1
|
Cai B, Xu Y, Luo R, Lu K, Wang Y, Zheng L, Zhang Y, Yin L, Tu L, Luo W, Zheng L, Zhang F, Lv X, Tang Q, Liang G, Chen L. Discovery of a doublecortin-like kinase 1 inhibitor to prevent inflammatory responses in acute lung injury. Bioorg Chem 2024; 145:107215. [PMID: 38394920 DOI: 10.1016/j.bioorg.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a microtubule-associated protein kinase involved in neurogenesis and human cancer. Recent studies have revealed a novel functional role for DCLK1 in inflammatory signaling, thus positioning it as a novel target kinase for respiratory inflammatory disease treatment. In this study, we designed and synthesized a series of NVP-TAE684-based derivatives as novel anti-inflammatory agents targeting DCLK1. Bio-layer interferometry binding screening and kinase assays of the NVP-TAE684 derivatives led to the discovery of an effective DCLK1 inhibitor (a24), with an IC50 of 179.7 nM. Compound a24 effectively inhibited lipopolysaccharide (LPS)-induced inflammation in macrophages with higher potency than the lead compound. Mechanistically, compound a24 inhibited LPS-induced inflammation by inhibiting DCLK1-mediated IKKβ phosphorylation. Furthermore, compound a24 showed in vivo anti-inflammatory activity in an LPS-challenged acute lung injury model. These findings suggest that compound a24 may serve as a novel candidate for the development of DCLK1 inhibitors and a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Binhao Cai
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ying Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Ruixiang Luo
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Kongqin Lu
- Schol of Basic Medicine, Inner Mongolia Medical University, Hohhot 010059, China
| | - Yuhan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Lei Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Yawen Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Lina Yin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Linglan Tu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Fengzhi Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Xinting Lv
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Lingfeng Chen
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China.
| |
Collapse
|
2
|
Iqbal S, Rezaul Karim M, Yang DC, Mathiyalagan R, Chan Kang S. Tuft cells - the immunological interface and role in disease regulation. Int Immunopharmacol 2023; 118:110018. [PMID: 36989894 DOI: 10.1016/j.intimp.2023.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Tuft cells, also known as taste chemosensory cells, accumulate during parasite colonization or infection and have powerful immunomodulatory effects on substances that could be detrimental, as well as possible anti-inflammatory or antibacterial effects. Tuft cells are the primary source of interleukin (IL)-25. They trigger extra Innate lymphoid type-2 cells (ILC2) in the intestinal lamina propria to create cytokines (type 2); for instance, IL-13, which leads to an increase in IL-25. As tuft cells can produce biological effector molecules, such as IL-25 and eicosanoids involved in allergy (for example, cysteinyl leukotrienes and prostaglandin D2) and the neurotransmitter acetylcholine. Following parasite infection, tuft cells require transient receptor potential cation channel subfamily M member 5 (TRPM5)-dependent chemosensation to produce responses. Secretory tuft cells provide a physical mucus barrier against the external environment and therefore have vital defensive roles against diseases by supporting tissue maintenance and repair. In addition to recent research on tuft cells, more studies are required to understand the distribution, cell turnover, molecular characteristics, responses in various species, involvement in immunological function across tissues, and most importantly, the mechanism involved in the control of various diseases.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; Department of Microbiology, Varendra Institute of Biosciences, Affiliated by Rajshahi University, Natore, Rajshahi, Bangladesh.
| | - Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh.
| | - Deok-Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Se Chan Kang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea.
| |
Collapse
|
3
|
Du Y, Gao H, He C, Xin S, Wang B, Zhang S, Gong F, Yu X, Pan L, Sun F, Wang W, Xu J. An update on the biological characteristics and functions of tuft cells in the gut. Front Cell Dev Biol 2023; 10:1102978. [PMID: 36704202 PMCID: PMC9872863 DOI: 10.3389/fcell.2022.1102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
The intestine is a powerful digestive system and one of the most sophisticated immunological organs. Evidence shows that tuft cells (TCs), a kind of epithelial cell with distinct morphological characteristics, play a significant role in various physiological processes. TCs can be broadly categorized into different subtypes depending on different molecular criteria. In this review, we discuss its biological properties and role in maintaining homeostasis in the gastrointestinal tract. We also emphasize its relevance to the immune system and highlight its powerful influence on intestinal diseases, including inflammations and tumors. In addition, we provide fresh insights into future clinical diagnostic and therapeutic strategies related to TCs.
