1
|
Wang W, Wang Y, Bao S, He F, Li G, Yang G, Chen J, Yang X, Xiao Y, Tong Y, Zhao X, Hu J, You D. iPSCs-derived iMSCs prevent osteoporotic bone loss and affect bone metabolites in ovariectomized mice. J Cell Mol Med 2024; 28:e70200. [PMID: 39580790 PMCID: PMC11586054 DOI: 10.1111/jcmm.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Osteoporosis is a metabolic bone disease that seriously jeopardizes the health of middle-aged and elderly people. Mesenchymal stem cell-based transplantation for osteoporosis is a promising new therapeutic strategy. Induced mesenchymal stem cells (iMSCs) are a new option for stem cell transplantation therapy. Acquired mouse skin fibroblasts were transduced and reprogrammed into induced pluripotent cells and further induced to differentiate into iMSCs. The iMSCs were tested for pluripotency markers, trilineage differentiation ability, cell surface molecular marker tests, and gene expression patterns. The iMSCs were injected into the tail vein of mice by tail vein injection, and the distribution of cells in various organs was observed. The effect of iMSCs on the bone mass of mice was detected after injection into the mouse osteoporosis model. The effects of iMSCs infusion on metabolites in femoral tissue and peripheral blood plasma were detected based on LC-MS untargeted metabolomics. iMSCs have similar morphology, immunophenotype, in vitro differentiation potential, and gene expression patterns as mesenchymal stem cells. The iMSCs were heavily distributed in the lungs after infusion and gradually decreased over time. The iMSCs in the femoral bone marrow cavity gradually increased with time. iMSCs infusion significantly avoided bone loss due to oophorectomy. The results of untargeted metabolomics suggest that amino acid and lipid metabolic pathways are key factors involved in iMSCs bone protection and prevention of osteoporosis formation. iMSCs obtained by reprogramming-induced differentiation had cellular properties similar to those of bone marrow mesenchymal stem cells. The iMSCs could promote the remodelling of bone structure in ovariectomy-induced osteoporotic mice and affect the changes of several key metabolites in bone and peripheral blood. Some of these metabolites can serve as potential biomarkers and therapeutic targets for iMSCs intervention in osteoporosis. Investigating the effects of iMSCs on osteoporosis and the influence of metabolic pathways will provide new ideas and methods for the clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Wei‐Zhou Wang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public HealthThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
- Department of OrthopedicsThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yang‐Hao Wang
- Department of PathologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Sha‐Sha Bao
- Department of RadiologyYan'an Hospital Affiliated to Kunming Medical UniversityKunmingYunnanChina
| | - Fei He
- Department of OrthopedicsKunming Medical University Affiliated Qujing HospitalQujingYunnanChina
| | - Guoyu Li
- Department of Colorectal Surgery, Yunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
- Kunming Medical UniversityKunmingYunnanChina
| | - Guang Yang
- Trauma Medicine CentreThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Jing Chen
- Department of Pathology and Pathophysiology, Faculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
| | - Xin‐Yu Yang
- Kunming Medical UniversityKunmingYunnanChina
| | - Ya Xiao
- Kunming Medical UniversityKunmingYunnanChina
| | | | | | - Jun Hu
- Department of OrthopedicsKunming First People's HospitalKunmingYunnanChina
| | - Ding‐You You
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public HealthKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
2
|
Chang HH, Liou YS, Sun DS. Unraveling the interplay between inflammation and stem cell mobilization or homing: Implications for tissue repair and therapeutics. Tzu Chi Med J 2024; 36:349-359. [PMID: 39421490 PMCID: PMC11483098 DOI: 10.4103/tcmj.tcmj_100_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammation and stem cell mobilization or homing play pivotal roles in tissue repair and regeneration. This review explores their intricate interplay, elucidating their collaborative role in maintaining tissue homeostasis and responding to injury or disease. While examining the fundamentals of stem cells, we detail the mechanisms underlying inflammation, including immune cell recruitment and inflammatory mediator release, highlighting their self-renewal and differentiation capabilities. Central to our exploration is the modulation of hematopoietic stem cell behavior by inflammatory cues, driving their mobilization from the bone marrow niche into circulation. Key cytokines, chemokines, growth factors, and autophagy, an intracellular catabolic mechanism involved in this process, are discussed alongside their clinical relevance. Furthermore, mesenchymal stem cell homing in response to inflammation contributes to tissue repair processes. In addition, we discuss stem cell resilience in the face of inflammatory challenges. Moreover, we examine the reciprocal influence of stem cells on the inflammatory milieu, shaping immune responses and tissue repair. We underscore the potential of targeting inflammation-induced stem cell mobilization for regenerative therapies through extensive literature analysis and clinical insights. By unraveling the complex interplay between inflammation and stem cells, this review advances our understanding of tissue repair mechanisms and offers promising avenues for clinical translation in regenerative medicine.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Li DY, Li YM, Lv DY, Deng T, Zeng X, You L, Pang QY, Li Y, Zhu BM. Enhanced interaction between genome-edited mesenchymal stem cells and platelets improves wound healing in mice. J Tissue Eng 2024; 15:20417314241268917. [PMID: 39329066 PMCID: PMC11425747 DOI: 10.1177/20417314241268917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1 -engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan-Yi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Yang J, Yan M, Wang Z, Zhang C, Guan M, Sun Z. Optical and MRI Multimodal Tracing of Stem Cells In Vivo. Mol Imaging 2023; 2023:4223485. [PMID: 38148836 PMCID: PMC10751174 DOI: 10.1155/2023/4223485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
Stem cell therapy has shown great clinical potential in oncology, injury, inflammation, and cardiovascular disease. However, due to the technical limitations of the in vivo visualization of transplanted stem cells, the therapeutic mechanisms and biosafety of stem cells in vivo are poorly defined, which limits the speed of clinical translation. The commonly used methods for the in vivo tracing of stem cells currently include optical imaging, magnetic resonance imaging (MRI), and nuclear medicine imaging. However, nuclear medicine imaging involves radioactive materials, MRI has low resolution at the cellular level, and optical imaging has poor tissue penetration in vivo. It is difficult for a single imaging method to simultaneously achieve the high penetration, high resolution, and noninvasiveness needed for in vivo imaging. However, multimodal imaging combines the advantages of different imaging modalities to determine the fate of stem cells in vivo in a multidimensional way. This review provides an overview of various multimodal imaging technologies and labeling methods commonly used for tracing stem cells, including optical imaging, MRI, and the combination of the two, while explaining the principles involved, comparing the advantages and disadvantages of different combination schemes, and discussing the challenges and prospects of human stem cell tracking techniques.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Min Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhong Wang
- Affiliated Mental Health Center of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Cong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Yu S, Lu J. The potential of mesenchymal stem cells to induce immune tolerance to allogeneic transplants. Transpl Immunol 2023; 81:101939. [PMID: 37866668 DOI: 10.1016/j.trim.2023.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Organ allograft transplantation is an effective treatment plan for patients with organ failure. Although the application of continuous immunosuppressants makes successful allograft survival possible, the patients' long-term survival rate and quality of life are not ideal. Therefore, it is necessary to find a new strategy to alleviate transplant rejection by developing therapies for permanent allograft acceptance. One promising approach is the application of tolerogenic mesenchymal stem cells (MSCs). Extensive research on MSCs has revealed that MSCs have potent differentiation potential and immunomodulatory properties. This review describes the molecular markers and functional properties of MSCs as well as the immunomodulatory mechanisms of MSCs in transplantation, focuses on the research progress in clinical trials of MSCs, and expounds on the future development prospects and possible limitations.
Collapse
Affiliation(s)
- Shaochen Yu
- Department of Emergency and Critical Care Medicine, Guangdong Second Provincial General Hospital, No. 466, Xingang Middle Road, Haizhu District, Guangzhou, Guangdong 510317, China.
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, China.
| |
Collapse
|
6
|
Hernandez Pichardo A, Wilm B, Liptrott NJ, Murray P. Intravenous Administration of Human Umbilical Cord Mesenchymal Stromal Cells Leads to an Inflammatory Response in the Lung. Stem Cells Int 2023; 2023:7397819. [PMID: 37705699 PMCID: PMC10497368 DOI: 10.1155/2023/7397819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/25/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) administered intravenously (IV) have shown efficacy in preclinical models of various diseases. This is despite the cells not reaching the site of injury due to entrapment in the lungs. The immunomodulatory properties of MSCs are thought to underlie their therapeutic effects, irrespective of whether they are sourced from bone marrow, adipose tissue, or umbilical cord. To better understand how MSCs affect innate immune cell populations in the lung, we evaluated the distribution and phenotype of neutrophils, monocytes, and macrophages by flow cytometry and histological analyses after delivering human umbilical cord-derived MSCs (hUC-MSCs) IV into immunocompetent mice. After 2 hr, we observed a significant increase in neutrophils, and proinflammatory monocytes and macrophages. Moreover, these immune cells localized in close proximity to the MSCs, suggesting an active role in their clearance. By 24 hr, we detected an increase in anti-inflammatory monocytes and macrophages. These results suggest that the IV injection of hUC-MSCs leads to an initial inflammatory phase in the lung shortly after injection, followed by a resolution phase 24 hr later.
