modulate the immune system and secrete substances that help nearby cells grow and heal. In this review, we will summarize the pathophysiological mechanisms of radiation-induced injury to normal tissues, including radiation cystitis (RC). We will then discuss the therapeutic potential and limitations of MSCs and their derivatives, including packaged conditioned media and extracellular vesicles, in the management of radiotoxicity and RC.
Collapse
Affiliation(s)
- Carole Helissey
- Clinical Unit Research, HIA Bégin, 69 Avenu de Paris, 94160 Saint-Mandé, France
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Sophie Cavallero
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Nathalie Guitard
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Hélène Théry
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Cyrus Chargari
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
- Department of Radiation Oncology, Pitié Salpêtrière University Hospital, 47-83 Bd de l'Hôpital, 75013 Paris, France
| | - Sabine François
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
8
|
Yang P, Zhang S, Yan T, Li F, Zhang S. The Therapeutic Application of Stem Cells and Their Derived Exosomes in the Treatment of Radiation-Induced Skin Injury. Radiat Res 2023; 199:182-201. [PMID: 36630584 DOI: 10.1667/rade-22-00023.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023]
Abstract
Radiation-induced skin injury (RISI) is a serious concern for nuclear accidents and cancer radiotherapy, which seriously affects the quality of life of patients. This injury differs from traditional wounds due to impaired healing and the propensity to recurrence and is divided into acute and chronic phases on the basis of the injury time. Unfortunately, there are few effective therapies for preventing or mitigating this injury. Over the last few decades, various studies have focused on the effects of stem cell-based therapies to address the tissue repair and regeneration of irradiated skin. These stem cells modulate inflammation and instigate tissue repair by differentiating into specific kinds of cells or releasing paracrine factors. Stem cell-based therapies, including bone marrow-derived stem cells (BMSCs), adipose-derived stem cells (ADSCs) and stromal vascular fraction (SVF), have been reported to facilitate wound healing after radiation exposure. Moreover, stem cell-derived exosomes have recently been suggested as an effective and cell-free approach to support skin regeneration, circumventing the concerns respecting direct application of stem cells. Based on the literature on stem cell-based therapies for radiation-induced skin injury, we summarize the characteristics of different stem cells and describe their latest animal and clinical applications, as well as potential mechanisms. The promise of stem-cell based therapies against radiation-induced skin injury contribute to our response to nuclear events and smooth progress of cancer radiotherapy.
Collapse
Affiliation(s)
- Ping Yang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shuaijun Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yan
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Fengsheng Li
- PLA Rocket Rorce Characteristic Medical Center, Beijing 100088, China
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China.,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621099, China
| |
Collapse
|
9
|
Dozois EJ, Lightner AL, Dietz AB, Fletcher JG, Lee YS, Friton JJ, Faubion WA. Durable Response in Patients With Refractory Fistulizing Perianal Crohn's Disease Using Autologous Mesenchymal Stem Cells on a Dissolvable Matrix: Results from the Phase I Stem Cell on Matrix Plug Trial. Dis Colon Rectum 2023; 66:243-252. [PMID: 36538706 DOI: 10.1097/dcr.0000000000002579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Refractory perianal Crohn's disease remains notoriously difficult to treat. We developed a novel technology using a commercially available bioabsorbable fistula plug to deliver autologous adipose-derived mesenchymal stem cells. OBJECTIVE This study aimed to assess therapeutic safety and feasibility in the completed STOMP (stem cells on matrix plugs) phase 1 clinical trial. DESIGN Prospective single-arm phase I clinical trial. SETTING Tertiary academic medical center. PATIENTS Adults (aged 18-65 y) with complex single-tract Crohn's disease perianal fistula who have failed conventional therapy were included in this study. INTERVENTION Autologous adipose-derived mesenchymal stem cells were isolated, ex vivo culture expanded, and seeded onto a commercially available bioabsorbable fistula plug. Six weeks later, patients returned to the operating room for removal of the seton and placement of the stem cell-loaded plug. MAIN OUTCOME MEASURES Patients were followed up for a total of 8 visits through 12 months. Safety was the primary end point; clinical healing and MRI response were secondary end points. RESULTS Twenty patients (12 females; mean age 36 y) were treated with the stem cell-loaded plug. Of the 20 patients enrolled, 3 were not included in the 12-month analysis because of study withdrawal. Through 12 months, no patient experienced a serious adverse event related to the stem cell-loaded plug. Four patients experienced 7 serious adverse events and 12 patients experienced 22 adverse events. Complete clinical healing occurred in 14 of 18 patients at 6 months and 13 of 17 patients at 12 months. MRI response was observed in 12 of 18 patients at 6 months. LIMITATIONS The main limitations were the small sample size and restrictive inclusion criteria. CONCLUSIONS A stem cell-loaded plug can safely and effectively deliver cell-based therapy for patients with single-tract fistulizing perianal Crohn's disease. See Video Abstract at http://links.lww.com/DCR/C70 . RESPUESTA DURADERA OBSERVADA EN PACIENTES CON ENFERMEDAD DE CROHN PERIANAL FISTULIZANTE REFRACTARIA MEDIANTE EL USO DE CLULAS MADRE MESENQUIMALES AUTLOGAS EN UNA MATRIZ DISOLUBLE RESULTADOS DEL ENSAYO DE FASE I STEM CELL ON MATRIX PLUG ANTECEDENTES:La enfermedad de Crohn perianal refractaria sigue siendo notoriamente difícil de tratar. Desarrollamos una tecnología novedosa utilizando un tapón de fístula bioabsorbible disponible comercialmente para administrar células madre mesenquimales derivadas de tejido adiposo autólogo.OBJETIVO:Evaluar la seguridad y viabilidad terapéutica en el ensayo finalizado STOMP.DISEÑO:Ensayo clínico prospectivo de fase I de un solo brazo.AJUSTE:Centro médico académico terciario.PACIENTES:Adultos (18-65) con fístula perianal compleja de la enfermedad de Crohn de un solo tracto que han fracasado con la terapia convencional.INTERVENCIÓN:Se aislaron células madre mesenquimales derivadas de tejido adiposo autólogo, se expandieron en cultivo ex vivo y se sembraron en un tapón de fístula bioabsorbible disponible comercialmente. Seis semanas después, los pacientes regresaron al quirófano para retirar el setón y colocar el tapón cargado de células madre.PRINCIPALES MEDIDAS DE RESULTADO:Los pacientes fueron seguidos durante un total de 8 visitas durante 12 meses. La seguridad fue el criterio principal de valoración; la curación clínica y la respuesta a la resonancia magnética fueron criterios de valoración secundarios.RESULTADOS:Veinte pacientes (12 mujeres, edad media 36 años) fueron tratados con el tapón cargado de células madre. De los 20 pacientes inscritos, tres no se incluyeron en el análisis de 12 meses porque se retiraron del estudio. A lo largo de 12 meses, ningún paciente experimentó un evento adverso grave relacionado con el tapón cargado de células madre. Cuatro pacientes experimentaron 7 eventos adversos graves y 12 pacientes experimentaron 22 eventos adversos. La curación clínica completa ocurrió en 14 de 18 pacientes a los 6 meses y en 13 de 17 pacientes a los 12 meses. La respuesta a la resonancia magnética se observó en 12 de 18 pacientes a los 6 meses.LIMITACIONES:Las principales limitaciones son el tamaño pequeño de la muestra y los criterios de inclusión restrictivos.CONCLUSIONES:Un tapón cargado de células madre se puede administrar de manera segura y efectiva, una terapia basada en células para pacientes con enfermedad de Crohn perianal fistulizante de un solo tracto. Consule Video Resumen en http://links.lww.com/DCR/C70 . (Traducción- Dr. Yesenia Rojas-Khalil ).
Collapse
Affiliation(s)
- Eric J Dozois
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota
| | - Amy L Lightner
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota
| | - Allan B Dietz
- Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Yong S Lee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Jessica J Friton
- Department of Gastroenterology, Mayo Clinic, Rochester Minnesota
| | | |
Collapse
|
10
|
Lightner AL, Dadgar N, Matyas C, Elliott K, Fulmer C, Khaitan N, Ream J, Nachand D, Steele SR. A phase IB/IIA study of remestemcel-L, an allogeneic bone marrow-derived mesenchymal stem cell product, for the treatment of medically refractory ulcerative colitis: an interim analysis. Colorectal Dis 2022; 24:1358-1370. [PMID: 35767384 PMCID: PMC9795998 DOI: 10.1111/codi.16239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022]
Abstract
AIM There have been no studies into the direct injection of mesenchymal stem cells (MSCs) for luminal ulcerative colitis (UC). Our aim was to investigate the efficacy of MSCs delivered locally via endoscopic delivery, as is done in the setting of perianal disease, to treat the local site of inflammation directly. METHOD A phase IB/IIA randomized control clinical trial of remestemcel-L, an ex vivo expanded allogeneic bone marrow-derived MSC product, at a dose of 150 million MSCs versus placebo (2:1 fashion) delivered via direct injection using a 23-gauge sclerotherapy needle at the time of colonoscopy was designed to assess the safety and efficacy of endoscopic delivery of MSCs for UC. The main outcome measures were adverse events, Mayo score and Mayo endoscopic severity score at 2 weeks, 6 weeks and 3 months post-MSC delivery. RESULTS Six patients were enrolled and treated; four received MSCs and two placebo. All had been on prior anti-tumour necrosis factor or anti-integrin therapy. There were no adverse events related to MSCs. In the treatment group (n = 4), the Mayo endoscopic severity score decreased in all patients by 2 weeks after MSC delivery. At 3 months, all patients were extremely satisfied or satisfied with their MSC treatment based on the inflammatory bowel disease patient-reported treatment impact (IBD-PRTI), and treatment response was described as excellent or good in all patients. In the control group (n = 2), the Mayo endoscopic severity score did not increase as a result of being off alternative therapy. At 3 months, patients were dissatisfied according to the IBD-PRTI, and treatment response was poor or unchanged. CONCLUSION MSCs may offer a safe therapeutic option for the treatment of medically refractory UC. Early data suggest improved clinical and endoscopic scores by 2 weeks after MSC delivery.