Collapse
Affiliation(s)
- Yixuan Du
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fanglin Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,*Correspondence: Jingdong Xu,
| |
Collapse
|
4
|
Detection of De Novo Dividing Stem Cells In Situ through Double Nucleotide Analogue Labeling. Cells 2022; 11:cells11244001. [PMID: 36552766 PMCID: PMC9777310 DOI: 10.3390/cells11244001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Tissue-specific somatic stem cells are characterized by their ability to reside in a state of prolonged reversible cell cycle arrest, referred to as quiescence. Maintenance of a balance between cell quiescence and division is critical for tissue homeostasis at the cellular level and is dynamically regulated by numerous extrinsic and intrinsic factors. Analysis of the activation of quiescent stem cells has been challenging because of a lack of methods for direct detection of de novo dividing cells. Here, we present and experimentally verify a novel method based on double labeling with thymidine analogues to detect de novo dividing stem cells in situ. In a proof of concept for the method, we show that memantine, a drug widely used for Alzheimer's disease therapy and a known strong inducer of adult hippocampal neurogenesis, increases the recruitment into the division cycle of quiescent radial glia-like stem cells-primary precursors of the adult-born neurons in the hippocampus. Our method could be applied to assess the effects of aging, pathology, or drug treatments on the quiescent stem cells in stem cell compartments in developing and adult tissues.
Collapse
|
5
|
Huang H, Fang Y, Jiang M, Zhang Y, Biermann J, Melms JC, Danielsson JA, Yang Y, Qiang L, Liu J, Zhou Y, Wang M, Hu Z, Wang TC, Saqi A, Sun J, Matsumoto I, Cardoso WV, Emala CW, Zhu J, Izar B, Mou H, Que J. Contribution of Trp63CreERT2-labeled cells to alveolar regeneration is independent of tuft cells. eLife 2022; 11:e78217. [PMID: 36129169 PMCID: PMC9553211 DOI: 10.7554/elife.78217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/18/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infection often causes severe damage to the lungs, leading to the appearance of ectopic basal cells (EBCs) and tuft cells in the lung parenchyma. Thus far, the roles of these ectopic epithelial cells in alveolar regeneration remain controversial. Here, we confirm that the ectopic tuft cells are originated from EBCs in mouse models and COVID-19 lungs. The differentiation of tuft cells from EBCs is promoted by Wnt inhibition while suppressed by Notch inhibition. Although progenitor functions have been suggested in other organs, pulmonary tuft cells don't proliferate or give rise to other cell lineages. Consistent with previous reports, Trp63CreERT2 and KRT5-CreERT2-labeled ectopic EBCs do not exhibit alveolar regeneration potential. Intriguingly, when tamoxifen was administrated post-viral infection, Trp63CreERT2 but not KRT5-CreERT2 labels islands of alveolar epithelial cells that are negative for EBC biomarkers. Furthermore, germline deletion of Trpm5 significantly increases the contribution of Trp63CreERT2-labeled cells to the alveolar epithelium. Although Trpm5 is known to regulate tuft cell development, complete ablation of tuft cell production fails to improve alveolar regeneration in Pou2f3-/- mice, implying that Trpm5 promotes alveolar epithelial regeneration through a mechanism independent of tuft cells.