Collapse
Affiliation(s)
- Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Neill J. Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Sastourné-Arrey Q, Mathieu M, Contreras X, Monferran S, Bourlier V, Gil-Ortega M, Murphy E, Laurens C, Varin A, Guissard C, Barreau C, André M, Juin N, Marquès M, Chaput B, Moro C, O'Gorman D, Casteilla L, Girousse A, Sengenès C. Adipose tissue is a source of regenerative cells that augment the repair of skeletal muscle after injury. Nat Commun 2023; 14:80. [PMID: 36604419 PMCID: PMC9816314 DOI: 10.1038/s41467-022-35524-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Fibro-adipogenic progenitors (FAPs) play a crucial role in skeletal muscle regeneration, as they generate a favorable niche that allows satellite cells to perform efficient muscle regeneration. After muscle injury, FAP content increases rapidly within the injured muscle, the origin of which has been attributed to their proliferation within the muscle itself. However, recent single-cell RNAseq approaches have revealed phenotype and functional heterogeneity in FAPs, raising the question of how this differentiation of regenerative subtypes occurs. Here we report that FAP-like cells residing in subcutaneous adipose tissue (ScAT), the adipose stromal cells (ASCs), are rapidly released from ScAT in response to muscle injury. Additionally, we find that released ASCs infiltrate the damaged muscle, via a platelet-dependent mechanism and thus contribute to the FAP heterogeneity. Moreover, we show that either blocking ASCs infiltration or removing ASCs tissue source impair muscle regeneration. Collectively, our data reveal that ScAT is an unsuspected physiological reservoir of regenerative cells that support skeletal muscle regeneration, underlining a beneficial relationship between muscle and fat.
Collapse
Affiliation(s)
- Quentin Sastourné-Arrey
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Maxime Mathieu
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Xavier Contreras
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Sylvie Monferran
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Virginie Bourlier
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Marta Gil-Ortega
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Enda Murphy
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Claire Laurens
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Audrey Varin
- RESTORE, Research Center, Team 2 FLAMES, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Christophe Guissard
- RESTORE, Research Center, Team 4 GOT-IT, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Corinne Barreau
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Mireille André
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Noémie Juin
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Marie Marquès
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Benoit Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 31100, Toulouse, France
| | - Cédric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Donal O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Louis Casteilla
- RESTORE, Research Center, Team 4 GOT-IT, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Amandine Girousse
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Coralie Sengenès
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.
| |
Collapse
|
8
|
Bhuniya A, Sarkar A, Guha A, Choudhury PR, Bera S, Sultana J, Chakravarti M, Dhar S, Das J, Guha I, Ganguly N, Banerjee S, Bose A, Baral R. Tumor activated platelets induce vascular mimicry in mesenchymal stem cells and aid metastasis. Cytokine 2022; 158:155998. [PMID: 35981492 DOI: 10.1016/j.cyto.2022.155998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Extent of metastasis influences activation of platelets in tumor-microenvironment. Activated platelets potentiate mesenchymal-stem-cells (MSCs) to migrate in secondary metastatic sites without participation in process of invasion. Presence of higher percentage of MSCs along with activated-platelets induces formation of vascular-mimicry (VM). The pathophysiology, VM, has already been reported in multiple types of cancer including lung, ovary, melanoma etc. and related to poor-prognosis. Interaction of MSCs with platelets in cell-to-cell contact dependent manner is essential for their migration, thereby, VM. Evidences are obtained suggesting that under influence of tumor-associated-activated-platelets, expressions of vimentin, ve-cadherin are increased, along with decrease in e-cadherin on CD105+ MSCs in both mRNA and protein levels that may help in formation of vessel like structure in VM. Adoptive transfer of MSCs along with tumor-activated-platelets causes greater B16 melanoma metastasis at lungs in comparison to MSCs with non-activated platelets. Presence of CD105+Vimentin+ MSCs in vessel like structure in the metastatic lung confirms the involvement of platelet-activated-MSCs in VM, thereby, in metastasis.
Collapse
Affiliation(s)
- Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Aishwarya Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Pritha Roy Choudhury
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Saurav Bera
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Jasmine Sultana
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Mohona Chakravarti
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Juhina Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
9
|
Lin Y, Zhou HC, Chen N, Ren Y, Gao R, Li Q, Deng Y, Han X, Zhang X, Xiang AP, Guo B, Liu C, Ren J. Unveiling the improved targeting migration of mesenchymal stem cells with CXC chemokine receptor 3-modification using intravital NIR-II photoacoustic imaging. J Nanobiotechnology 2022; 20:307. [PMID: 35764961 PMCID: PMC9238014 DOI: 10.1186/s12951-022-01513-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background Therapy with genetically modified mesenchymal stem cells (MSCs) has clinical translation promise. Optimizing the targeting migratory ability of MSCs relies on accurate imaging of the distribution and extravasation kinetics of MSCs, and the corresponding imaging results could be used to predict therapeutic outcomes and guide the optimization of the treatment program. Among the different imaging modalities, second near-infrared (NIR-II) optical-resolution photoacoustic microscopy (OR-PAM) has merits, including a fine resolution, a deep penetration, a high sensitivity, and a large signal-to-background ratio. It would be an ideal candidate for precise monitoring of MSCs, although it has not been tested for this purpose so far. Results Penetrating peptide-decorated conjugated polymer nanoparticles (TAT-CPNPs) with strong NIR-II absorbance were used to label chemokine-receptor genetically modified MSCs, which were subsequently evaluated under intravital NIR-II OR-PAM regarding their targeting migratory ability. Based on the upregulation of chemokine (C-X-C motif) ligand 10 in the inflamed ears of contact hypersensitivity mice, MSCs with overexpression of corresponding receptor, chemokine (C-X-C motif) receptor 3 (Cxcr3) were successfully generated (MSCCxcr3). TAT-CPNPs labeling enabled NIR-II photoacoustic imaging to discern MSCCxcr3 covered by 1.2 cm of chicken breast tissue. Longitudinal OR-PAM imaging revealed enhanced inflammation-targeting migration of MSCCxcr3 over time attributed to Cxcr3 gene modification, which was further validated by histological analysis. Conclusions TAT-CPNPs-assisted NIR-II PA imaging is promising for monitoring distribution and extravasation kinetics of MSCs, which would greatly facilitate optimizing MSC-based therapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01513-7.
Collapse
Affiliation(s)
- Yuejun Lin
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Hui-Chao Zhou
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiaojia Li
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yiwen Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xuejiao Han
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jie Ren
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
10
|
Ivich F, Pace J, Williams AL, Shumel M, Fang Q, Niedre M. Signal and measurement considerations for human translation of diffuse in vivo flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220066R. [PMID: 35726129 PMCID: PMC9207655 DOI: 10.1117/1.jbo.27.6.067001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE "Diffuse in vivo flow cytometry" (DiFC) is an emerging technology for fluorescence detection of rare circulating cells directly in large deep-seated blood vessels in mice. Because DiFC uses highly scattered light, in principle, it could be translated to human use. However, an open question is whether fluorescent signals from single cells would be detectable in human-scale anatomies. AIM Suitable blood vessels in a human wrist or forearm are at a depth of ∼2 to 4 mm. The aim of this work was to study the impact of DiFC instrument geometry and wavelength on the detected DiFC signal and on the maximum depth of detection of a moving cell. APPROACH We used Monte Carlo simulations to compute fluorescence Jacobian (sensitivity) matrices for a range of source and detector separations (SDS) and tissue optical properties over the visible and near infrared spectrum. We performed experimental measurements with three available versions of DiFC (488, 640, and 780 nm), fluorescent microspheres, and tissue mimicking optical flow phantoms. We used both computational and experimental data to estimate the maximum depth of detection at each combination of settings. RESULTS For the DiFC detection problem, our analysis showed that for deep-seated blood vessels, the maximum sensitivity was obtained with NIR light (780 nm) and 3-mm SDS. CONCLUSIONS These results suggest that-in combination with a suitable molecularly targeted fluorescent probes-circulating cells and nanosensors could, in principle, be detectable in circulation in humans.
Collapse
Affiliation(s)
- Fernando Ivich
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Joshua Pace
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Amber L. Williams
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Malcolm Shumel
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Cell-based therapeutics for the treatment of hematologic diseases inside the bone marrow. J Control Release 2021; 339:1-13. [PMID: 34536449 DOI: 10.1016/j.jconrel.2021.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
Cell-based therapies could overcome the limitations of traditional drugs for the treatment of refractory diseases. Cell exchange between the bone marrow and blood is bidirectional. Several kinds of cells in the blood have the capability to enter the bone marrow by interacting with sinusoidal cells under specific physiological or pathological conditions. These cells are the potential living therapeutics or delivery vehicles to treat or prevent bone marrow-related hematologic diseases. In this review, we summarized the in vivo molecular mechanisms and kinetics of these cells in entering the bone marrow. The advances in the fabrication of living cell drugs and the strategies to design cell-based carriers into the bone marrow were discussed. The latest studies on how to use blood cells as living drugs or as drug carriers to improve therapeutic outcomes of hematologic diseases inside the bone marrow were highlighted.