Collapse
Affiliation(s)
- Amy L. Lightner
- Department of Colorectal SurgeryDigestive Disease and Surgery Institute, Cleveland ClinicClevelandOhioUSA,Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Neda Dadgar
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Caroline Matyas
- Department of Colorectal SurgeryDigestive Disease and Surgery Institute, Cleveland ClinicClevelandOhioUSA
| | - Kavita Elliott
- Department of Colorectal SurgeryDigestive Disease and Surgery Institute, Cleveland ClinicClevelandOhioUSA
| | - Clifton Fulmer
- Department of PathologyRobert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland ClinicClevelandOhioUSA
| | - Neha Khaitan
- Department of PathologyRobert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland ClinicClevelandOhioUSA
| | - Justin Ream
- Department of RadiologyImaging Institute, Cleveland ClinicClevelandOhioUSA
| | - Douglas Nachand
- Department of RadiologyImaging Institute, Cleveland ClinicClevelandOhioUSA
| | - Scott R. Steele
- Department of Colorectal SurgeryDigestive Disease and Surgery Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
11
|
Kessler MR, Dove AP, Kirschner AN. Radiation Fibrosis After Stereotactic Body Radiation Therapy for Osseous Metastases: A Case Report. Cureus 2022; 14:e28925. [PMID: 36237749 PMCID: PMC9547492 DOI: 10.7759/cureus.28925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 11/05/2022] Open
Abstract
Radiation-induced fibrosis is a potentially severe late complication after high-dose radiotherapy. Over the last decade, there has been increasing use of stereotactic body radiation therapy (SBRT) to treat both primary and metastatic malignancies. While there has been evolving evidence of appropriate dose constraints for certain organs receiving hypofractionated radiotherapy, the risk, and appropriate dose constraints to limit the risk of radiation-induced muscle fibrosis are poorly defined. In this report, two patients are presented who underwent SBRT for osseous oligometastatic renal cell carcinoma. While the treatment was well-tolerated with no acute toxicities and complete local control of the metastasis, both patients experienced late toxicity of radiation-induced fibrosis in the adjacent musculature. In both cases, toxicity was nonresponsive to medical interventions and was severe enough to require surgical resection of the affected tissue. Following surgery, both patients reported improved pain relief and mobility. Further studies are needed to explore the dose constraints that may reduce the risk of radiation-induced muscle fibrosis in five-fraction treatment.
Collapse
|
12
|
Ando K, Yoshida Y, Hirayama R, Koike S, Matsufuji N. Dose- and LET-dependent changes in mouse skin contracture up to a year after either single dose or fractionated doses of carbon ion or gamma rays. JOURNAL OF RADIATION RESEARCH 2022; 63:221-229. [PMID: 35021226 PMCID: PMC8944303 DOI: 10.1093/jrr/rrab123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Time dependence of relative biological effectiveness (RBE) of carbon ions for skin damage was investigated to answer the question of whether the flat distribution of biological doses within a Spread-Out Bragg peak (SOBP) which is designed based on in vitro cell kill could also be flat for in vivo late responding tissue. Two spots of Indian ink intracutaneously injected into the legs of C3H mice were measured by calipers. An equieffective dose to produce 30% skin contraction was calculated from a dose-response curve and used to calculate the RBE of carbon ion beams. We discovered skin contraction progressed after irradiation and then reached a stable/slow progression phase. Equieffective doses decreased with time and the decrease was most prominent for gamma rays and least prominent for 100 keV/μm carbon ions. Survival parameter of alpha but not beta in the linear-quadratic model is closely related to the RBE of carbon ions. Biological doses within the SOBP increased with time but their distribution was still flat up to 1 year after irradiation. The outcomes of skin contraction studies suggest that (i) despite the higher RBE for skin contracture after carbon ions compared to gamma rays, gamma rays can result in a more severe late effect of skin contracture. This is due to the carbon effect saturating at a lower dose than gamma rays, and (ii) the biological dose distribution throughout the SOBP remains approximately the same even one year after exposure.
Collapse
Affiliation(s)
- Koichi Ando
- Corresponding author. Gunma University Heavy Ion Medical Center, Showa-machi 3-39-22, Maebashi0shi, Gunma, Japan 371-8511, Email address:
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Showa-machi 3-39-22, Maebashi-shi, Gunma, Japan 371-8511
| | - Ryoichi Hirayama
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Chiba, Japan 263-8555
| | - Sachiko Koike
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Chiba, Japan 263-8555
| | - Naruhiro Matsufuji
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Chiba, Japan 263-8555
| |
Collapse
|
13
|
Miceli V, Bertani A. Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells 2022; 11:cells11050826. [PMID: 35269448 PMCID: PMC8909054 DOI: 10.3390/cells11050826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lung transplantation (LTx) has become the gold standard treatment for end-stage respiratory failure. Recently, extended lung donor criteria have been applied to decrease the mortality rate of patients on the waiting list. Moreover, ex vivo lung perfusion (EVLP) has been used to improve the number/quality of previously unacceptable lungs. Despite the above-mentioned progress, the morbidity/mortality of LTx remains high compared to other solid organ transplants. Lungs are particularly susceptible to ischemia-reperfusion injury, which can lead to graft dysfunction. Therefore, the success of LTx is related to the quality/function of the graft, and EVLP represents an opportunity to protect/regenerate the lungs before transplantation. Increasing evidence supports the use of mesenchymal stromal/stem cells (MSCs) as a therapeutic strategy to improve EVLP. The therapeutic properties of MSC are partially mediated by secreted factors. Hence, the strategy of lung perfusion with MSCs and/or their products pave the way for a new innovative approach that further increases the potential for the use of EVLP. This article provides an overview of experimental, preclinical and clinical studies supporting the application of MSCs to improve EVLP, the ultimate goal being efficient organ reconditioning in order to expand the donor lung pool and to improve transplant outcomes.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| |
Collapse
|
14
|
Nogueira RMP, Vital FMR, Bernabé DG, Carvalho MBD. Interventions for Radiation-Induced Fibrosis in Patients with Breast Cancer: Systematic Review and Meta-analyses. Adv Radiat Oncol 2022; 7:100912. [PMID: 35647406 PMCID: PMC9133365 DOI: 10.1016/j.adro.2022.100912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose Radiation therapy can affect normal tissues in patients with breast cancer, causing adverse effects such as fibrosis. Although there are several interventions for radiation-induced fibrosis, the efficacy of these procedures is still unclear. The purpose of this review is to evaluate the efficacy of interventions for radiation-induced fibrosis in patients with breast cancer. Methods and Materials This is a systematic review of randomized clinical trials. Studies that compared any intervention for fibrosis to another intervention, placebo, or no intervention were included. Outcomes assessed were fibrosis, adverse events, quality of life, treatment adherence, pain, and functionality. Results A total of 2501 publications were found, and 7 studies were selected because they met the inclusion criteria. The interventions for fibrosis were pentoxifylline and vitamin E, grape seed extract, kinesiotherapy, and endermotherapy. The results showed great heterogeneity in the treatment protocols for radiation-induced fibrosis in patients with breast cancer and in their evaluation metrics. The meta-analyses showed no benefit in using pentoxifylline and vitamin E compared with placebo or no intervention (standardized mean difference: −0.30; 95% confidence interval, −0.79 to 0.20; P = .24 [very low evidence]) compared with placebo and vitamin E (standardized mean difference: −0.09; 95% confidence interval, −0.66 to 0.49; P = .77 [moderate evidence]), respectively, assessed by the Late Effects Normal Tissue Task Force–Subjective, Objective, Management, and Analytic (LENT-SOMA) scoring scale. Conclusions The effectiveness of these interventions for the treatment of radiation-induced fibrosis in patients with breast cancer could not be determined. Although isolated studies show significant results favorable to the experimental groups, caution should be exercised in these findings because of the small number, small sample size, and high risk of bias presented by some of the included studies, which makes the recommendation for clinical practice still weak.