Collapse
Affiliation(s)
- Huachao Huang
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yinshan Fang
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Ming Jiang
- Institute of Genetics, the Children's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jana Biermann
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Columbia Center for Translational Immunology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Johannes C Melms
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Columbia Center for Translational Immunology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Jennifer A Danielsson
- Department of Anesthesiology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Ying Yang
- Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Li Qiang
- Department of Pathology & Cell Biology, Columbia University Medical CenterNew YorkUnited States
| | - Jia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of SciencesWuhanChina
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and TechnologyWuhanChina
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of SciencesWuhanChina
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of SciencesWuhanChina
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Anjali Saqi
- Department of Pathology & Cell Biology, Columbia University Medical CenterNew YorkUnited States
| | - Jie Sun
- Carter Immunology Center, the University of VirginiaCharlottesvilleUnited States
| | | | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Charles W Emala
- Department of Anesthesiology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Jian Zhu
- Department of Pathology, Ohio State University College of MedicineColumbusUnited States
| | - Benjamin Izar
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Columbia Center for Translational Immunology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| |
Collapse
|
6
|
Kalantari E, Razmi M, Tajik F, Asadi-Lari M, Ghods R, Madjd Z. Oncogenic functions and clinical significances of DCLK1 isoforms in colorectal cancer: a systematic review and meta-analysis. Cancer Cell Int 2022; 22:217. [PMID: 35717205 PMCID: PMC9206744 DOI: 10.1186/s12935-022-02632-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background The oncogenic role of doublecortin-like kinase 1 (DCLK1) as a putative cancer stem cell (CSC) marker has been clarified in colorectal cancer (CRC). Isoform-specific functions of DCLK1 have shed new light on different functions of DCLK1 short (DCLK1-S) and DCLK1 long (DCLK1-L) isoforms in tumor initiation, growth, and metastasis. Therefore, the current systematic review and meta-analysis aimed to review the available in vitro, in vivo, and clinical evidence on the oncogenic roles and clinical significance of DCLK1 isoforms in colorectal cancer. Methods The literature databases of PubMed, Scopus, ISI Web of Science, and Embase were searched to identify eligible articles. The description characteristics of in vitro and pre-clinical studies were extracted from identified reports. In addition, hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were recorded to determine the relationships between DCLK1-L and DCLK1-S expression and prognostic outcomes in patients with CRC. Results Both in vitro and in vivo evidence have emphasized the potential oncogenic functions of DCLK1 in tumor initiation, self-renewal ability, tumor invasion, epithelial-mesenchymal transition (EMT), and metastasis. However, the anti-DCLK1 antibodies generally utilized in these studies could detect sequence homology epitopes of both isoforms. Recent limited isoform-specific evidence has strongly supported the significant positive expression and rather oncogenic efficacy of DCLK1-S in tumorigenesis, EMT, and invasion compared with DCLK1-L in human CRC cell lines. Our meta-analysis findings of limited clinical studies indicated that only overexpression of DCLK1-S is associated with worse overall survival (OS) (HR = 7.930, 95% CI 2.252–27.924, p = 0.001). Increased expression of both DCLK1-S (HR = 1.610, 95% CI 1.020–2.541, p = 0.041) and DCLK1-L (HR = 5.890, 95% CI 1.219–28.453, p = 0.027) isoforms was closely associated with worse DSS/CSS in CRC patients. Furthermore, the high expression of DCLK1-S was found to be associated with poor DFS/RFS/PFS (HR = 1.913, 95% CI 1.230–2.973, p = 0.004). Conclusions The current findings strongly supported that the DCLK1-S isoform may play a crucial role in the invasion, aggressive tumor behavior, and worsened survival outcomes of CRC patients. However, further critical investigations related to the potential preclinical and clinical utilities of DCLK1-S as a specific CRC-CSC marker are warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02632-9.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
7
|
Abstract
Although tuft cells were discovered over 60 years ago, their functions have long been enigmatic, especially in human health. Nonetheless, tuft cells have recently emerged as key orchestrators of the host response to diverse microbial infections in the gut and airway. While tuft cells are epithelial in origin, they exhibit functions akin to immune cells and mediate important interkingdom interactions between the host and helminths, protists, viruses, and bacteria. With broad intra- and intertissue heterogeneity, tuft cells sense and respond to microbes with exquisite specificity. Tuft cells can recognize helminth and protist infection, driving a type 2 immune response to promote parasite expulsion. Tuft cells also serve as the primary physiologic target of persistent murine norovirus (MNV) and promote immune evasion. Recently, tuft cells were also shown to be infected by rotavirus. Other viral infections, such as influenza A virus, can induce tuft cell–dependent tissue repair. In the context of coinfection, tuft cells promote neurotropic flavivirus replication by dampening antiviral adaptive immune responses. Commensal and pathogenic bacteria can regulate tuft cell abundance and function and, in turn, tuft cells are implicated in modulating bacterial infiltration and mucosal barrier integrity. However, the contribution of tuft cells to microbial sensing in humans and their resulting effector responses are poorly characterized. Herein, we aim to provide a comprehensive overview of microbial activation of tuft cells with an emphasis on tuft cell heterogeneity and differences between mouse and human tuft cell biology as it pertains to human health and disease.