Collapse
|
12
|
Mesenchymal Stem Cells in the Treatment of COVID-19, a Promising Future. Cells 2021; 10:cells10102588. [PMID: 34685567 PMCID: PMC8533906 DOI: 10.3390/cells10102588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have a potent self-renewal capacity and can differentiate into multiple cell types. They also affect the ambient tissue by the paracrine secretion of numerous factors in vivo, including the induction of other stem cells’ differentiation. In vitro, the culture media supernatant is named secretome and contains soluble molecules and extracellular vesicles that retain potent biological function in tissue regeneration. MSCs are considered safe for human treatment; their use does not involve ethical issues, as embryonic stem cells do not require genetic manipulation as induced pluripotent stem cells, and after intravenous injection, they are mainly found in the lugs. Therefore, these cells are currently being tested in various preclinical and clinical trials for several diseases, including COVID-19. Several affected COVID-19 patients develop induced acute respiratory distress syndrome (ARDS) associated with an uncontrolled inflammatory response. This condition causes extensive damage to the lungs and may leave serious post-COVID-19 sequelae. As the disease may cause systemic alterations, such as thromboembolism and compromised renal and cardiac function, the intravenous injection of MSCs may be a therapeutic alternative against multiple pathological manifestations. In this work, we reviewed the literature about MSCs biology, focusing on their function in pulmonary regeneration and their use in COVID-19 treatment.
Collapse
|
13
|
Sanchez-Diaz M, Quiñones-Vico MI, Sanabria de la Torre R, Montero-Vílchez T, Sierra-Sánchez A, Molina-Leyva A, Arias-Santiago S. Biodistribution of Mesenchymal Stromal Cells after Administration in Animal Models and Humans: A Systematic Review. J Clin Med 2021; 10:jcm10132925. [PMID: 34210026 PMCID: PMC8268414 DOI: 10.3390/jcm10132925] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are of great interest in cellular therapy. Different routes of administration of MSCs have been described both in pre-clinical and clinical reports. Knowledge about the fate of the administered cells is critical for developing MSC-based therapies. The aim of this review is to describe how MSCs are distributed after injection, using different administration routes in animal models and humans. A literature search was performed in order to consider how MSCs distribute after intravenous, intraarterial, intramuscular, intraarticular and intralesional injection into both animal models and humans. Studies addressing the biodistribution of MSCs in “in vivo” animal models and humans were included. After the search, 109 articles were included in the review. Intravenous administration of MSCs is widely used; it leads to an initial accumulation of cells in the lungs with later redistribution to the liver, spleen and kidneys. Intraarterial infusion bypasses the lungs, so MSCs distribute widely throughout the rest of the body. Intramuscular, intraarticular and intradermal administration lack systemic biodistribution. Injection into various specific organs is also described. Biodistribution of MSCs in animal models and humans appears to be similar and depends on the route of administration. More studies with standardized protocols of MSC administration could be useful in order to make results homogeneous and more comparable.
Collapse
Affiliation(s)
- Manuel Sanchez-Diaz
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Maria I. Quiñones-Vico
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- Correspondence:
| | - Raquel Sanabria de la Torre
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Trinidad Montero-Vílchez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Alvaro Sierra-Sánchez
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Alejandro Molina-Leyva
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Salvador Arias-Santiago
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- School of Medicine, University of Granada, 18014 Granada, Spain
| |
Collapse
|
14
|
Szydlak R. Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells 2021; 13:619-631. [PMID: 34249231 PMCID: PMC8246245 DOI: 10.4252/wjsc.v13.i6.619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, which can be isolated from various tissues. Currently, MSCs are key players in cellular therapy and regenerative medicine. However, the possibility of using MSCs in the treatment of many diseases needs to be preceded, though, by in-depth analysis of their properties, especially by determining the mechanism of tissue homing as well as the mechanism, due to which cells contribute to tissue regeneration. This review is intended to present information on recent findings regarding the mechanism of recruitment and tissue homing by MSCs and discuss current hypotheses for how MSCs can reach target tissues.
Collapse
Affiliation(s)
- Renata Szydlak
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
15
|
Mercer-Smith AR, Findlay IA, Bomba HN, Hingtgen SD. Intravenously Infused Stem Cells for Cancer Treatment. Stem Cell Rev Rep 2021; 17:2025-2041. [PMID: 34138421 DOI: 10.1007/s12015-021-10192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Despite the recent influx of immunotherapies and small molecule drugs to treat tumors, cancer remains a leading cause of death in the United States, in large part due to the difficulties of treating metastatic cancer. Stem cells, which are inherently tumoritropic, provide a useful drug delivery vehicle to target both primary and metastatic tumors. Intravenous infusions of stem cells carrying or secreting therapeutic payloads show significant promise in the treatment of cancer. Stem cells may be engineered to secrete cytotoxic products, loaded with oncolytic viruses or nanoparticles containing small molecule drugs, or conjugated with immunotherapies. Herein we describe these preclinical and clinical studies, discuss the distribution and migration of stem cells following intravenous infusion, and examine both the limitations of and the methods to improve the migration and therapeutic efficacy of tumoritropic, therapeutic stem cells.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Ingrid A Findlay
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA. .,Department of Neurosurgery, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA.
| |
Collapse
|
16
|
Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Sci Rep 2021; 11:5265. [PMID: 33664277 PMCID: PMC7933415 DOI: 10.1038/s41598-021-83894-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/20/2021] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have demonstrated efficacy in pre-clinical models of inflammation and tissue injury, including in models of lung injury and infection. Rolling, adhesion and transmigration of MSCs appears to play a role during MSC kinetics in the systemic vasculature. However, a large proportion of MSCs become entrapped within the lungs after intravenous administration, while the initial kinetics and the site of arrest of MSCs in the pulmonary vasculature are unknown. We examined the kinetics of intravascularly administered MSCs in the pulmonary vasculature using a microfluidic system in vitro and intra-vital microscopy of intact mouse lung. In vitro, MSCs bound to endothelium under static conditions but not under laminar flow. VCAM-1 antibodies did not affect MSC binding. Intravital microscopy demonstrated MSC arrest at pulmonary micro-vessel bifurcations due to size obstruction. Retention of MSCs in the pulmonary microvasculature was increased in Escherichia coli-infected animals. Trapped MSCs deformed over time and appeared to release microvesicles. Labelled MSCs retained therapeutic efficacy against pneumonia. Our results suggest that MSCs are physically obstructed in pulmonary vasculature and do not display properties of rolling/adhesion, while retention of MSCs in the infected lung may require receptor interaction.
Collapse
|
17
|
Girousse A, Mathieu M, Sastourné-Arrey Q, Monferran S, Casteilla L, Sengenès C. Endogenous Mobilization of Mesenchymal Stromal Cells: A Pathway for Interorgan Communication? Front Cell Dev Biol 2021; 8:598520. [PMID: 33490065 PMCID: PMC7820193 DOI: 10.3389/fcell.2020.598520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
To coordinate specialized organs, inter-tissue communication appeared during evolution. Consequently, individual organs communicate their states via a vast interorgan communication network (ICN) made up of peptides, proteins, and metabolites that act between organs to coordinate cellular processes under homeostasis and stress. However, the nature of the interorgan signaling could be even more complex and involve mobilization mechanisms of unconventional cells that are still poorly described. Mesenchymal stem/stromal cells (MSCs) virtually reside in all tissues, though the biggest reservoir discovered so far is adipose tissue where they are named adipose stromal cells (ASCs). MSCs are thought to participate in tissue maintenance and repair since the administration of exogenous MSCs is well known to exert beneficial effects under several pathological conditions. However, the role of endogenous MSCs is barely understood. Though largely debated, the presence of circulating endogenous MSCs has been reported in multiple pathophysiological conditions, but the significance of such cell circulation is not known and therapeutically untapped. In this review, we discuss current knowledge on the circulation of native MSCs, and we highlight recent findings describing MSCs as putative key components of the ICN.
Collapse
Affiliation(s)
- Amandine Girousse
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Maxime Mathieu
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Quentin Sastourné-Arrey
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sylvie Monferran
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Coralie Sengenès
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
18
|
Salminen AT, Allahyari Z, Gholizadeh S, McCloskey MC, Ajalik R, Cottle RN, Gaborski TR, McGrath JL. In vitro Studies of Transendothelial Migration for Biological and Drug Discovery. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:600616. [PMID: 35047883 PMCID: PMC8757899 DOI: 10.3389/fmedt.2020.600616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory diseases and cancer metastases lack concrete pharmaceuticals for their effective treatment despite great strides in advancing our understanding of disease progression. One feature of these disease pathogeneses that remains to be fully explored, both biologically and pharmaceutically, is the passage of cancer and immune cells from the blood to the underlying tissue in the process of extravasation. Regardless of migratory cell type, all steps in extravasation involve molecular interactions that serve as a rich landscape of targets for pharmaceutical inhibition or promotion. Transendothelial migration (TEM), or the migration of the cell through the vascular endothelium, is a particularly promising area of interest as it constitutes the final and most involved step in the extravasation cascade. While in vivo models of cancer metastasis and inflammatory diseases have contributed to our current understanding of TEM, the knowledge surrounding this phenomenon would be significantly lacking without the use of in vitro platforms. In addition to the ease of use, low cost, and high controllability, in vitro platforms permit the use of human cell lines to represent certain features of disease pathology better, as seen in the clinic. These benefits over traditional pre-clinical models for efficacy and toxicity testing are especially important in the modern pursuit of novel drug candidates. Here, we review the cellular and molecular events involved in leukocyte and cancer cell extravasation, with a keen focus on TEM, as discovered by seminal and progressive in vitro platforms. In vitro studies of TEM, specifically, showcase the great experimental progress at the lab bench and highlight the historical success of in vitro platforms for biological discovery. This success shows the potential for applying these platforms for pharmaceutical compound screening. In addition to immune and cancer cell TEM, we discuss the promise of hepatocyte transplantation, a process in which systemically delivered hepatocytes must transmigrate across the liver sinusoidal endothelium to successfully engraft and restore liver function. Lastly, we concisely summarize the evolving field of porous membranes for the study of TEM.