Collapse
Affiliation(s)
- Regiane Mazzarioli Pereira Nogueira
- Oral Oncology Center, School of Dentistry, São Paulo State University, Araçatuba, São Paulo, Brazil
- University of São Paulo, Faculty of Medicine, São Paulo, São Paulo, Brazil
- Corresponding author: Regiane Mazzarioli Pereira Nogueira, MSc
| | - Flávia Maria Ribeiro Vital
- University of São Paulo, Faculty of Medicine, São Paulo, São Paulo, Brazil
- Vital Knowledge, Pontifical Catholic University of Rio de Janeiro, Muriaé, Minas Gerais, Brazil
| | - Daniel Galera Bernabé
- Oral Oncology Center, School of Dentistry, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - Marcos Brasilino de Carvalho
- University of São Paulo, Faculty of Medicine, São Paulo, São Paulo, Brazil
- Hospital Heliópolis, São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Dai S, Wen Y, Luo P, Ma L, Liu Y, Ai J, Shi C. Therapeutic implications of exosomes in the treatment of radiation injury. BURNS & TRAUMA 2022; 10:tkab043. [PMID: 35071650 PMCID: PMC8778593 DOI: 10.1093/burnst/tkab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Radiotherapy is one of the main cancer treatments, but it may damage normal tissue and cause various side effects. At present, radioprotective agents used in clinics have side effects such as nausea, vomiting, diarrhea and hypotension, which limit their clinical application. It has been found that exosomes play an indispensable role in radiation injury. Exosomes are lipid bilayer vesicles that carry various bioactive substances, such as proteins, lipids and microRNA (miRNA), that play a key role in cell-to-cell communication and affect tissue injury and repair. In addition, studies have shown that radiation can increase the uptake of exosomes in cells and affect the composition and secretion of exosomes. Here, we review the existing studies and discuss the effects of radiation on exosomes and the role of exosomes in radiation injury, aiming to provide new insights for the treatment of radiation injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Junhua Ai
- Correspondence. Junhua Ai, ; Chunmeng Shi,
| | | |
Collapse
|
16
|
Molecular and Biologic Targets for Radiation Fibrosis: Implications for Rehabilitation. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021. [DOI: 10.1007/s40141-021-00321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Ying H, Fang M, Hang QQ, Chen Y, Qian X, Chen M. Pirfenidone modulates macrophage polarization and ameliorates radiation-induced lung fibrosis by inhibiting the TGF-β1/Smad3 pathway. J Cell Mol Med 2021; 25:8662-8675. [PMID: 34327818 PMCID: PMC8435416 DOI: 10.1111/jcmm.16821] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Radiation-induced lung injury (RILI) mainly contributes to the complications of thoracic radiotherapy. RILI can be divided into radiation pneumonia (RP) and radiation-induced lung fibrosis (RILF). Once RILF occurs, patients will eventually develop irreversible respiratory failure; thus, a new treatment strategy to prevent RILI is urgently needed. This study explored the therapeutic effect of pirfenidone (PFD), a Food and Drug Administration (FDA)-approved drug for (IPF) treatment, and its mechanism in the treatment of RILF. In vivo, C57BL/6 mice received a 50 Gy dose of X-ray radiation to the whole thorax with or without the administration of PFD. Collagen deposition and fibrosis in the lung were reversed by PFD treatment, which was associated with reduced M2 macrophage infiltration and inhibition of the transforming growth factor-β1 (TGF-β1)/Drosophila mothers against the decapentaplegic 3 (Smad3) signalling pathway. Moreover, PFD treatment decreased the radiation-induced expression of TGF-β1 and phosphorylation of Smad3 in alveolar epithelial cells (AECs) and vascular endothelial cells (VECs). Furthermore, IL-4-induced M2 macrophage polarization and IL-13-induced M2 macrophage polarization were suppressed by PFD treatment in vitro, resulting in reductions in the release of arginase-1 (ARG-1), chitinase 3-like 3 (YM-1) and TGF-β1. Notably, the PFD-induced inhibitory effects on M2 macrophage polarization were associated with downregulation of nuclear factor kappa-B (NF-κB) p50 activity. Additionally, PFD could significantly inhibit ionizing radiation-induced chemokine secretion in MLE-12 cells and consequently impair the migration of RAW264.7 cells. PFD could also eliminate TGF-β1 from M2 macrophages by attenuating the activation of TGF-β1/Smad3. In conclusion, PFD is a potential therapeutic agent to ameliorate fibrosis in RILF by reducing M2 macrophage infiltration and inhibiting the activation of TGF-β1/Smad3.
Collapse
Affiliation(s)
- Hangjie Ying
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Min Fang
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.,The Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qing Qing Hang
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Yamei Chen
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xu Qian
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.,The Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ming Chen
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.,The Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
18
|
Nanduri LSY, Duddempudi PK, Yang WL, Tamarat R, Guha C. Extracellular Vesicles for the Treatment of Radiation Injuries. Front Pharmacol 2021; 12:662437. [PMID: 34084138 PMCID: PMC8167064 DOI: 10.3389/fphar.2021.662437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Normal tissue injury from accidental or therapeutic exposure to high-dose radiation can cause severe acute and delayed toxicities, which result in mortality and chronic morbidity. Exposure to single high-dose radiation leads to a multi-organ failure, known as acute radiation syndrome, which is caused by radiation-induced oxidative stress and DNA damage to tissue stem cells. The radiation exposure results in acute cell loss, cell cycle arrest, senescence, and early damage to bone marrow and intestine with high mortality from sepsis. There is an urgent need for developing medical countermeasures against radiation injury for normal tissue toxicity. In this review, we discuss the potential of applying secretory extracellular vesicles derived from mesenchymal stromal/stem cells, endothelial cells, and macrophages for promoting repair and regeneration of organs after radiation injury.
Collapse
Affiliation(s)
- Lalitha Sarad Yamini Nanduri
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Phaneendra K. Duddempudi
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Urology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Institute for Onco-Physics, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| |
Collapse
|
19
|
Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for burn wound healing. BURNS & TRAUMA 2021; 9:tkab002. [PMID: 34212055 PMCID: PMC8240555 DOI: 10.1093/burnst/tkab002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Burns, with their high incidence and mortality rates, have a devastating effect on patients. There are still huge challenges in the management of burns. Mesenchymal stem cells (MSCs), which have multidirectional differentiation potential, have aroused interest in exploring the capacity for treating different intractable diseases due to their strong proliferation, tissue repair, immune tolerance and paracrine abilities, among other features. Currently, several animal studies have shown that MSCs play various roles and have beneficial effects in promoting wound healing, inhibiting burn inflammation and preventing the formation of pathological scars during burn healing process. The substances MSCs secrete can act on peripheral cells and promote burn repair. According to preclinical research, MSC-based treatments can effectively improve burn wound healing and reduce pain. However, due to the small number of patients and the lack of controls, treatment plans and evaluation criteria vary widely, thus limiting the value of these clinical studies. Therefore, to better evaluate the safety and effectiveness of MSC-based burn treatments, standardization of the application scheme and evaluation criteria of MSC therapy in burn treatment is required in the future. In addition, the combination of MSC pretreatment and dressing materials are also conducive to improving the therapeutic effect of MSCs on burns. In this article, we review current animal research and clinical trials based on the use of stem cell therapy for treating burns and discuss the main challenges and coping strategies facing future clinical applications.
Collapse
Affiliation(s)
- Mingyao Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xinxuan Xu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiongxin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
20
|
An update on stem cells applications in burn wound healing. Tissue Cell 2021; 72:101527. [PMID: 33756272 DOI: 10.1016/j.tice.2021.101527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022]
Abstract
Burn wounds have proven to be capable of having a long lasting devastating effects on human body. Conventional therapeutic approaches are not up to the mark as they are unable to completely heal the burn wound easily and effectively. Major pitfalls of these treatments include hypertrophic scarring, contracture and necrosis. Presence of these limitations in the current therapies necessitate the search for a better and more efficient cure. Regenerative potency of stem cells in burn wound healing outweigh the traditional treatment procedures. The use of multiple kinds of stem cells are gaining interest due to their enhanced healing efficiency. Distinctions of stem cells include better and faster burn wound healing, decreased inflammation levels, less scar progression and fibrosis on site. In this review, we have discussed the wound-healing process, present methods used for stem cells administration, methods of enhancing stem cells potency and human studies. Pre-clinical and the clinical studies focused on the treatment of thermal and radiation burns using stem cells from 2003 till the present time have been enlisted. Studies shows that the use of stem cells on burn wounds, whether alone or by the help of a scaffold significantly improves healing. Homing of the stem cells at the wound site results in the re-epithelialization, angiogenesis, granulation, inhibition of apoptosis, and regeneration of skin appendages together with reduced infection rate in the human studies. Several studies on animals have shown that stem cells can effectively promote wound healing. Although more research is needed to find out the effectiveness of this treatment in patients with severe burn wounds.
Collapse
|
21
|
Fang Z, Chen P, Tang S, Chen A, Zhang C, Peng G, Li M, Chen X. Will mesenchymal stem cells be future directions for treating radiation-induced skin injury? Stem Cell Res Ther 2021; 12:179. [PMID: 33712078 PMCID: PMC7952822 DOI: 10.1186/s13287-021-02261-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 01/09/2023] Open
Abstract
Radiation-induced skin injury (RISI) is one of the common serious side effects of radiotherapy (RT) for patients with malignant tumors. Mesenchymal stem cells (MSCs) are applied to RISI repair in some clinical cases series except some traditional options. Though direct replacement of damaged cells may be achieved through differentiation capacity of MSCs, more recent data indicate that various cytokines and chemokines secreted by MSCs are involved in synergetic therapy of RISI by anti-inflammatory, immunomodulation, antioxidant, revascularization, and anti-apoptotic activity. In this paper, we not only discussed different sources of MSCs on the treatment of RISI both in preclinical studies and clinical trials, but also summarized the applications and mechanisms of MSCs in other related regenerative fields.