Collapse
Affiliation(s)
- Madison S. Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: ,
| |
Collapse
|
8
|
Structural basis for small molecule targeting of Doublecortin Like Kinase 1 with DCLK1-IN-1. Commun Biol 2021; 4:1105. [PMID: 34545159 PMCID: PMC8452690 DOI: 10.1038/s42003-021-02631-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/01/2021] [Indexed: 02/03/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is an understudied bi-functional kinase with a proven role in tumour growth and development. However, the presence of tissue-specific spliced DCLK1 isoforms with distinct biological functions have challenged the development of effective strategies to understand the role of DCLK1 in oncogenesis. Recently, DCLK1-IN-1 was reported as a highly selective DCLK1 inhibitor, a powerful tool to dissect DCLK1 biological functions. Here, we report the crystal structures of DCLK1 kinase domain in complex with DCLK1-IN-1 and its precursors. Combined, our data rationalises the structure-activity relationship that informed the development of DCLK1-IN-1 and provides the basis for the high selectivity of DCLK1-IN-1, with DCLK1-IN-1 inducing a drastic conformational change of the ATP binding site. We demonstrate that DCLK1-IN-1 binds DCLK1 long isoforms but does not prevent DCLK1's Microtubule-Associated Protein (MAP) function. Together, our work provides an invaluable structural platform to further the design of isoform-specific DCLK1 modulators for therapeutic intervention.
Collapse
|
9
|
Subramaniam D, Ponnurangam S, Ramalingam S, Kwatra D, Dandawate P, Weir SJ, Umar S, Jensen RA, Anant S. Honokiol Affects Stem Cell Viability by Suppressing Oncogenic YAP1 Function to Inhibit Colon Tumorigenesis. Cells 2021; 10:1607. [PMID: 34206989 PMCID: PMC8303768 DOI: 10.3390/cells10071607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023] Open
Abstract
Honokiol (HNK) is a biphenolic compound that has been used in traditional medicine for treating various ailments, including cancers. In this study, we determined the effect of HNK on colon cancer cells in culture and in a colitis-associated cancer model. HNK treatment inhibited proliferation and colony formation while inducing apoptosis. In addition, HNK suppressed colonosphere formation. Molecular docking suggests that HNK interacts with reserve stem cell marker protein DCLK1, with a binding energy of -7.0 Kcal/mol. In vitro kinase assays demonstrated that HNK suppressed the DCLK1 kinase activity. HNK also suppressed the expression of additional cancer stem cell marker proteins LGR5 and CD44. The Hippo signaling pathway is active in intestinal stem cells. In the canonical pathway, YAP1 is phosphorylated at Ser127 by upstream Mst1/2 and Lats1/2. This results in the sequestration of YAP1 in the cytoplasm, thereby not allowing YAP1 to translocate to the nucleus and interact with TEAD1-4 transcription factors to induce gene expression. However, HNK suppressed Ser127 phosphorylation in YAP1, but the protein remains sequestered in the cytoplasm. We further determined that this occurs by YAP1 interacting with PUMA. To determine if this also occurs in vivo, we performed studies in an AOM/DSS induced colitis-associated cancer model. HNK administered by oral gavage at a dose of 5mg/kg bw for 24 weeks demonstrated a significant reduction in the expression of YAP1 and TEAD1 and in the stem marker proteins. Together, these data suggest that HNK prevents colon tumorigenesis in part by inducing PUMA-YAP1 interaction and cytoplasmic sequestration, thereby suppressing the oncogenic YAP1 activity.