Collapse
Affiliation(s)
- Alec T. Salminen
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Zahra Allahyari
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Shayan Gholizadeh
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Molly C. McCloskey
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Raquel Ajalik
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Renee N. Cottle
- Bioengineering, Clemson University, Clemson, SC, United States
| | - Thomas R. Gaborski
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - James L. McGrath
- Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
19
|
Platelets Boost Recruitment of CD133 + Bone Marrow Stem Cells to Endothelium and the Rodent Liver-The Role of P-Selectin/PSGL-1 Interactions. Int J Mol Sci 2020; 21:ijms21176431. [PMID: 32899390 PMCID: PMC7504029 DOI: 10.3390/ijms21176431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that clinical administration of mobilized CD133+ bone marrow stem cells (BMSC) accelerates hepatic regeneration. Here, we investigated the potential of platelets to modulate CD133+BMSC homing to hepatic endothelial cells and sequestration to warm ischemic livers. Modulatory effects of platelets on the adhesion of CD133+BMSC to human and mouse liver-sinusoidal- and micro- endothelial cells (EC) respectively were evaluated in in vitro co-culture systems. CD133+BMSC adhesion to all types of EC were increased in the presence of platelets under shear stress. This platelet effect was mostly diminished by antagonization of P-selectin and its ligand P-Selectin-Glyco-Ligand-1 (PSGL-1). Inhibition of PECAM-1 as well as SDF-1 receptor CXCR4 had no such effect. In a model of the isolated reperfused rat liver subsequent to warm ischemia, the co-infusion of platelets augmented CD133+BMSC homing to the injured liver with heightened transmigration towards the extra sinusoidal space when compared to perfusion conditions without platelets. Extravascular co-localization of CD133+BMSC with hepatocytes was confirmed by confocal microscopy. We demonstrated an enhancing effect of platelets on CD133+BMSC homing to and transmigrating along hepatic EC putatively depending on PSGL-1 and P-selectin. Our insights suggest a new mechanism of platelets to augment stem cell dependent hepatic repair.
Collapse
|
20
|
Liang C, Huang J, Luo P, Wang Z, He J, Wu S, Peng C, Cao X. Platelet-Derived Microparticles Mediate the Intra-Articular Homing of Mesenchymal Stem Cells in Early-Stage Cartilage Lesions. Stem Cells Dev 2020; 29:414-424. [PMID: 32000580 DOI: 10.1089/scd.2019.0137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After intra-articular injection, synovium-derived mesenchymal stem cells (SMSCs) can adhere to damaged cartilage (a process called homing) and then repair the cartilage defect. Nonetheless, the main obstacle of the current method is the insufficient homing ratio of SMSCs, which fails to meet the requirements for cartilage repair and thereby greatly limits the therapeutic effect. In this study, the optimal homing time of SMSCs was determined by evaluating the SMSC homing efficiency at 1, 3, 7, 14, and 28 days after injury using a rat cartilage defect model. The ability of platelet-derived microparticles (PMPs) to promote SMSC homing was evaluated by cartilage/subchondral bone cell adhesion, transmembrane migration, and intra-articular cell distribution assays. SMSCs had an optimal homing efficiency in the very early stage (1 day) after cartilage injury. We found that PMPs, which were abundant in the synovial fluid at this early stage, were responsible for this augmented SMSC homing. An ex vivo cell adhesion assay revealed that the coincubation of SMSCs with PMPs at a 1:50 ratio markedly enhanced cell adhesion to cartilage and the subchondral bone surface. The transmembrane cell migration assay yielded similar results. Further in vivo homing assays revealed that PMPs possess excellent homing capacity, which they transferred, to some extent, to SMSCs by coating the cell surface. We measured the expression of homing-related genes in SMSCs exposed to PMPs and identified several upregulated genes. Moreover, platelet-specific adhesion molecules, particularly GPIIb/IIIa, CXCR4, ITGβ1, and ITGα2, were determined to play a critical role in the homing of SMSC/PMP complexes. This improvement in SMSC homing increased the volume of regenerated tissue in the cartilage defect. In conclusion, PMPs significantly promoted the homing of SMSCs to cartilage, which facilitated cartilage regeneration. These data suggest a safe and promising strategy for improving the outcome of stem cell therapy.
Collapse
Affiliation(s)
- Chi Liang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Huang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Pan Luo
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Zili Wang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jinshen He
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Peng
- Department of Burns and Plastic Surgery, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xu Cao
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
von Bahr V, Millar JE, Malfertheiner MV, Ki KK, Passmore MR, Bartnikowski N, Redd MA, Cavaye M, Suen JY, McAuley DF, Fraser JF. Mesenchymal stem cells may ameliorate inflammation in an ex vivo model of extracorporeal membrane oxygenation. Perfusion 2020; 34:15-21. [PMID: 30966907 DOI: 10.1177/0267659119830857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Mesenchymal stem cells exhibit immunomodulatory properties which are currently being investigated as a novel treatment option for Acute Respiratory Distress Syndrome. However, the feasibility and efficacy of mesenchymal stem cell therapy in the setting of extracorporeal membrane oxygenation is poorly understood. This study aimed to characterise markers of innate immune activation in response to mesenchymal stem cells during an ex vivo simulation of extracorporeal membrane oxygenation. METHODS Ex vivo extracorporeal membrane oxygenation simulations (n = 10) were conducted using a commercial extracorporeal circuit with a CO2-enhanced fresh gas supply and donor human whole blood. Heparinised circuits (n = 4) were injected with 40 × 106-induced pluripotent stem cell-derived human mesenchymal stem cells, while the remainder (n = 6) acted as controls. Simulations were maintained, under physiological conditions, for 240 minutes. Circuits were sampled at 15, 30, 60, 120 and 240 minutes and assessed for levels of interleukin-1β, interleukin-6, interleukin-8, interleukin-10, tumour necrosis factor-α, transforming growth factor-β1, myeloperoxidase and α-Defensin-1. In addition, haemoglobin, platelet and leukocyte counts were performed. RESULTS There was a trend towards reduced levels of pro-inflammatory cytokines in mesenchymal stem cell-treated circuits and a significant increase in transforming growth factor-β1. Blood cells and markers of neutrophil activation were reduced in mesenchymal stem cell circuits during the length of the simulation. As previously reported, the addition of mesenchymal stem cells resulted in a reduction of flow and increased trans-oxygenator pressures in comparison to controls. CONCLUSIONS The addition of mesenchymal stem cells during extracorporeal membrane oxygenation may cause an increase in transforming growth factor-β1. This is despite their ability to adhere to the membrane oxygenator. Further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Viktor von Bahr
- 1 Critical Care Research Group, The Prince Charles Hospital, The University of Queensland, Brisbane, QLD, Australia
- 2 Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan E Millar
- 1 Critical Care Research Group, The Prince Charles Hospital, The University of Queensland, Brisbane, QLD, Australia
- 3 Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Maximillian V Malfertheiner
- 1 Critical Care Research Group, The Prince Charles Hospital, The University of Queensland, Brisbane, QLD, Australia
- 4 Department of Internal Medicine II, Cardiology and Pneumology, University Medical Center Regensburg, Regensburg, Germany
| | - Katrina K Ki
- 1 Critical Care Research Group, The Prince Charles Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Margaret R Passmore
- 1 Critical Care Research Group, The Prince Charles Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Nicole Bartnikowski
- 1 Critical Care Research Group, The Prince Charles Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Meredith A Redd
- 5 Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Michael Cavaye
- 1 Critical Care Research Group, The Prince Charles Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Jacky Y Suen
- 1 Critical Care Research Group, The Prince Charles Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Danny F McAuley
- 3 Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - John F Fraser
- 1 Critical Care Research Group, The Prince Charles Hospital, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Mesenchymal stromal cell-based therapies for acute kidney injury: progress in the last decade. Kidney Int 2020; 97:1130-1140. [PMID: 32305128 DOI: 10.1016/j.kint.2019.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
A little over 10 years ago, the therapeutic potential of mesenchymal stromal cells (MSCs) for the treatment of acute kidney injury (AKI) was becoming widely recognized. Since then, there has been further intensive study of this topic with a clear translational intent. Over the past decade, many more animal model studies have strengthened the evidence that systemically or locally delivered MSCs ameliorate renal injury in sterile and sepsis-associated AKI. Some of these preclinical studies have also provided a range of compelling new insights into the in vivo fate and mechanisms of action of MSCs in the setting of AKI and other inflammatory conditions. Coupled with increased knowledge of the functional roles of resident and infiltrating immune cell mediators in determining the severity and outcome of AKI, the progress made in the past decade would appear to have significantly strengthened the translational pathway for MSC-based therapies. In contrast, however, the extent of the clinical experience with MSC administration in human subjects with AKI or sepsis-associated AKI has been limited to a small number of early-phase clinical trials, which appear to demonstrate safety but have not thus far delivered a strong signal of efficacy. In this review, we summarize the most significant new developments in the field of MSC-based therapies as they relate to AKI and reflect on the key gaps in knowledge and technology that remain to be addressed for the true clinical potential of MSCs and, perhaps, other emerging cellular therapies to be realized.