Collapse
Affiliation(s)
- Zhuoqun Fang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Penghong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Shijie Tang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Aizhen Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Chaoyu Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Guohao Peng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Ming Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China.
| |
Collapse
|
22
|
Cell therapy as a new approach on hepatic fibrosis of murine model of Schistosoma mansoni-infection. Acta Parasitol 2021; 66:136-145. [PMID: 32816183 DOI: 10.1007/s11686-020-00267-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Schistosomiasis is an acute and chronic disease of the genus Schistosoma triggered by blood flukes. Schistosomiasis is a disease occurring in, or endemic to, tropical and subtropical regions. A new concept was implemented to deal with schistosomiasis from natural plant sources. Curcumin's common name is Turmeric. Curcumin has proven to be main active component in Curcuma longa L. and has a wide range of anti-phrastic effects. Previous studies have shown the role of bone marrow mesenchymal stem cells (BMSCs) therapy in hepatic fibrosis recovery. OBJECTIVE The current study was, therefore, intended to examine therapeutic role of BMSCs and Turmeric in murine schistosomiasis mansoni. ANIMALS Mice were divided into five groups: a negative control group (non-infected non-treated), a positive control group (infected non-treated), a BMSCs treated group; Turmeric treated group, and untreated group. BMSCs derived from male mice were injected intraperitoneally into female mice receiving S. mansoni cercariae through the subcutaneous route. Liver histopathology and immuno-histochemical examinations were evaluated. RESULTS BMSCs intraperitoneal injection resulted in a significant reduction of liver collagen, granuloma size, and significant increase of OV-6 expression in the Schistosomiasis-treated mice group. There was overall improvement in pathological changes of the liver. Unfortunately, group IV showed a mild improvement in the granuloma size and fibrosis compared to corresponding BMSCs treatment group, although with vacuolated liver cells. CONCLUSION AND CLINICAL RELEVANCE BMSCs have a regenerative potential in liver tissue histopathology by decreasing liver fibrosis and granulomas. Turmeric, by contrast, could not be used as an anti-fibrotic, according to the findings.
Collapse
|
23
|
Tynecka M, Moniuszko M, Eljaszewicz A. Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma. Stem Cell Rev Rep 2021; 17:1323-1342. [PMID: 33649900 PMCID: PMC7919631 DOI: 10.1007/s12015-021-10137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, Białystok, 15-276, Poland.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
| |
Collapse
|
24
|
He T, Yang J, Liu P, Xu L, Lü Q, Tan Q. [Research progress of adipose-derived stem cells in skin scar prevention and treatment]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:234-240. [PMID: 33624480 DOI: 10.7507/1002-1892.202007083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of adipose-derived stem cells (ADSCs) in skin scar prevention and treatment. Methods The related literature was extensively reviewed and analyzed. The recent in vitroand in vivo experiments and clinical studies on the role of ADSCs in skin scar prevention and treatment, and the possible mechanisms and biomaterials to optimize the effect of ADSCs were summarized. Results As demonstrated by in vitro and in vivo experiments and clinical studies, ADSCs participate in the whole process of skin wound healing and may prevent and treat skin scars by reducing inflammation, promoting angiogenesis, or inhibiting (muscle) fibroblasts activity to reduce collagen deposition through the p38/mitogen-activated protein kinase, peroxisome proliferator activated receptor γ, transforming growth factor β 1/Smads pathways. Moreover, bioengineered materials such as hydrogel from acellular porcine adipose tissue, porcine small-intestine submucosa, and poly (3-hydroxybutyrate-co-hydroxyvalerate) scaffold may further enhance the efficacy of ADSCs in preventing and treating skin scars. Conclusion Remarkable progress has been made in the application of ADSCs in skin scar prevention and treatment. While, further studies are still needed to explore the application methods of ADSCs in the clinic.
Collapse
Affiliation(s)
- Tao He
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jiqiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Pengcheng Liu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Li Xu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Qing Lü
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
25
|
Mesenchymal Stem Cells for Mitigating Radiotherapy Side Effects. Cells 2021; 10:cells10020294. [PMID: 33535574 PMCID: PMC7912747 DOI: 10.3390/cells10020294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy for cancers also damages healthy cells and causes side effects. Depending on the dosage and exposure region, radiotherapy may induce severe and irreversible injuries to various tissues or organs, especially the skin, intestine, brain, lung, liver, and heart. Therefore, promising treatment strategies to mitigate radiation injury is in pressing need. Recently, stem cell-based therapy generates great attention in clinical care. Among these, mesenchymal stem cells are extensively applied because it is easy to access and capable of mesodermal differentiation, immunomodulation, and paracrine secretion. Here, we summarize the current attempts and discuss the future perspectives about mesenchymal stem cells (MSCs) for mitigating radiotherapy side effects.
Collapse
|
26
|
Gallo G, Tiesi V, Fulginiti S, De Paola G, Vescio G, Sammarco G. Mesenchymal Stromal Cell Therapy in the Management of Perianal Fistulas in Crohn's Disease: An Up-To-Date Review. ACTA ACUST UNITED AC 2020; 56:medicina56110563. [PMID: 33121049 PMCID: PMC7692376 DOI: 10.3390/medicina56110563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Crohn’s Disease (CD) is a chronic inflammatory disorder that potentially involves the entire gastrointestinal tract. Perianal fistulizing CD (pCD) is a serious and frequent complication associated with significant morbidities and a heavy negative impact on quality of life. The aim of CD treatment is to induce and maintain disease remission and to promote mucosal repair. Unfortunately, even the best therapeutic regimens in pCD do not have long-term efficacy and cause a significant number of side effects. Therefore, it is mandatory to study new therapeutical options such as the use of mesenchymal stromal cells (MSCs). These cells promote tissue repair via the induction of immunomodulation. The present review aims to analyze the existing updated scientific literature on MSCs adoption in the treatment of pCD to evaluate its efficacy and safety and to compare the use of bone marrow and adipose tissue derived MSCs, type of administration, and dose required for recovery.
Collapse
Affiliation(s)
- Gaetano Gallo
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (V.T.); (S.F.); (G.D.P.); (G.V.)
- Correspondence: ; Tel.: +39-3284385222
| | - Vincenzo Tiesi
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (V.T.); (S.F.); (G.D.P.); (G.V.)
| | - Serena Fulginiti
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (V.T.); (S.F.); (G.D.P.); (G.V.)
| | - Gilda De Paola
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (V.T.); (S.F.); (G.D.P.); (G.V.)
| | - Giuseppina Vescio
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (V.T.); (S.F.); (G.D.P.); (G.V.)
| | - Giuseppe Sammarco
- Department of Health Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| |
Collapse
|
27
|
Mishra R, Dhawan P, Srivastava AS, Singh AB. Inflammatory bowel disease: Therapeutic limitations and prospective of the stem cell therapy. World J Stem Cells 2020; 12:1050-1066. [PMID: 33178391 PMCID: PMC7596447 DOI: 10.4252/wjsc.v12.i10.1050] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD), consisting primarily of ulcerative colitis and Crohn’s disease, is a group of debilitating auto-immune disorders, which also increases the risk of colitis-associated cancer. However, due to the chronic nature of the disease and inconsistent treatment outcomes of current anti-IBD drugs (e.g., approximately 30% non-responders to anti-TNFα agents), and related serious side effects, about half of all IBD patients (in millions) turn to alternative treatment options. In this regard, mucosal healing is gaining acceptance as a measure of disease activity in IBD patients as recent studies have correlated the success of mucosal healing with improved prognosis. However, despite the increasing clinical realization of the significance of the concept of mucosal healing, its regulation and means of therapeutic targeting remain largely unclear. Here, stem-cell therapy, which uses hematopoietic stem cells or mesenchymal stem cells, remains a promising option. Stem cells are the pluripotent cells with ability to differentiate into the epithelial and/or immune-modulatory cells. The over-reaching concept is that the stem cells can migrate to the damaged areas of the intestine to provide curative help in the mucosal healing process. Moreover, by differentiating into the mature intestinal epithelial cells, the stem cells also help in restoring the barrier integrity of the intestinal lining and hence prevent the immunomodulatory induction, the root cause of the IBD. In this article, we elaborate upon the current status of the clinical management of IBD and potential role of the stem cell therapy in improving IBD therapy and patient’s quality of life.
Collapse
Affiliation(s)
- Rangnath Mishra
- Global Institute of Stem Cell Therapy and Research, San Diego, CA 92122, United States
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68118, United States
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68118, United States
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68118, United States
| | - Anand S Srivastava
- Global Institute of Stem Cell Therapy and Research, San Diego, CA 92122, United States
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68118, United States
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68118, United States
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68118, United States
| |
Collapse
|
28
|
Hematopoietic Stem Cells and Mesenchymal Stromal Cells in Acute Radiation Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8340756. [PMID: 32855768 PMCID: PMC7443042 DOI: 10.1155/2020/8340756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
With the extensive utilization of radioactive materials for medical, industrial, agricultural, military, and research purposes, medical researchers are trying to identify new methods to treat acute radiation syndrome (ARS). Radiation may cause injury to different tissues and organs, but no single drug has been proven to be effective in all circumstances. Radioprotective agents are always effective if given before irradiation, but many nuclear accidents are unpredictable. Medical countermeasures that can be beneficial to different organ and tissue injuries caused by radiation are urgently needed. Cellular therapy, especially stem cell therapy, has been a promising approach in ARS. Hematopoietic stem cells (HSCs) and mesenchymal stromal cells (MSCs) are the two main kinds of stem cells which show good efficacy in ARS and have attracted great attention from researchers. There are also some limitations that need to be investigated in future studies. In recent years, there are also some novel methods of stem cells that could possibly be applied on ARS, like "drug" stem cell banks obtained from clinical grade human induced pluripotent stem cells (hiPSCs), MSC-derived products, and infusion of HSCs without preconditioning treatment, which make us confident in the future treatment of ARS. This review focuses on major scientific and clinical advances of hematopoietic stem cells and mesenchymal stromal cells on ARS.