Collapse
Affiliation(s)
| | - Sivapriya Ponnurangam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Satish Ramalingam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Deep Kwatra
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shahid Umar
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
DCLK1 isoforms and aberrant Notch signaling in the regulation of human and murine colitis. Cell Death Discov 2021; 7:169. [PMID: 34226497 PMCID: PMC8257684 DOI: 10.1038/s41420-021-00526-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 01/19/2023] Open
Abstract
Alternative promoter usage generates long and short isoforms (DCLK1-L and DCLK1-S) of doublecortin-like kinase-1 (DCLK1). Tight control of Notch signaling is important to prevent and restitute inflammation in the intestine. Our aim was to investigate whether Notch1–DCLK1 axis regulates the mucosal immune responses to infection and whether this is phenocopied in human models of colitis. In the FFPE (formalin-fixed paraffin-embedded) sections prepared from the colons of ulcerative colitis (UC) and immune-mediated colitis (IRAEC) patients, expression of DCLK1 isoforms correlated positively with Notch1 and negatively with a transcriptional repressor, FoxD3 (Forkhead Box D3). DCLK1 protein staining in these sections was predominantly sub-epithelial (stromal) wherein DCLK1 co-localized with NICD, CD68, CD11c, and neutrophil elastase (NE). NE also co-stained with Citrullinated-H3 indicating the presence of neutrophil extracellular traps. In human neutrophils, elevated levels of DCLK1-S, CXCL-10, Ly6G, MPO, NE, and Notch1/2 in LPS-treated cells were inhibited when LPS was added in conjunction with Notch blocker dibenzazepine (DBZ; LPS + DBZ group). In CR-infected Rag1−/− mice, higher levels of DCLK1 in the colonic crypts were inhibited when mice received DBZ for 10 days coincident with significant dysbiosis, barrier disruption, and colitis. Concurrently, DCLK1 immunoreactivity shifted toward the stroma in CR + DBZ mice with predominance of DCLK1-S that coincided with higher Notch1 levels. Upon antibiotic treatment, partial restoration of crypt DCLK1, reduction in MPO activity, and increased survival followed. When intestinal epithelial cell-specific Dclk1-knockout (Dclk1ΔIEC) or Dclk1ΔIEC;Rag1−/− double knockout (DKO) mice were infected with CR and given a single dose of DBZ, they developed barrier defect and severe colitis with higher levels of stromal DCLK1-S, Ly6G, NE, and Notch1. We therefore propose that, by regulating the mucosal immune responses, the Notch–DCLK1 axis may be integral to the development of murine or human colitis.
Collapse
|
11
|
Tuft and Cancer Stem Cell Marker DCLK1: A New Target to Enhance Anti-Tumor Immunity in the Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12123801. [PMID: 33348546 PMCID: PMC7766931 DOI: 10.3390/cancers12123801] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Doublecortin-like kinase 1 (DCLK1) is a tumor stem cell marker in colon, pancreatic, and potentially other cancers that has received wide attention recently. Aside from its role as a tuft cell marker in normal tissue and as a tumor stem cell marker in cancer, previous studies have demonstrated that silencing DCLK1 functionally reduces stemness, epithelial mesenchymal transition (EMT), and tumorigenesis in cancers. More recently, DCLK1′s role in regulating the inflammatory, pre-cancer, and tumor microenvironment including its ability to modulate immune cell mechanisms has started to come into focus. Importantly, clinically viable therapeutic means of targeting DCLK1 have finally become available in the form of kinase inhibitors, monoclonal antibodies, and chimeric antigen receptor T cells (CAR-T). Herein, we comprehensively review the mechanistic role of DCLK1 in the tumor microenvironment, assess the potential for targeting DCLK1 in colon, pancreatic and renal cancer. Abstract Microtubule-associated doublecortin-like kinase 1 (DCLK1) is an accepted marker of tuft cells (TCs) and several kinds of cancer stem cells (CSCs), and emerging evidence suggests that DCLK1-positive TCs participate in the initiation and formation of inflammation-associated cancer. DCLK1-expressing CSCs regulate multiple biological processes in cancer, promote resistance to therapy, and are associated with metastasis. In solid tumor cancers, tumor epithelia, immune cells, cancer-associated fibroblasts, endothelial cells and blood vessels, extracellular matrix, and hypoxia all support a CSC phenotype characterized by drug resistance, recurrence, and metastasis. Recently, studies have shown that DCLK1-positive CSCs are associated with epithelial-mesenchymal transition, angiogenesis, and immune checkpoint. Emerging data concerning targeting DCLK1 with small molecular inhibitors, monoclonal antibodies, and chimeric antigen receptor T-cells shows promising effects on inhibiting tumor growth and regulating the tumor immune microenvironment. Overall, DCLK1 is reaching maturity as an anti-cancer target and therapies directed against it may have potential against CSCs directly, in remodeling the tumor microenvironment, and as immunotherapies.