Collapse
|
23
|
Susanto O, Hickey MJ. Using imaging to study inflammatory platelet–leukocyte interactions in vivo. Platelets 2020; 31:610-617. [DOI: 10.1080/09537104.2020.1718632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Olivia Susanto
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University Department of Medicine, Clayton, Australia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University Department of Medicine, Clayton, Australia
| |
Collapse
|
24
|
Wang F, Wei D, Suo Y, Zhu X, Yuan Y, Gao W, Jiang H, Wei X, Chen T. In vivo flow cytometry combined with intravital microscopy to monitor kinetics of transplanted bone marrow mononuclear cells in peripheral blood and bone marrow. Mol Biol Rep 2019; 47:1-10. [DOI: 10.1007/s11033-019-04608-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022]
|
25
|
Kavanagh DPJ, Kalia N. Live Intravital Imaging of Cellular Trafficking in the Cardiac Microvasculature-Beating the Odds. Front Immunol 2019; 10:2782. [PMID: 31849965 PMCID: PMC6901937 DOI: 10.3389/fimmu.2019.02782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Although mortality rates from cardiovascular disease in the developed world are falling, the prevalence of cardiovascular disease (CVD) is not. Each year, the number of people either being diagnosed as suffering with CVD or undergoing a surgical procedure related to it, such as percutaneous coronary intervention, continues to increase. In order to ensure that we can effectively manage these diseases in the future, it is critical that we fully understand their basic physiology and their underlying causative factors. Over recent years, the important role of the cardiac microcirculation in both acute and chronic disorders of the heart has become clear. The recruitment of inflammatory cells into the cardiac microcirculation and their subsequent activation may contribute significantly to tissue damage, adverse remodeling, and poor outcomes during recovery. However, our basic understanding of the cardiac microcirculation is hampered by an historic inability to image the microvessels of the beating heart-something we have been able to achieve in other organs for over 100 years. This stems from a couple of clear and obvious difficulties related to imaging the heart-firstly, it has significant inherent contractile motion and is affected considerably by the movement of lungs. Secondly, it is located in an anatomically challenging position for microscopy. However, recent microscopic and technological developments have allowed us to overcome some of these challenges and to begin to answer some of the basic outstanding questions in cardiac microvascular physiology, particularly in relation to inflammatory cell recruitment. In this review, we will discuss some of the historic work that took place in the latter part of last century toward cardiac intravital, before moving onto the advanced work that has been performed since. This work, which has utilized technology such as spinning-disk confocal and multiphoton microscopy, has-along with some significant advancements in algorithms and software-unlocked our ability to image the "business end" of the cardiac vascular tree. This review will provide an overview of these techniques, as well as some practical pointers toward software and other tools that may be useful for other researchers who are considering utilizing this technique themselves.
Collapse
Affiliation(s)
- Dean Philip John Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neena Kalia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
26
|
Godoy JAP, Paiva RMA, Souza AM, Kondo AT, Kutner JM, Okamoto OK. Clinical Translation of Mesenchymal Stromal Cell Therapy for Graft Versus Host Disease. Front Cell Dev Biol 2019; 7:255. [PMID: 31824942 PMCID: PMC6881464 DOI: 10.3389/fcell.2019.00255] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Graft versus host disease (GVHD) is a common condition in patients subjected to allogeneic hematopoietic stem cell transplantation (HSCT). The immune cells derived from the grafted stem cells attack recipient's tissues, including those from the skin, liver, eyes, mouth, lungs, gastrointestinal tract, neuromuscular system, and genitourinary tract, may lead to severe morbidity and mortality. Acute GVHD can occur within few weeks after the allogeneic cells have engrafted in the recipient while chronic GVHD may occur any time after transplant, typically within months. Although treatable by systemic corticosteroid administration, effective responses are not achieved for a significant proportion of patients, a condition associated with poor prognosis. The use of multipotent mesenchymal stromal cells (MSCs) as an alternative to treat steroid-refractory GVHD had improved last decade, but the results are still controversial. Some studies have shown improvement in the life quality of patients after MSCs treatment, while others have found no significant benefits. In addition to variations in trial design, discrepancies in protocols for MSCs isolation, characterization, and ex vivo manipulation, account for inconsistent clinical results. In this review, we discuss the immunomodulatory properties supporting the therapeutic use of MSCs in GVHD and contextualize the main clinical findings of recent trials using these cells. Critical parameters for the clinical translation of MSCs, including consistent production of MSCs according to Good Manufacturing Practices (GMPs) and informative potency assays for product quality control (QC), are addressed.
Collapse
Affiliation(s)
- Juliana A. P. Godoy
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel M. A. Paiva
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Aline M. Souza
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Andrea T. Kondo
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose M. Kutner
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Oswaldo K. Okamoto
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Liu Y, Yuan Q, Zhang S. Three-dimensional intravital imaging in bone research. JOURNAL OF BIOPHOTONICS 2019; 12:e201960075. [PMID: 31593614 DOI: 10.1002/jbio.201960075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 02/05/2023]
Abstract
Intravital imaging has emerged as a novel and efficient tool for visualization of in situ dynamics of cellular behaviors and cell-microenvironment interactions in live animals, based on desirable microscopy techniques featuring high resolutions, deep imaging and low phototoxicity. Intravital imaging, especially based on multi-photon microscopy, has been used in bone research for dynamics visualization of a variety of physiological and pathological events at the cellular level, such as bone remodeling, hematopoiesis, immune responses and cancer development, thus, providing guidance for elucidating novel cellular mechanisms in bone biology as well as guidance for new therapies. This review is aimed at interpreting development and advantages of intravital imaging in bone research, and related representative discoveries concerning bone matrices, vessels, and various cells types involved in bone physiologies and pathologies. Finally, current limitations, further refinement, and extended application of intravital imaging in bone research are concluded.
Collapse
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Moon SH, Lee CM, Park SH, Jin Nam M. Effects of hepatocyte growth factor gene-transfected mesenchymal stem cells on dimethylnitrosamine-induced liver fibrosis in rats. Growth Factors 2019; 37:105-119. [PMID: 31452434 DOI: 10.1080/08977194.2019.1652399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nowadays, transplantation of human mesenchymal stem cells (MSCs) has emerged as a potential cellular therapy for liver cirrhosis. Hepatocyte growth factor (HGF) plays an important role in the regeneration of the liver. The objective of the study was to investigate the therapeutic effect of HGF-transfected human umbilical cord blood-derived MSCs on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. HGF-transfected MSCs were transplanted into rats with DMN-induced liver fibrosis. H2O2-induced cytotoxicity, apoptosis and intracellular reactive oxygen species were reduced in HGF-transfected MSCs in HGF-transfected MSCs. Pro-apoptotic proteins, such as cleaved poly (ADP-ribose) polymerase and cleaved caspase-3, were decreased in HGF-transfected MSCs. Biochemical analysis showed that the levels of aspartate aminotransferase and alanine aminotransferase were decreased after transplantation of HGF-transfected MSCs in rat fibrosis. Trichrome staining showed that HGF-transfected MSCs reduced liver damage. Taken together, our study indicated that HGF-transfected MSCs have therapeutic effects on DMN-induced liver fibrosis in rats.
Collapse
Affiliation(s)
- Soung Hoon Moon
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - Chang Min Lee
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
- HanCell Inc, Seongnam, Republic of Korea
| |
Collapse
|
29
|
Masterson CH, Curley GF, Laffey JG. Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Med Exp 2019; 7:41. [PMID: 31346794 PMCID: PMC6658643 DOI: 10.1186/s40635-019-0235-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are undergoing intensive translational research for several debilitating conditions, including critical illnesses such as ARDS and sepsis. MSCs exert diverse biologic effects via their interaction with host tissues, via mechanisms that require the MSC to be in close proximity to the area of injury. Fully harnessing the therapeutic potential of advanced medicinal therapeutic products such as MSCs and their successful translation to clinical use requires a detailed understanding of MSC distribution and persistence in the injured tissues. Key aspects include understanding MSC distribution within the body, the response of the host to MSC administration, and the ultimate fate of exogenously administered MSCs within the host. Factors affecting this interaction include the MSC tissue source, the in vitro MSC culture conditions, the route of MSC administration and the specific issues relating to the target disease state, each of which remains to be fully characterised. Understanding these factors may generate strategies to modify MSC distribution and fate that may enhance their therapeutic effect. This review will examine our understanding of the mechanisms of action of MSCs, the early and late phase distribution kinetics of MSCs following in vivo administration, the ultimate fate of MSCs following administration and the potential importance of these MSC properties to their therapeutic effects. We will critique current cellular imaging and tracking methodologies used to track exogenous MSCs and their suitability for use in patients, discuss the insights they provide into the distribution and fate of MSCs after administration, and suggest strategies by which MSC biodistribution and fate may be modulated for therapeutic effect and clinical use. In conclusion, a better understanding of patterns of biodistribution and of the fate of MSCs will add important additional safety data regarding MSCs, address regulatory requirements, and may uncover strategies to increase the distribution and/or persistence of MSC at the sites of injury, potentially increasing their therapeutic potential for multiple disorders.