Collapse
|
29
|
Evaluation of epithelial progenitor cells and growth factors in a preclinical model of wound healing induced by mesenchymal stromal cells. Biosci Rep 2020; 40:225798. [PMID: 32667622 PMCID: PMC7378309 DOI: 10.1042/bsr20200461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Skin wounds continue to be a global health problem. Several cellular therapy protocols have been used to improve and accelerate skin wound healing. Here, we evaluated the effect of transplantation of mesenchymal stromal cells (MSC) on the wound re-epithelialization process and its possible relationship with the presence of epithelial progenitor cells (EPC) and the expression of growth factors. Methods: An experimental wound model was developed in C57BL/6 mice. Human MSCs seeded on collagen membranes (CM) were implanted on wounds. As controls, animals with wounds without treatment or treated with CM were established. Histological and immunohistochemical (IH) studies were performed at day 3 post-treatment to detect early skin wound changes associated with the presence of EPC expressing Lgr6 and CD34 markers and the expression of keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF). Results: MSC transplantation enhanced skin wound re-epithelialization, as compared with controls. It was associated with an increase in Lgr6+ and CD34+ cells and the expression of KGF and bFGF in the wound bed. Conclusion: Our results show that cutaneous wound healing induced by MSC is associated with an increase in EPC and growth factors. These preclinical results support the possible clinical use of MSC to treat cutaneous wounds.
Collapse
|
30
|
da Silva Santin M, Koehler J, Rocha DM, Dos Reis CA, Omar NF, Fidler Y, de Miranda Soares MA, Gomes JR. Initial damage produced by a single 15-Gy x-ray irradiation to the rat calvaria skin. Eur Radiol Exp 2020; 4:32. [PMID: 32500235 PMCID: PMC7272528 DOI: 10.1186/s41747-020-00155-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calvaria skin has a reduced thickness, and its initial damage produced by irradiation was scarcely reported. We aimed to identify the initial effects of x-ray irradiation in the rat calvaria skin. METHODS After approval by the Animal Ethical Committee, calvaria skin sections of five Wistar rats per time point were evaluated on days 4, 9, 14, and 25 following a single 15-Gy x-ray irradiation of the head. The control group was composed of five rats and evaluated on day 4. Sections were assessed using hematoxylin-eosin and Masson's trichrome staining for morphology, inflammation, and fibrosis. Fibrosis was also evaluated by the collagen maturation index from Picrosirius red staining and by cell proliferation using the immunohistochemistry, after 5-bromo-2-deoxyuridine intraperitoneal injection. RESULTS In irradiated rats, we observed a reduction in epithelial cell proliferation (p = 0.004) and in matrix metalloproteinase-9 expression (p < 0.001), an increase in the maturation index, and with a predominance in the type I collagen fibers, on days 9 and 14 (1.19 and 1.17, respectively). A progressive disorganization in the morphology of the collagen fibers at all time points and changes in morphology of the sebaceous gland cells and hair follicle were present until day 14. CONCLUSIONS The initial damage produced by a single 15-Gy x-ray irradiation to the rat calvaria skin was a change in the normal morphology of collagen fibers to an amorphous aspect, a temporary absence of the sebaceous gland and hair follicles, and without a visible inflammatory process, cell proliferation, or fibrosis process in the dermis.
Collapse
Affiliation(s)
- Matheus da Silva Santin
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - José Koehler
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil.,Southern Paraná Oncology Institute (ISPON), Cel. Francisco Ribas, 638 - Ponta Grossa, Paraná, Brazil
| | - Danilo Massuia Rocha
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - Camila Audrey Dos Reis
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - Nadia Fayez Omar
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - Yasmin Fidler
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | | | - José Rosa Gomes
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil.
| |
Collapse
|
31
|
Wang Y, Tu W, Tang Y, Zhang S. Prevention and treatment for radiation-induced skin injury during radiotherapy. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
32
|
Singh VK, Seed TM. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother 2020; 21:317-337. [PMID: 31928256 PMCID: PMC6982586 DOI: 10.1080/14656566.2019.1702968] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Introduction: There is a limited array of currently available medicinals that are useful for either the prevention, mitigation or treatment of bodily injuries arising from ionizing radiation exposure.Area covered: In this brief article, the authors review those pharmacologic agents that either are currently being used to counter the injurious effects of radiation exposure, or those that show promise and are currently under development.Expert opinion: Although significant, but limited progress has been made in the development and fielding of safe and effective pharmacotherapeutics for select types of acute radiation-associated injuries, additional effort is needed to broaden the scope of drug development so that overall health risks associated with both short- and long-term injuries in various organ systems can be reduced and effectively managed. There are several promising radiation countermeasures that may gain regulatory approval from the government in the near future for use in clinical settings and in the aftermath of nuclear/radiological exposure contingencies.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
33
|
Oliva J. Therapeutic Properties of Mesenchymal Stem Cell on Organ Ischemia-Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20215511. [PMID: 31694240 PMCID: PMC6862572 DOI: 10.3390/ijms20215511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022] Open
Abstract
The shortage of donor organs is a major global concern. Organ failure requires the transplantation of functional organs. Donor’s organs are preserved for variable periods of warm and cold ischemia time, which requires placing them into a preservation device. Ischemia and reperfusion damage the organs, due to the lack of oxygen during the ischemia step, as well as the oxidative stress during the reperfusion step. Different methodologies are developed to prevent or to diminish the level of injuries. Preservation solutions were first developed to maximize cold static preservation, which includes the addition of several chemical compounds. The next chapter of organ preservation comes with the perfusion machine, where mechanical devices provide continuous flow and oxygenation ex vivo to the organs being preserved. In the addition of inhibitors of mitogen-activated protein kinase and inhibitors of the proteasome, mesenchymal stem cells began being used 13 years ago to prevent or diminish the organ’s injuries. Mesenchymal stem cells (e.g., bone marrow stem cells, adipose derived stem cells and umbilical cord stem cells) have proven to be powerful tools in repairing damaged organs. This review will focus upon the use of some bone marrow stem cells, adipose-derived stem cells and umbilical cord stem cells on preventing or decreasing the injuries due to ischemia-reperfusion.
Collapse
Affiliation(s)
- Joan Oliva
- Emmaus Medical, Inc., 21250 Hawthorne Blvd, Suite 800, Torrance, CA 90503, USA
| |
Collapse
|
34
|
de Leve S, Wirsdörfer F, Jendrossek V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers (Basel) 2019; 11:cancers11101578. [PMID: 31623231 PMCID: PMC6827091 DOI: 10.3390/cancers11101578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a central component of standard treatment for many cancer patients. RT alone or in multimodal treatment strategies has a documented contribution to enhanced local control and overall survival of cancer patients, and cancer cure. Clinical RT aims at maximizing tumor control, while minimizing the risk for RT-induced adverse late effects. However, acute and late toxicities of IR in normal tissues are still important biological barriers to successful RT: While curative RT may not be tolerable, sub-optimal tolerable RT doses will lead to fatal outcomes by local recurrence or metastatic disease, even when accepting adverse normal tissue effects that decrease the quality of life of irradiated cancer patients. Technical improvements in treatment planning and the increasing use of particle therapy have allowed for a more accurate delivery of IR to the tumor volume and have thereby helped to improve the safety profile of RT for many solid tumors. With these technical and physical strategies reaching their natural limits, current research for improving the therapeutic gain of RT focuses on innovative biological concepts that either selectively limit the adverse effects of RT in normal tissues without protecting the tumor or specifically increase the radiosensitivity of the tumor tissue without enhancing the risk of normal tissue complications. The biology-based optimization of RT requires the identification of biological factors that are linked to differential radiosensitivity of normal or tumor tissues, and are amenable to therapeutic targeting. Extracellular adenosine is an endogenous mediator critical to the maintenance of homeostasis in various tissues. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (NT5E, CD73) that catabolize ATP to adenosine. Recent work revealed a role of the immunoregulatory CD73/adenosine system in radiation-induced fibrotic disease in normal tissues suggesting a potential use as novel therapeutic target for normal tissue protection. The present review summarizes relevant findings on the pathologic roles of CD73 and adenosine in radiation-induced fibrosis in different organs (lung, skin, gut, and kidney) that have been obtained in preclinical models and proposes a refined model of radiation-induced normal tissue toxicity including the disease-promoting effects of radiation-induced activation of CD73/adenosine signaling in the irradiated tissue environment. However, expression and activity of the CD73/adenosine system in the tumor environment has also been linked to increased tumor growth and tumor immune escape, at least in preclinical models. Therefore, we will discuss the use of pharmacologic inhibition of CD73/adenosine-signaling as a promising strategy for improving the therapeutic gain of RT by targeting both, malignant tumor growth and adverse late effects of RT with a focus on fibrotic disease. The consideration of the therapeutic window is particularly important in view of the increasing use of RT in combination with various molecularly targeted agents and immunotherapy to enhance the tumor radiation response, as such combinations may result in increased or novel toxicities, as well as the increasing number of cancer survivors.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
35
|
Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:61-93. [PMID: 30043235 DOI: 10.1007/5584_2018_194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.