Collapse
|
12
|
Aktar R, Parkar N, Stentz R, Baumard L, Parker A, Goldson A, Brion A, Carding S, Blackshaw A, Peiris M. Human resident gut microbe Bacteroides thetaiotaomicron regulates colonic neuronal innervation and neurogenic function. Gut Microbes 2020; 11:1745-1757. [PMID: 32515657 PMCID: PMC7524364 DOI: 10.1080/19490976.2020.1766936] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND AIMS As the importance of gut-brain interactions increases, understanding how specific gut microbes interact with the enteric nervous system (ENS), which is the first point of neuronal exposure becomes critical. Our aim was to understand how the dominant human gut bacterium Bacteroides thetaiotaomicron (Bt) regulates anatomical and functional characteristics of the ENS. METHODS Neuronal cell populations, as well as enteroendocrine cells, were assessed in proximal colonic sections using fluorescent immunohistochemistry in specific pathogen-free (SPF), germ-free (GF) and Bt conventionalized-germ-free mice (Bt-CONV). RNA expression of tight junction proteins and toll-like receptors (TLR) were measured using qPCR. Colonic motility was analyzed using in vitro colonic manometry. RESULTS Decreased neuronal and vagal afferent innervation observed in GF mice was normalized by Bt-CONV with increased neuronal staining in mucosa and myenteric plexus. Bt-CONV also restored expression of nitric oxide synthase expressing inhibitory neurons and of choline acetyltransferase and substance P expressing excitatory motor neurons comparable to those of SPF mice. Neurite outgrowth and glial cells were upregulated by Bt-CONV. RNA expression of tight junction protein claudin 3 was downregulated while TLR2 was upregulated by Bt-CONV. The enteroendocrine cell subtypes L-cells and enterochromaffin cells were reduced in GF mice, with Bt-CONV restoring L-cell numbers. Motility as measured by colonic migrating motor complexes (CMMCs) increased in GF and Bt-CONV. CONCLUSION Bt, common gut bacteria, is critical in regulating enteric neuronal and enteroendocrine cell populations, and neurogenic colonic activity. This highlights the potential use of this resident gut bacteria for maintaining healthy gut function.
Collapse
Affiliation(s)
- Rubina Aktar
- Blizard Institute, Queen Mary University of London, London, UK
| | - Nabil Parkar
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Lucas Baumard
- Blizard Institute, Queen Mary University of London, London, UK
| | | | | | | | - Simon Carding
- Quadram Institute Bioscience, Norwich, UK,Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Madusha Peiris
- Blizard Institute, Queen Mary University of London, London, UK,CONTACT Madusha Peiris Blizard Institute, Queen Mary University of London,LondonE1 2AT, UK
| |
Collapse
|
13
|
Liu Y, Chen YG. Intestinal epithelial plasticity and regeneration via cell dedifferentiation. CELL REGENERATION 2020; 9:14. [PMID: 32869114 PMCID: PMC7459029 DOI: 10.1186/s13619-020-00053-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
The intestinal epithelium possesses a great capacity of self-renewal under normal homeostatic conditions and of regeneration upon damages. The renewal and regenerative processes are driven by intestinal stem cells (ISCs), which reside at the base of crypts and are marked by Lgr5. As Lgr5+ ISCs undergo fast cycling and are vulnerable to damages, there must be other types of cells that can replenish the lost Lgr5+ ISCs and then regenerate the damage epithelium. In addition to Lgr5+ ISCs, quiescent ISCs at the + 4 position in the crypt have been proposed to convert to Lgr5+ ISCs during regeneration. However, this “reserve stem cell” model still remains controversial. Different from the traditional view of a hierarchical organization of the intestinal epithelium, recent works support the dynamic “dedifferentiation” model, in which various cell types within the epithelium can de-differentiate to revert to the stem cell state and then regenerate the epithelium upon tissue injury. Here, we provide an overview of the cell identity and features of two distinct models and discuss the possible mechanisms underlying the intestinal epithelial plasticity.