Collapse
Affiliation(s)
- Claire H Masterson
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland Education and Research Centre Smurfit Building, Beaumont Hospital, Dublin, 9, Ireland
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland. .,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland. .,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, SAOLTA Hospital Group, Galway, Ireland.
| |
Collapse
|
30
|
Atkinson SP. Previews. Stem Cells Transl Med 2019. [PMCID: PMC6591547 DOI: 10.1002/sctm.19-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Salminen AT, Zhang J, Madejski GR, Khire TS, Waugh RE, McGrath JL, Gaborski TR. Ultrathin Dual-Scale Nano- and Microporous Membranes for Vascular Transmigration Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804111. [PMID: 30632319 PMCID: PMC6530565 DOI: 10.1002/smll.201804111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/26/2018] [Indexed: 05/21/2023]
Abstract
Selective cellular transmigration across the microvascular endothelium regulates innate and adaptive immune responses, stem cell localization, and cancer cell metastasis. Integration of traditional microporous membranes into microfluidic vascular models permits the rapid assay of transmigration events but suffers from poor reproduction of the cell permeable basement membrane. Current microporous membranes in these systems have large nonporous regions between micropores that inhibit cell communication and nutrient exchange on the basolateral surface reducing their physiological relevance. Here, the use of 100 nm thick continuously nanoporous silicon nitride membranes as a base substrate for lithographic fabrication of 3 µm pores is presented, resulting in a highly porous (≈30%), dual-scale nano- and microporous membrane for use in an improved vascular transmigration model. Ultrathin membranes are patterned using a precision laser writer for cost-effective, rapid micropore design iterations. The optically transparent dual-scale membranes enable complete observation of leukocyte egress across a variety of pore densities. A maximal density of ≈14 micropores per cell is discovered beyond which cell-substrate interactions are compromised giving rise to endothelial cell losses under flow. Addition of a subluminal extracellular matrix rescues cell adhesion, allowing for the creation of shear-primed endothelial barrier models on nearly 30% continuously porous substrates.
Collapse
Affiliation(s)
- Alec T Salminen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Jingkai Zhang
- Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Gregory R Madejski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Tejas S Khire
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Thomas R Gaborski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
32
|
Saberianpour S, Heidarzadeh M, Geranmayeh MH, Hosseinkhani H, Rahbarghazi R, Nouri M. Tissue engineering strategies for the induction of angiogenesis using biomaterials. J Biol Eng 2018; 12:36. [PMID: 30603044 PMCID: PMC6307144 DOI: 10.1186/s13036-018-0133-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is touted as a fundamental procedure in the regeneration and restoration of different tissues. The induction of de novo blood vessels seems to be vital to yield a successful cell transplantation rate loaded on various scaffolds. Scaffolds are natural or artificial substances that are considered as one of the means for delivering, aligning, maintaining cell connection in a favor of angiogenesis. In addition to the potential role of distinct scaffold type on vascularization, the application of some strategies such as genetic manipulation, and conjugation of pro-angiogenic factors could intensify angiogenesis potential. In the current review, we focused on the status of numerous scaffolds applicable in the field of vascular biology. Also, different strategies and priming approaches useful for the induction of pro-angiogenic signaling pathways were highlighted.
Collapse
Affiliation(s)
- Shirin Saberianpour
- 1Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, 5166614756 Iran
- 2Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Heidarzadeh
- 1Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, 5166614756 Iran
| | - Mohammad Hossein Geranmayeh
- 3Neuroscience Research Center, Imam Reza Medical Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- 1Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, 5166614756 Iran
- 5Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- 2Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- 1Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, 5166614756 Iran
- 5Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Khosravi N, Mendes VC, Nirmal G, Majeed S, DaCosta RS, Davies JE. Intravital Imaging for Tracking of Angiogenesis and Cellular Events Around Surgical Bone Implants. Tissue Eng Part C Methods 2018; 24:617-627. [PMID: 30280999 DOI: 10.1089/ten.tec.2018.0252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT These new experimental methods allow us to image, and quantify, angiogenesis and perivascular cell dynamics in the endosseous healing compartment. As such, the method is capable of providing a new perspective on, and unique information regarding, healing that occurs around orthopedic and dental implants.
Collapse
Affiliation(s)
- Niloufar Khosravi
- 1 Faculty of Dentistry, University of Toronto , Toronto, Ontario, Canada .,2 Princess Margaret Cancer Institute, University Health Network , Toronto, Ontario, Canada .,3 Institute for Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Vanessa C Mendes
- 1 Faculty of Dentistry, University of Toronto , Toronto, Ontario, Canada
| | - Ghata Nirmal
- 4 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada
| | - Safa Majeed
- 5 Department of Medical Biophysics, University of Toronto , Toronto, Ontario, Canada
| | - Ralph S DaCosta
- 2 Princess Margaret Cancer Institute, University Health Network , Toronto, Ontario, Canada .,5 Department of Medical Biophysics, University of Toronto , Toronto, Ontario, Canada .,6 Techna Institute, University Health Network , Toronto, Ontario, Canada
| | - John E Davies
- 1 Faculty of Dentistry, University of Toronto , Toronto, Ontario, Canada .,3 Institute for Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
34
|
He XT, Wang J, Li X, Yin Y, Sun HH, Chen FM. The Critical Role of Cell Homing in Cytotherapeutics and Regenerative Medicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiao-Tao He
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Jia Wang
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Hai-Hua Sun
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| |
Collapse
|
35
|
Mittal SK, Mashaghi A, Amouzegar A, Li M, Foulsham W, Sahu SK, Chauhan SK. Mesenchymal Stromal Cells Inhibit Neutrophil Effector Functions in a Murine Model of Ocular Inflammation. Invest Ophthalmol Vis Sci 2018; 59:1191-1198. [PMID: 29625439 PMCID: PMC5837663 DOI: 10.1167/iovs.17-23067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Neutrophil-secreted effector molecules are one of the primary causes of tissue damage during corneal inflammation. In the present study, we have investigated the effect of stromal cells in regulating neutrophil expression of tissue-damaging enzymes, myeloperoxidase (MPO), and N-elastase (ELANE). Methods Bone marrow–purified nonhematopoietic mesenchymal stromal cells and formyl-methionyl-leucyl-phenylalanine–activated neutrophils were cocultured in the presence or absence of Transwell inserts for 1 hour. Neutrophil effector molecules, MPO and ELANE, were quantified using ELISA. In mice, corneal injury was created by mechanical removal of the corneal epithelium and anterior stroma approximating one third of total corneal thickness, and mesenchymal stromal cells were then intravenously injected 1 hour post injury. Corneas were harvested to evaluate MPO expression and infiltration of CD11b+Ly6G+ neutrophils. Results Activated neutrophils cocultured with mesenchymal stromal cells showed a significant 2-fold decrease in secretion of MPO and ELANE compared to neutrophils activated alone (P < 0.05). This suppressive effect was cell–cell contact dependent, as stromal cells cocultured with neutrophils in the presence of Transwell failed to suppress the secretion of neutrophil effector molecules. Following corneal injury, stromal cell–treated mice showed a significant 40% decrease in MPO expression by neutrophils and lower neutrophil frequencies compared to untreated injured controls (P < 0.05). Reduced MPO expression by neutrophils was also accompanied by normalization of corneal tissue structure following stromal cell treatment. Conclusions Mesenchymal stromal cells inhibit neutrophil effector functions via direct cell–cell contact interaction during inflammation. The current findings could have implications for the treatment of inflammatory ocular disorders caused by excessive neutrophil activation.