Collapse
Affiliation(s)
| | - Kathrin Weber
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Ulrich Walliser
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Florian Geburek
- Justus-Liebig-University Giessen, Faculty of Veterinary Medicine, Clinic for Horses - Department of Surgery, Giessen, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
36
|
Wang HY, Li C, Liu WH, Deng FM, Ma Y, Guo LN, Kong DH, Hu KA, Liu Q, Wu J, Sun J, Liu YL. Autophagy inhibition via Becn1 downregulation improves the mesenchymal stem cells antifibrotic potential in experimental liver fibrosis. J Cell Physiol 2019; 235:2722-2737. [PMID: 31508820 PMCID: PMC6916329 DOI: 10.1002/jcp.29176] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
Liver fibrosis (LF) is the result of a vicious cycle between inflammation-induced chronic hepatocyte injury and persistent activation of hepatic stellate cells (HSCs). Mesenchymal stem cell (MSC)-based therapy may represent a potential remedy for treatment of LF. However, the fate of transplanted MSCs in LF remains largely unknown. In the present study, the fate and antifibrotic effect of MSCs were explored in a LF model induced by CCl4 in mouse. Additionally, MSCs were stimulated in vitro with LF-associated factors, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and transforming growth factor-β1 (TGF-β1), to mimic the LF microenvironment. We unveiled that MSCs exhibited autophagy in response to the LF microenvironment through Becn1 upregulation both in vivo and in vitro. However, autophagy suppression induced by Becn1 knockdown in MSCs resulted in enhanced antifibrotic effects on LF. The improved antifibrotic potential of MSCs may be attributable to their inhibitory effects on T lymphocyte infiltration, HSCs proliferation, as well as production of TNF-α, IFN-γ, and TGF-β1, which may be partially mediated by elevated paracrine secretion of PTGS2/PGE2 . Thus, autophagy manipulation in MSCs may be a novel strategy to promote their antifibrotic efficacy.
Collapse
Affiliation(s)
- Hang Yu Wang
- Key Laboratory of Xingjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Can Li
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Hua Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng Mei Deng
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yan Ma
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Na Guo
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - De Hua Kong
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kang An Hu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qin Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiang Wu
- Deep-Underground Medicine Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Sun
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Lun Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
37
|
Lu L, Liu Y, Zhang X, Lin J. The therapeutic role of bone marrow stem cell local injection in rat experimental periodontitis. J Oral Rehabil 2019; 47 Suppl 1:73-82. [PMID: 31220354 DOI: 10.1111/joor.12843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/26/2019] [Accepted: 06/15/2019] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cell therapy brings hope for regenerating damaged periodontal tissues. The present study aimed to investigate the therapeutic role of local bone marrow stem cell (BMSC) injection in ligation-induced periodontitis and the underlying mechanisms. Alveolar bone lesion was induced by placing ligatures subgingivally around the bilateral maxillary second molars for 28 days. The alveolar bone lesion was confirmed by micro-CT analysis and bone histomorphometry. Allogeneic BMSC transplantation was carried out at 28 day after ligation. The survival state of the transplanted BMSC was observed by bioluminescent imaging. The implantation of the BMSC into the gingival tissues and periodontal ligament was confirmed by green fluorescent protein (GFP) immunohistochemical staining. The expression level of pro-inflammatory, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and receptor activator of nuclear factor-κ B ligand (RANKL) and osteoprotegerin (OPG) in periodontal tissues were evaluated by immunohistochemical staining and real-time PCR. Significant reverse of alveolar bone lesion was observed after BMSC transplantation. The expression of TNF-α and IL-1β was down-regulated by BMSC transplantation. The number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the periodontal ligament was reduced, and the increased RANKL expression and decreased OPG expression were also reversed after BMSC transplantation. It is concluded that allogeneic BMSC local injection could inhibit the inflammation of the periodontitis tissue and promote periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lei Lu
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Stomatology, Technology Innovation Park, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xu Zhang
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Stomatology, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jiang Lin
- Department of Periodontology, the Fourth Hospital of Harbin Medical University, Harbin, China.,Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Carvello M, Lightner A, Yamamoto T, Kotze PG, Spinelli A. Mesenchymal Stem Cells for Perianal Crohn's Disease. Cells 2019; 8:cells8070764. [PMID: 31340546 PMCID: PMC6679174 DOI: 10.3390/cells8070764] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
Perianal fistulizing Crohn’s disease (PFCD) is associated with significant morbidity and might negatively impact the quality of life of CD patients. In the last two decades, the management of PFCD has evolved in terms of the multidisciplinary approach involving gastroenterologists and colorectal surgeons. However, the highest fistula healing rates, even combining surgical and anti-TNF agents, reaches 50% of treated patients. More recently, the administration of mesenchymal stem cells (MSCs) have shown notable promising results in the treatment of PFCD. The aim of this review is to describe the rationale and the possible mechanism of action of MSC application for PFCD and the most recent results of randomized clinical trials. Furthermore, the unmet needs of the current administration process and the expected next steps to improve the outcomes will be addressed.
Collapse
Affiliation(s)
- Michele Carvello
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Italy
| | - Amy Lightner
- Department of Colon and Rectal Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Takayuki Yamamoto
- Inflammatory Bowel Disease Centre, Yokkaichi Hazu Medical Centre, Yokkaichi, Mie 510-0016, Japan
| | - Paulo Gustavo Kotze
- Colorectal Surgery Unit, Cajuru University Hospital, Catholic University of Paraná, Curitiba 80215-901, Brazil
| | - Antonino Spinelli
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy.
| |
Collapse
|
39
|
Zhang L, Huang B, Tang H, Ye X, Yao Y, Gong P, Tang H. Amifostine inhibited the differentiation of RAW264.7 cells into osteoclasts by reducing the production of ROS under 2 Gy radiation. J Cell Biochem 2019; 121:497-507. [PMID: 31267572 DOI: 10.1002/jcb.29247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Patients with malignant tumors receive radiotherapy, and radiation could harm the skeletal system, leading to radiation-induced osteoporosis. A major cause of this phenomenon is the activation of osteoclasts by radiotherapy. In this study, we studied whether amifostine (AMI) could affect the differentiation of osteoclast precursor cells (RAW264.7 cells) into osteoclasts under 2 gray (Gy) radiation. Four groups were used in the experiment: (a) 0 Gy (no radiation); (b) 0 Gy + AMI; (c) 2 Gy radiation; and (d) 2 Gy radiation + AMI. After radiation, a proliferation assay, a reactive oxygen species (ROS) assay, a comet assay, Trap staining, reverse transcription polymerase chain reaction, and an animal study to test the effect of AMI on osteoclast precursor cells under 2 Gy radiation were conducted. Cell proliferation was significantly inhibited by AMI (P < .05). In addition, 2 Gy radiation led to longer "comet tails", high level of ROS, and more Trap-positive cells in vivo and in vitro (P < .05). Radiation improved the expression of CSTK, NFAT, and Rankl/OPG gene (P < .05), as well as Trap-5b levels in the serum, and decreased bone mineral density. AMI inhibited the differentiation of RAW264.7 cells, shortened the tail moment length of comets, and decreased the level of ROS induced by radiation. The expression of NFAT, CTSK, and Rankl/OPG was decreased by AMI at the detection time point in radiation groups (P < .05). AMI inhibits the maturation and differentiation of osteoclasts under radiation conditions by reducing DNA damage and ROS induced by radiation, thereby reducing the adverse effects of radiation in the skeletal system, indicating that AMI might be used to treat osteoradionecrosis.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Oral Implantology, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Bo Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Oral Implantology, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Haiyang Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Oral Implantology, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Xingchen Ye
- Department of Oral Implantology, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Yang Yao
- Department of Oral Implantology, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Ping Gong
- Department of Oral Implantology, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Hua Tang
- Department of Oral Implantology, West China School of Stomatology, Sichuan University, Chengdu, PR China
| |
Collapse
|
40
|
Stem cell therapy for perianal Crohn's. Curr Opin Gastroenterol 2019; 35:311-320. [PMID: 33216484 DOI: 10.1097/mog.0000000000000545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW Perianal Crohn's disease is a morbid and disabling condition, notoriously difficult to successfully treat with conventional medical and surgical therapies. Mesenchymal stem cells (MSCs) are an emerging novel therapy for perianal Crohn's disease. RECENT FINDINGS Over 300 patients with perianal Crohn's disease have now been treated with MSCs in the context of clinical trials. All trials have demonstrated safety, and efficacy superior to conventional therapy with biologics and surgical intervention. This was consistent despite the heterogeneity in study protocols including variability in cell dosing, mode of delivery, repeat dosing, and allogeneic versus autologous donors. Sustained healing to 1 year has also been demonstrated in a recent extension of the largest phase III study confirming superior efficacy of MSCs to placebo at 1-year follow-up. However, several outstanding questions regarding the use of MSCs for perianal Crohn's disease remain, which, if answered, could enhance MSCs' treatment efficacy. These include defining the optimal MSC donor, optimal MSC source (e.g., bone marrow versus adipose tissue), investigating a potential alloimmune response following allogeneic cellular delivery, and determining the optimal mode for MSC delivery. In addition to these unanswered questions, significant challenges in the required infrastructure and cost required for cell-based therapies may drive future research toward identifying novel acellular therapies. SUMMARY Novel regenerative therapies offer promising new treatment options for perianal Crohn's disease, without the risk of opportunistic infection seen with biologics and incontinence with surgical techniques. Future research will help define the optimal MSC product and treatment protocol, and may even expand our horizon of regenerative medicine into acellular therapy as well as cell-based therapies.
Collapse
|
41
|
Castiglione F, Hedlund P, Weyne E, Hakim L, Montorsi F, Salonia A, Bivalacqua TJ, De Ridder D, Milenkovic U, Ralph D, Garaffa G, Muneer A, Joniau S, Albersen M. Intratunical injection of stromal vascular fraction prevents fibrosis in a rat model of Peyronie's disease. BJU Int 2019; 124:342-348. [DOI: 10.1111/bju.14570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fabio Castiglione
- Laboratory for Experimental Urology; Organ Systems; Department of Development and Regeneration; University of Leuven; Leuven Belgium
- Institute of Urology; University College of London Hospital; London UK
- Division of Oncology/Unit of Urology; Urological Research Institute; IRCCS Ospedale San Raffaele; Milan Italy
| | - Petter Hedlund
- Department of Clinical and Experimental Pharmacology; Lund University; Lund Sweden
- Division of Drug Research; Department of Medical and Health Sciences; Linköping University; Linköping Sweden
| | - Emmanuel Weyne
- Laboratory for Experimental Urology; Organ Systems; Department of Development and Regeneration; University of Leuven; Leuven Belgium
| | - Lukman Hakim
- Laboratory for Experimental Urology; Organ Systems; Department of Development and Regeneration; University of Leuven; Leuven Belgium
- Department of Urology; Airlangga University / Dr Soetomo General Hospital; Surabaya Indonesia
| | - Francesco Montorsi
- Division of Oncology/Unit of Urology; Urological Research Institute; IRCCS Ospedale San Raffaele; Milan Italy
| | - Andrea Salonia
- Division of Oncology/Unit of Urology; Urological Research Institute; IRCCS Ospedale San Raffaele; Milan Italy
| | - Trinity J. Bivalacqua
- James Buchanan Brady Urological Institute; Department of Urology; Johns Hopkins Medical Institutions; Baltimore MD USA
| | - Dirk De Ridder
- Laboratory for Experimental Urology; Organ Systems; Department of Development and Regeneration; University of Leuven; Leuven Belgium
| | - Uros Milenkovic
- Laboratory for Experimental Urology; Organ Systems; Department of Development and Regeneration; University of Leuven; Leuven Belgium
| | - David Ralph
- Institute of Urology; University College of London Hospital; London UK
| | - Giulio Garaffa
- Institute of Urology; University College of London Hospital; London UK
| | - Asif Muneer
- Institute of Urology; University College of London Hospital; London UK
- Division of Surgery and Interventional Science; NIHR Biomedical Research Centre; University College London Hospital; London UK
| | - Steven Joniau
- Laboratory for Experimental Urology; Organ Systems; Department of Development and Regeneration; University of Leuven; Leuven Belgium
| | - Maarten Albersen
- Laboratory for Experimental Urology; Organ Systems; Department of Development and Regeneration; University of Leuven; Leuven Belgium
| | | |
Collapse
|
42
|
Li X, Chen S, Yan L, Wang J, Pei M. Prospective application of stem cells to prevent post-operative skeletal fibrosis. J Orthop Res 2019; 37:1236-1245. [PMID: 30835890 PMCID: PMC9202416 DOI: 10.1002/jor.24266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
Post-operative skeletal fibrosis is considered one of the major complications causing dysfunction of the skeletal system and compromising the outcomes of clinical treatment. Limited success has been achieved using current therapies; more effective therapies to reduce post-operative skeletal fibrosis are needed. Stem cells possess the ability to repair and regenerate damaged tissue. Numerous studies show that stem cells serve as a promising therapeutic approach for fibrotic diseases in tissues other than the skeletal system by inhibiting the inflammatory response and secreting favorable cytokines through activating specific signaling pathways, acting as so-called medicinal signaling cells. In this review, current therapies are summarized for post-operative skeletal fibrosis. Given that stem cells are used as a promising therapeutic approach for fibrotic diseases, little effort has been undertaken to use stem cells to prevent post-operative skeletal fibrosis. This review aims at providing useful information for the potential application of stem cells in preventing post-operative skeletal fibrosis in the near future. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1236-1245, 2019.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Orthopaedics, Orthopaedics Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China,Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, 610083, China
| | - Lianqi Yan
- Department of Orthopaedics, Orthopaedics Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - Jingcheng Wang
- Department of Orthopaedics, Orthopaedics Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China,Co-Corresponding author: Jingcheng Wang, MD, Department of Orthopaedics, Subei People’s Hospital, 98 West Nantong Road, Yangzhou 225001, China;
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA,Exercise Physiology, West Virginia University, Morgantown, WV, 26506, USA,WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA,Corresponding author: Ming Pei MD, PhD, Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196, USA, Telephone: 304-293-1072; Fax: 304-293-7070;
| |
Collapse
|
43
|
Lightner AL. The Present State and Future Direction of Regenerative Medicine for Perianal Crohn's Disease. Gastroenterology 2019; 156:2128-2130.e4. [PMID: 31034831 DOI: 10.1053/j.gastro.2019.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Amy L Lightner
- Department of Colon and Rectal Surgery, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
44
|
Durand N, Russell A, Zubair AC. Effect of Comedications and Endotoxins on Mesenchymal Stem Cell Secretomes, Migratory and Immunomodulatory Capacity. J Clin Med 2019; 8:jcm8040497. [PMID: 30979082 PMCID: PMC6517980 DOI: 10.3390/jcm8040497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are becoming an increasingly popular therapeutic option among patients with a broad range of ailments to modulate immunity and induce regeneration. The majority of patients receiving these MSC therapies are on concurrent medication or have ongoing infection. In the present study, we examined the effect of immunosuppressive drugs and lipopolysaccharides (LPS)/endotoxins on the secretory profile, migration towards site of injury, and suppression of lymphocyte proliferation of bone marrow-derived MSCs (BMSCs). Generally, LPS coculture augmented the secretory capacity of BMSCs while exposure to immunosuppressive drugs resulted primarily in no change or attenuated secretion, with some cases of increased secretion, dependent on the cytokine assayed. Among the immunosuppressants evaluated, Hydrocortisone had the most widespread inhibitory effect, while LPS from E. coli O111:B4 had the most potent stimulatory effect. In addition, we also showed that Hydrocortisone or LPS from E. coli O111:B4 affected the migratory and immunosuppressive capacity of BMSCs. Following simulation with Hydrocortisone, BMSC migration was attenuated, and immunosuppressive capacity against T cell proliferation was enhanced, however, the opposite effects were seen with LPS from E. coli O111:B4. Our data suggests that the clinical outcomes of MSC-based therapy are affected by the use of immunosuppressive medication or the presence of endotoxemia in patients.
Collapse
Affiliation(s)
- Nisha Durand
- Transfusion Medicine, Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
45
|
Castiglione F, Hedlund P, Weyne E, Hakim L, Montorsi F, Bivalacqua TJ, De Ridder D, Milenkovic U, Ralph D, Garaffa G, Muneer A, Joniau S, Albersen M. Intratunical Injection of Human Adipose Tissue-Derived Stem Cells Restores Collagen III/I Ratio in a Rat Model of Chronic Peyronie's Disease. Sex Med 2019; 7:94-103. [PMID: 30503767 PMCID: PMC6377372 DOI: 10.1016/j.esxm.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/09/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Previous studies have shown that the injection of adipose tissue-derived stem cells (ADSCs) into the tunica albuginea (TA) during the active phase of Peyronie's disease (PD) prevents the development of fibrosis. AIM To investigate, using an animal model, whether local injection of human ADSCs (hADSCs) can alter the degree of fibrosis in the chronic phase of PD. METHODS 27 male, 12-week-old rats were divided into 3 equal groups: sham, PD without treatment, and PD treated with hADSCs 1 month after disease induction. Sham rats underwent 2 injections of vehicle into the TA 1 month apart. PD rats underwent transforming growth factor β1 (TGFβ1) injection and injection of vehicle 1 month later. PD-hADSC rats underwent TGFβ1 injection followed by 1 million hADSCs 1 month later. 1 week after treatment, n = 3 animals/group were euthanized, and the penises were harvested for quantitative polymerase chain reaction. 1 month after treatment, the other animals, n = 6 per group, underwent measurement of intracavernous pressure (ICP) and mean arterial pressure (MAP) during electrostimulation of the cavernous nerve. After euthanasia, penises were again harvested for histology and Western blot. MAIN OUTCOME MEASURE The primary outcome measures included (a) gene expression at one week post-injection; (b) measurement of ICP/MAP upon cavernous nerve stimulation as a measure of erectile function; (c) elastin, collagen I and III protein expression; and (d) Histomorphometric analysis of the penis. Means where compared by analysis of variance (ANOVA) followed by a Student-Newman-Keuls test for post hoc comparisons or Mann-Whitney test when applicable. RESULTS No significant difference was noted in ICP or ICP/MAP in response to cavernous nerve electrostimulation between the 3 groups at 2.5, 5, and 7.5 V (P > .05 for all voltages). PD animals developed tunical and subtunical areas of fibrosis with a significant upregulation of collagen III protein. The collagen III/I ratio was higher in the PD (4.6 ± 0.92) group compared with sham (0.66 ± 0.18) and PD-hADSC (0.86 ± 0.06) groups (P < .05) These fibrotic changes were prevented when treated with hADSCs. Compared with PD rats, PD-hADSC rats demonstrated a decreased expression of several fibrosis-related genes. CONCLUSION Injection of hADSCs reduces collagen III expression in a rat model of chronic PD. Castiglione F, Hedlund P, Weyne E, et al. Intratunical Injection of Human Adipose Tissue-Derived Stem Cells Restores Collagen III/I Ratio in a Rat Model of Chronic Peyronie's Disease. Sex Med 2019;7:94-103.