Collapse
Affiliation(s)
- Sharad K Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Mingshun Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States.,Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Dong Dan, Beijing, People's Republic of China
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Srikant K Sahu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States.,L.V. Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
36
|
Naderi-Meshkin H, Ahmadiankia N. Cancer metastasis versus stem cell homing: Role of platelets. J Cell Physiol 2018; 233:9167-9178. [PMID: 30105746 DOI: 10.1002/jcp.26937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
One of the major obstacles in achieving a successful stem cell therapy is insufficient homing of transplanted cells. To overcome this obstacle, understanding the underlying mechanisms of stem cell homing is of obvious importance. Central to this review is the concept that cancer metastasis can be viewed as a role model to build up a comprehensive concept of stem cell homing. In this novel perspective, the prosurvival choices of the cancerous cells in the bloodstream, their arrest, extravasation, and proliferation at the secondary site can be exploited in favor of targeted stem cell homing. To date, tumor cells have been found to employ a wide variety of strategies to promote metastasis. One of these strategies is through their ability to activate platelets and subsequently activated platelets serve cancer cell survival and metastasis. Accordingly, in the first part of this review the roles of platelets in cancer metastasis as well as stem cell homing are discussed. Next, we provide some lessons learned from cancer metastasis in favor of developing strategies for improvement of stem cell homing with emphasis on the role of platelets. Based on direct or indirect evidence from metastasis, strategies such as manipulation of stem cells to enhance interaction with platelets, preconditioning-pretreatment of stem cells with platelets in vitro, and coinjection of both stem cells and platelets are proposed to improve stem cell homing.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Naghmeh Ahmadiankia
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
37
|
Sheriff L, Alanazi A, Ward LSC, Ward C, Munir H, Rayes J, Alassiri M, Watson SP, Newsome PN, Rainger GE, Kalia N, Frampton J, McGettrick HM, Nash GB. Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion. Stem Cells 2018; 36:1062-1074. [PMID: 29488279 PMCID: PMC6099218 DOI: 10.1002/stem.2811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/16/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC‐2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC‐2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC‐2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin‐induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells2018;36:1062–1074
Collapse
Affiliation(s)
- Lozan Sheriff
- Institute for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asma Alanazi
- Institute for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,Medical College, King Saud bin Abdulaziz University for Health Sciences, Riyadh, KSA
| | - Lewis S C Ward
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Carl Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hafsa Munir
- Institute for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julie Rayes
- Institute for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mohammed Alassiri
- Institute for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,Medical College, King Saud bin Abdulaziz University for Health Sciences, Riyadh, KSA
| | - Steve P Watson
- Institute for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Phil N Newsome
- Centre for Liver Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,National Institute for Health Research, Liver Biomedical Research Unit at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - G E Rainger
- Institute for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neena Kalia
- Institute for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jon Frampton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Gerard B Nash
- Institute for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
38
|
White MD, Zhao ZW, Plachta N. In Vivo Imaging of Single Mammalian Cells in Development and Disease. Trends Mol Med 2018; 24:278-293. [PMID: 29439932 DOI: 10.1016/j.molmed.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
Live imaging has transformed biomedical sciences by enabling visualization and analysis of dynamic cellular processes as they occur in their native contexts. Here, we review key recent efforts applying in vivo optical imaging with single-cell resolution to mammalian systems ranging from embryos to adult tissues and organs. We highlight insights into active processes regulating cell fate and morphogenesis during embryonic development, how neuronal circuitry and non-neuronal cell types contribute to neurological functions, and how novel imaging-based approaches enable the dissection of neurological disorders and cancer with high spatio-temporal resolution. The convergence of technical advancements in accessing, visualizing, and manipulating individual cells provides an unprecedented lens to probe mammalian cellular dynamics in vivo in both physiological and pathological states.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; These authors contributed equally to this work
| | - Ziqing W Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; These authors contributed equally to this work
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
39
|
Munir H, Ward LSC, McGettrick HM. Mesenchymal Stem Cells as Endogenous Regulators of Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:73-98. [PMID: 30155623 DOI: 10.1007/978-3-319-78127-3_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter discusses the regulatory role of endogenous mesenchymal stem cells (MSC) during an inflammatory response. MSC are a heterogeneous population of multipotent cells that normally contribute towards tissue maintenance and repair but have garnered significant scientific interest for their potent immunomodulatory potential. It is through these physicochemical interactions that MSC are able to exert an anti-inflammatory response on neighbouring stromal and haematopoietic cells. However, the impact of the chronic inflammatory environment on MSC function remains to be determined. Understanding the relationship of MSC between resolution of inflammation and autoimmunity will both offer new insights in the use of MSC as a therapeutic, and also their involvement in the pathogenesis of inflammatory disorders.
Collapse
Affiliation(s)
- Hafsa Munir
- MRC Cancer Unit/Hutchison, University of Cambridge, Cambridge, UK
| | | | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
40
|
Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise Review: MSC Adhesion Cascade-Insights into Homing and Transendothelial Migration. Stem Cells 2017; 35:1446-1460. [DOI: 10.1002/stem.2614] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Franziska Nitzsche
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Department of Radiology, McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Claudia Müller
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
| | - Barbara Lukomska
- NeuroRepair Department; Mossakowski Medical Research Centre; Warsaw Poland
| | - Jukka Jolkkonen
- Department of Neurology; Institute of Clinical Medicine, University of Eastern; Kuopio Finland
| | - Alexander Deten
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Johannes Boltze
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
- Department of Translational Medicine and Cell Technology; Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck; Lübeck Germany
| |
Collapse
|
41
|
Xie C, Yang Z, Suo Y, Chen Q, Wei D, Weng X, Gu Z, Wei X. Systemically Infused Mesenchymal Stem Cells Show Different Homing Profiles in Healthy and Tumor Mouse Models. Stem Cells Transl Med 2017; 6:1120-1131. [PMID: 28205428 PMCID: PMC5442841 DOI: 10.1002/sctm.16-0204] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) can localize in injured, inflamed, and cancerous tissues after systemic infusion. However, the dynamic homing profile of MSCs in the peripheral blood is not well characterized. Here, using in vivo flow cytometry to noninvasively monitor the dynamics of fluorescence-labeled cells, we found different clearance kinetics of systemically infused MSCs between healthy and tumor mouse models. The circulation times of MSCs in healthy mice and mice with subcutaneous tumors, orthotopically transplanted liver tumors, or metastatic lung tumors were 30, 24, 18, and 12 hours, respectively, suggesting that MSCs actively home to tumor environments. MSCs infiltrated into hepatocellular carcinoma (HCC) sites and preferentially engrafted to micrometastatic regions both in vivo and in vitro. The expression of epidermal growth factor, CXCL9, CCL25, and matrix metalloproteinases-9 by HCC cells differed between primary tumor sites and metastatic regions. By characterizing the homing profiles of systemically perfused MSCs under physiological and cancerous conditions, these findings increase our understanding of the migration of MSCs from the circulation to tumor sites and constitute a basis for developing MSC-based anti-cancer therapeutic strategies. Stem Cells Translational Medicine 2017;6:1120-1131.
Collapse
Affiliation(s)
- Chengying Xie
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Zhangru Yang
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Yuanzhen Suo
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Qianqian Chen
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Dan Wei
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Xiaofu Weng
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Zhengqin Gu
- Department of UrologyXinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092China
| | - Xunbin Wei
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| |
Collapse
|
42
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
43
|
Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, Spohn G, Schäfer R, Seifried E, Henschler R. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy 2016; 19:61-74. [PMID: 27836573 DOI: 10.1016/j.jcyt.2016.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS The biodistribution of human MSCs after systemic delivery is incompletely understood. We investigated the changes in cell size and cell surface markers of human MSCs after intravenous (IV) injection in immune competent mice. METHODS Male human MSCs were labeled with fluorescent vital dye PKH67 and tracked after IV administration in C57/BL6 mice. MSCs were tracked in blood and different murine tissues by human SRY gene quantitative polymerase chain reaction (qPCR) analysis, flow cytometry and fluorescence microscopy. Calibrated microbeads were used to track the size of transplanted MSCs. RESULTS The majority of injected MSCs were detected by qPCR in the lungs 5 min after transplantation, whereas <0.1% were detected in other tissues over 24 h. Flow cytometric and fluorescence microscopic analysis indicated that MSCs continuously decreased in size after transplantation and underwent fragmentation. The majority of PKH+ MSCs and their fragments were found in lungs and liver. PKH+ MSCs rapidly became positive for annexin V, propidium iodide and calreticulin, indicating loss of cell integrity. In addition, PKH+ fragments co-stained with antibodies against C3b, F4/80 and/or GR-1 indicating opsonization. Preincubation of MSCs in hyperosmolaric hydroxyethyl starch (HyperHAES) decreased MSCs size before transplantation, delayed the loss of viability markers and increased the frequency of traceable MSCs up to 24 h after transplantation. CONCLUSIONS PKH67 labeled MSCs are fragmented after IV injection in mice, acquire apoptotic and phagocytic cell markers and accumulate in the lungs and liver.
Collapse
Affiliation(s)
- Johannes Leibacher
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK.
| | - Katrin Dauber
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Sabrina Ehser
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Veronika Brixner
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Katarina Kollar
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Anja Vogel
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Gabi Spohn
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Richard Schäfer
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Reinhard Henschler
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK; Blood Transfusion Services Zurich and Grisons, Swiss Red Cross, Switzerland
| |
Collapse
|
44
|
Haldar D, Henderson NC, Hirschfield G, Newsome PN. Mesenchymal stromal cells and liver fibrosis: a complicated relationship. FASEB J 2016; 30:3905-3928. [DOI: 10.1096/fj.201600433r] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Debashis Haldar
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| | - Neil C. Henderson
- Medical Research Council (MRC) Centre for Inflammation ResearchQueens Medical Research Institute University of Edinburgh Edinburgh United Kingdom
| | - Gideon Hirschfield
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| | - Philip N. Newsome
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| |
Collapse
|
45
|
Yang Z, Concannon J, Ng KS, Seyb K, Mortensen LJ, Ranganath S, Gu F, Levy O, Tong Z, Martyn K, Zhao W, Lin CP, Glicksman MA, Karp JM. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation. Sci Rep 2016; 6:30263. [PMID: 27457881 PMCID: PMC4960598 DOI: 10.1038/srep30263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/24/2016] [Indexed: 12/29/2022] Open
Abstract
Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.
Collapse
Affiliation(s)
- Zijiang Yang
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, US.,Advanced Industrial Technology Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - John Concannon
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Kelvin S Ng
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Kathleen Seyb
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Luke J Mortensen
- Regenerative Bioscience Center, Department of Animal and Dairy Science, and College of Engineering, University of Georgia, Athens, GA, US
| | - Sudhir Ranganath
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US.,Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, India
| | - Fangqi Gu
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Oren Levy
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Zhixiang Tong
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Keir Martyn
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Weian Zhao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center and Chao Family Comprehensive Cancer Center, Department of Biomedical Engineering, and Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, US
| | - Charles P Lin
- Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, US
| | - Marcie A Glicksman
- Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Jeffrey M Karp
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| |
Collapse
|
46
|
Jiang D, Muschhammer J, Qi Y, Kügler A, de Vries JC, Saffarzadeh M, Sindrilaru A, Beken SV, Wlaschek M, Kluth MA, Ganss C, Frank NY, Frank MH, Preissner KT, Scharffetter-Kochanek K. Suppression of Neutrophil-Mediated Tissue Damage-A Novel Skill of Mesenchymal Stem Cells. Stem Cells 2016; 34:2393-406. [PMID: 27299700 PMCID: PMC5572139 DOI: 10.1002/stem.2417] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and regeneration. Though of prime interest, their potentially protective role on neutrophil-induced tissue damage, associated with high morbidity and mortality, has not been explored in sufficient detail. Here we report the therapeutic skill of MSCs to suppress unrestrained neutrophil activation and to attenuate severe tissue damage in a murine immune-complex mediated vasculitis model of unbalanced neutrophil activation. MSC-mediated neutrophil suppression was due to intercellular adhesion molecule 1-dependent engulfment of neutrophils by MSCs, decreasing overall neutrophil numbers. Similar to MSCs in their endogenous niche of murine and human vasculitis, therapeutically injected MSCs via upregulation of the extracellular superoxide dismutase (SOD3), reduced super-oxide anion concentrations and consequently prevented neutrophil death, neutrophil extracellular trap formation and spillage of matrix degrading neutrophil elastase, gelatinase and myeloperoxidase. SOD3-silenced MSCs did not exert tissue protective effects. Thus, MSCs hold substantial therapeutic promise to counteract tissue damage in conditions with unrestrained neutrophil activation.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Jana Muschhammer
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Yu Qi
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Andrea Kügler
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Juliane C de Vries
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Mona Saffarzadeh
- Department of Biochemistry, School of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Seppe Vander Beken
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | | | | | - Natasha Y Frank
- Department of Medicine, Boston VA Healthcare System, West Roxbury, Massachusetts, USA.,Division of Genetics, Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Markus H Frank
- Division of Genetics, Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Transplant Research Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Klaus T Preissner
- Department of Biochemistry, School of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | | |
Collapse
|
47
|
A physiologically based kinetic model for elucidating the in vivo distribution of administered mesenchymal stem cells. Sci Rep 2016; 6:22293. [PMID: 26924777 PMCID: PMC4770280 DOI: 10.1038/srep22293] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Although mesenchymal stem cells (MSCs) present a promising tool in cell therapy for the treatment of various diseases, the in vivo distribution of administered MSCs has still been poorly understood, which hampers the precise prediction and evaluation of their therapeutic efficacy. Here, we developed the first model to characterize the physiological kinetics of administered MSCs based on direct visualization of cell spatiotemporal disposition by intravital microscopy and assessment of cell quantity using flow cytometry. This physiologically based kinetic model was validated with multiple external datasets, indicating potential inter-route and inter-species predictive capability. Our results suggest that the targeting efficiency of MSCs is determined by the lung retention and interaction between MSCs and target organs, including cell arrest, depletion and release. By adapting specific parameters, this model can be easily applied to abnormal conditions or other types of circulating cells for designing treatment protocols and guiding future experiments.
Collapse
|
48
|
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Kao WWY. Extrinsic and Intrinsic Mechanisms by Which Mesenchymal Stem Cells Suppress the Immune System. Ocul Surf 2016; 14:121-34. [PMID: 26804815 DOI: 10.1016/j.jtos.2015.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are a group of fibroblast-like multipotent mesenchymal stromal cells that have the ability to differentiate into osteoblasts, adipocytes, and chondrocytes. Recent studies have demonstrated that MSCs possess a unique ability to exert suppressive and regulatory effects on both adaptive and innate immunity in an autologous and allogeneic manner. A vital step in stem cell transplantation is overcoming the potential graft-versus-host disease, which is a limiting factor to transplantation success. Given that MSCs attain powerful differentiation capabilities and also present immunosuppressive properties, which enable them to survive host immune rejection, MSCs are of great interest. Due to their ability to differentiate into different cell types and to suppress and modulate the immune system, MSCs are being developed for treating a plethora of diseases, including immune disorders. Moreover, in recent years, MSCs have been genetically engineered to treat and sometimes even cure some diseases, and the use of MSCs for cell therapy presents new perspectives for overcoming tissue rejection. In this review, we discuss the potential extrinsic and intrinsic mechanisms that underlie MSCs' unique ability to modulate inflammation, and both innate and adaptive immunity.
Collapse
Affiliation(s)
- Vivien J Coulson-Thomas
- Department of Ophthalmology, University of Cincinnati, Ohio, USA; John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | | | | | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Ohio, USA.
| |
Collapse
|
49
|
Human Mesenchymal Stromal Cells from Different Sources Diverge in Their Expression of Cell Surface Proteins and Display Distinct Differentiation Patterns. Stem Cells Int 2015; 2016:5646384. [PMID: 26770208 PMCID: PMC4684891 DOI: 10.1155/2016/5646384] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
When germ-free cell cultures became a laboratory routine, hopes were high for using this novel technology for treatment of diseases or replacement of cells in patients suffering from injury, inflammation, or cancer or even refreshing cells in the elderly. Today, more than 50 years after the first successful bone marrow transplantation, clinical application of hematopoietic stem cells is a routine procedure, saving the lives of many every day. However, transplanting other than hematopoietic stem and progenitor cells is still limited to a few applications, and it mainly applies to mesenchymal stromal cells (MSCs) isolated from bone marrow. But research progressed and different trials explore the clinical potential of human MSCs isolated from bone marrow but also from other tissues including adipose tissue. Recently, MSCs isolated from bone marrow (bmMSCs) were shown to be a blend of distinct cells and MSCs isolated from different tissues show besides some common features also some significant differences. This includes the expression of distinct antigens on subsets of MSCs, which was utilized recently to define and separate functionally different subsets from bulk MSCs. We therefore briefly discuss differences found in subsets of human bmMSCs and in MSCs isolated from some other sources and touch upon how this could be utilized for cell-based therapies.
Collapse
|
50
|
Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials 2015; 77:87-97. [PMID: 26584349 DOI: 10.1016/j.biomaterials.2015.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Systemic administration of mesenchymal stem cells (MSCs) affords the potential to ameliorate the symptoms of Multiple Sclerosis (MS) in both preclinical and clinical studies. However, the efficacy of MSC-based therapy for MS likely depends on the number of cells that home to inflamed tissues and on the controlled production of paracrine and immunomodulatory factors. Previously, we reported that engineered MSCs expressing P-selectin glycoprotein ligand-1 (PSGL-1) and Sialyl-Lewis(x) (SLeX) via mRNA transfection facilitated the targeted delivery of anti-inflammatory cytokine interleukin-10 (IL-10) to inflamed ear. Here, we evaluated whether targeted delivery of MSCs with triple PSGL1/SLeX/IL-10 engineering improves therapeutic outcomes in mouse experimental autoimmune encephalomyelitis (EAE), a murine model for human MS. We found PSGL-1/SLeX mRNA transfection significantly enhanced MSC homing to the inflamed spinal cord. This is consistent with results from in vitro flow chamber assays in which PSGL-1/SleX mRNA transfection significantly increased the percentage of rolling and adherent cells on activated brain microvascular endothelial cells, which mimic the inflamed endothelium of blood brain/spinal cord barrier in EAE. In addition, IL-10-transfected MSCs show significant inhibitory activity on the proliferation of CD4(+) T lymphocytes from EAE mice. In vivo treatment with MSCs engineered with PSGL-1/SLeX/IL-10 in EAE mice exhibited a superior therapeutic function over native (unmodified) MSCs, evidenced by significantly improved myelination and decreased lymphocytes infiltration into the white matter of the spinal cord. Our strategy of targeted delivery of performance-enhanced MSCs could potentially be utilized to increase the effectiveness of MSC-based therapy for MS and other central nervous system (CNS) disorders.
Collapse
|