Collapse
Affiliation(s)
- Fabio Castiglione
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium; The Institute of Urology, University College of London Hospital, London, UK; Division of Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Petter Hedlund
- Department of Clinical and Experimental Pharmacology, Lund University, Sweden; Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Sweden.
| | - Emanuel Weyne
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Lukman Hakim
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium; Department of Urology, Airlangga University/Dr Soetomo General Hospital, Surabaya, Indonesia
| | - Francesco Montorsi
- Division of Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Dirk De Ridder
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Uros Milenkovic
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - David Ralph
- The Institute of Urology, University College of London Hospital, London, UK
| | - Giulio Garaffa
- The Institute of Urology, University College of London Hospital, London, UK
| | - Asif Muneer
- The Institute of Urology, University College of London Hospital, London, UK; Division of Surgery and Interventional Science, National Institute for Health Research Biomedical Research Centre, University College London Hospital, London, UK
| | - Steven Joniau
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Maarten Albersen
- Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Lightner AL. Cell-based therapy for Crohn's disease: time to consider optimization. Nat Rev Gastroenterol Hepatol 2019; 16:137-138. [PMID: 30532061 DOI: 10.1038/s41575-018-0095-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Amy L Lightner
- Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
47
|
Fat Chance: The Rejuvenation of Irradiated Skin. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2092. [PMID: 30881833 PMCID: PMC6416118 DOI: 10.1097/gox.0000000000002092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) helps cure and palliate thousands of patients with a range of malignant diseases. A major drawback, however, is the collateral damage done to tissues surrounding the tumor in the radiation field. The skin and subcutaneous tissue are among the most severely affected regions. Immediately following RT, the skin may be inflamed, hyperemic, and can form ulcers. With time, the dermis becomes progressively indurated. These acute and chronic changes cause substantial patient morbidity, yet there are few effective treatment modalities able to reduce radiodermatitis. Fat grafting is increasingly recognized as a tool able to reverse the fibrotic skin changes and rejuvenate the irradiated skin. This review outlines the current progress toward describing and understanding the cellular and molecular effects of fat grafting in irradiated skin. Identification of the key factors involved in the pathophysiology of fibrosis following RT will inform therapeutic interventions to enhance its beneficial effects.
Collapse
|
48
|
Amifostine Suppresses the Side Effects of Radiation on BMSCs by Promoting Cell Proliferation and Reducing ROS Production. Stem Cells Int 2019; 2019:8749090. [PMID: 30728842 PMCID: PMC6343176 DOI: 10.1155/2019/8749090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/02/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023] Open
Abstract
This study is aimed at investigating the effect of amifostine (AMI) on rat bone marrow stromal stem cells (BMSCs) exposed to 2 Gy radiation. The BMSCs were divided into four groups, namely, group A that received 0 Gy radiation, group B that received 0 Gy radiation and AMI, group C that received 2 Gy radiation, and group D that received 2 Gy radiation and AMI. The proliferation, apoptosis, and distribution of BMSCs in the cell cycle, along with their osteogenesis ability, adipogenesis ability, and ROS production, were subsequently examined. The levels of ALP, PPARγ, P53, and TNFα were determined by Western blotting. The results demonstrated that the proliferation of BMSCs and the levels of ALP in group C were much lower than those in group A. The production of ROS and levels of PPARγ, P53, and TNFα in the group that received 2 Gy radiation were much higher than those in group A. Furthermore, the production of ROS and the levels of PPARγ, P53, and TNFα were much lower in group D than in group C. Additionally, the levels of ALP and extent of cell proliferation were much higher in group D than in group C. The results demonstrated the potential of AMI in reducing the side effects of radiation in BMSCs and in treatment of bone diseases caused by radiation.
Collapse
|
49
|
Purkayastha A, Sharma N, Sarin A, Bhatnagar S, Chakravarty N, Mukundan H, Suhag V, Singh S. Radiation Fibrosis Syndrome: the Evergreen Menace of Radiation Therapy. Asia Pac J Oncol Nurs 2019; 6:238-245. [PMID: 31259219 PMCID: PMC6518980 DOI: 10.4103/apjon.apjon_71_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fibrosis is a descriptive appellation referring to the obliteration of normal tissue components replaced by matrix and disorganized and varied collagen fibrils that result in the loss of organ function and frequent tissue contraction leading to death or significant deterioration in the quality of life. Radiation fibrosis syndrome (RFS) is a progressive fibrotic tissue sclerosis with various clinical symptoms in the irradiation field. It is usually a late complication of radiation therapy and may occur weeks or even years after treatment. It may affect the musculoskeletal, soft tissue, neural tissue, and cardiopulmonary systems. RFS is a serious and lifelong disorder that, nevertheless, may often be prevented when identified and rehabilitated early. Genetic factors likely play a significant role in the development of chronic fibrotic response to radiation injury that persists even after the initial insult is no longer present. Management of this syndrome is a complex process comprising medication, education, rehabilitation, and physical and occupational therapy. A bibliographical search was carried out in PubMed using the following keywords: "radiation fibrosis," "radiation fibrosis syndrome," and "radiation-induced fibrosis." We also reviewed the most relevant and recent series on the current management of RFS, and the reviewed data are discussed in this article. This review discusses the pathophysiology, evaluation, and treatment of neuromuscular, musculoskeletal, and functional disorders as late effects of radiation treatment.
Collapse
Affiliation(s)
- Abhishek Purkayastha
- Department of Radiation Oncology, Command Hospital (Southern Command), Pune, Maharashtra, India
| | - Neelam Sharma
- Department of Radiation Oncology, Army Hospital Research and Referral, New Delhi, India
| | - Arti Sarin
- Department of Radiation Oncology, INHS Asvini, Mumbai, Maharashtra, India
| | - Sharad Bhatnagar
- Department of Radiation Oncology, Command Hospital (Central Command), Lucknow, Uttar Pradesh, India
| | - Nilotpal Chakravarty
- Department of Radiation Oncology, Army Hospital Research and Referral, New Delhi, India
| | - Hari Mukundan
- Department of Radiation Oncology, Command Hospital (Air Force), Bengaluru, Karnataka, India
| | - Virender Suhag
- Department of Radiation Oncology, Command Hospital (Southern Command), Pune, Maharashtra, India
| | - Sankalp Singh
- Department of Radiation Oncology, Command Hospital (Central Command), Lucknow, Uttar Pradesh, India
| |
Collapse
|
50
|
Miller ED, Song F, Smith JD, Ayan AS, Mo X, Weldon M, Lu L, Campbell PG, Bhatt AD, Chakravarti A, Jacob NK. Plasma-based biomaterials for the treatment of cutaneous radiation injury. Wound Repair Regen 2018; 27:139-149. [PMID: 30576033 PMCID: PMC7261420 DOI: 10.1111/wrr.12691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/08/2018] [Accepted: 11/27/2018] [Indexed: 01/03/2023]
Abstract
Cutaneous wounds caused by an exposure to high doses of ionizing radiation remain a therapeutic challenge. While new experimental strategies for treatment are being developed, there are currently no off‐the‐shelf therapies for the treatment of cutaneous radiation injury that have been proven to promote repair of the damaged tissues. Plasma‐based biomaterials are biologically active biomaterials made from platelet enriched plasma, which can be made into both solid and semi‐solid forms, are inexpensive, and are available as off‐the‐shelf, nonrefrigerated products. In this study, the use of plasma‐based biomaterials for the mitigation of acute and late toxicity for cutaneous radiation injury was investigated using a mouse model. A 2‐cm diameter circle of the dorsal skin was irradiated with a single dose of 35 Gy followed by topical treatment with plasma‐based biomaterial or vehicle once daily for 5 weeks postirradiation. Weekly imaging demonstrated more complete wound resolution in the plasma‐based biomaterial vs. vehicle group which became statistically significant (p < 0.05) at weeks 12, 13, and 14 postmaximum wound area. Despite more complete wound healing, at 9 and 17 weeks postirradiation, there was no statistically significant difference in collagen deposition or skin thickness between the plasma‐based biomaterial and vehicle groups based on Masson trichrome staining nor was there a statistically significant difference in inflammatory or fibrosis‐related gene expression between the groups. Although significant improvement was not observed for late toxicity, plasma‐based biomaterials were effective at promoting wound closure, thus helping to mitigate acute toxicity.
Collapse
Affiliation(s)
- Eric D Miller
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Feifei Song
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jason D Smith
- Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Carmell Therapeutics, Pittsburgh, Pennsylvania
| | - Ahmet S Ayan
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Michael Weldon
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lanchun Lu
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Phil G Campbell
- Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Aashish D Bhatt
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Naduparambil K Jacob
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|