Collapse
Affiliation(s)
- Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Intestinal stem cells heterogeneity and clonal dominance during aging: two faces of the same coin? Mech Ageing Dev 2020; 189:111247. [PMID: 32505859 DOI: 10.1016/j.mad.2020.111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/20/2022]
Abstract
Intestinal epithelium undergoes dysfunctions and diseases over time with an exponential increase in the elderly population. Recent studies reported that the intestinal stem cells (ISCs) show a functional decline during aging and a lack of an appropriate cell identity control. Increase of cell-to-cell heterogeneity is a hallmark of aging tissues and organs, however there is little experimental evidence with regard to the cell heterogeneity of the ISCs. On the other hand, the ISCs continuously experience a niche clonality process that diminishes the initial cell heterogeneity over time. In this review, we discuss the latest findings on these topics focusing on the potential mechanisms driving intestinal stem cell heterogeneity and clonality during aging.
Collapse
|
15
|
Cordani M, Strippoli R, Somoza Á. Nanomaterials as Inhibitors of Epithelial Mesenchymal Transition in Cancer Treatment. Cancers (Basel) 2019; 12:E25. [PMID: 31861725 PMCID: PMC7017008 DOI: 10.3390/cancers12010025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract: Epithelial-mesenchymal transition (EMT) has emerged as a key regulator of cell invasion and metastasis in cancers. Besides the acquisition of migratory/invasive abilities, the EMT process is tightly connected with the generation of cancer stem cells (CSCs), thus contributing to chemoresistance. However, although EMT represents a relevant therapeutic target for cancer treatment, its application in the clinic is still limited due to various reasons, including tumor-stage heterogeneity, molecular-cellular target specificity, and appropriate drug delivery. Concerning this last point, different nanomaterials may be used to counteract EMT induction, providing novel therapeutic tools against many different cancers. In this review, (1) we discuss the application of various nanomaterials for EMT-based therapies in cancer, (2) we summarize the therapeutic relevance of some of the proposed EMT targets, and (3) we review the potential benefits and weaknesses of each approach.
Collapse
Affiliation(s)
- Marco Cordani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., 00149 Rome, Italy
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
- CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad de Nanobiotecnología”, 28049 Madrid, Spain
| |
Collapse
|
16
|
Overexpression of DCLK1-AL Increases Tumor Cell Invasion, Drug Resistance, and KRAS Activation and Can Be Targeted to Inhibit Tumorigenesis in Pancreatic Cancer. JOURNAL OF ONCOLOGY 2019; 2019:6402925. [PMID: 31467540 PMCID: PMC6699308 DOI: 10.1155/2019/6402925] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
Oncogenic KRAS mutation plays a key role in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis with nearly 95% of PDAC harboring mutation-activated KRAS, which has been considered an undruggable target. Doublecortin-like kinase 1 (DCLK1) is often overexpressed in pancreatic cancer, and recent studies indicate that DCLK1+ PDAC cells can initiate pancreatic tumorigenesis. In this study, we investigate whether overexpressing DCLK1 activates RAS and promotes tumorigenesis, metastasis, and drug resistance. Human pancreatic cancer cells (AsPC-1 and MiaPaCa-2) were infected with lentivirus and selected to create stable DCLK1 isoform 2 (alpha-long, AL) overexpressing lines. The invasive potential of these cells relative to vector control was compared using Matrigel coated transwell assay. KRAS activation and interaction were determined by a pull-down assay and coimmunoprecipitation. Gemcitabine, mTOR (Everolimus), PI3K (LY-294002), and BCL-2 (ABT-199) inhibitors were used to evaluate drug resistance downstream of KRAS activation. Immunostaining of a PDAC tissue microarray was performed to detect DCLK1 alpha- and beta-long expression. Analysis of gene expression in human PDAC was performed using the TCGA PAAD dataset. The effects of targeting DCLK1 were studied using xenograft and Pdx1CreKrasG12DTrp53R172H/+ (KPC) mouse models. Overexpression of DCLK1-AL drives a more than 2-fold increase in invasion and drug resistance and increased the activation of KRAS. Evidence from TCGA PAAD demonstrated that human PDACs expressing high levels of DCLK1 correlate with activated PI3K/AKT/MTOR-pathway signaling suggesting greater KRAS activity. High DCLK1 expression in normal adjacent tissue of PDAC correlated with poor survival and anti-DCLK1 mAb inhibited pancreatic tumor growth in vivo in mouse models.
Collapse
|
17
|
Amino Acids Influencing Intestinal Development and Health of the Piglets. Animals (Basel) 2019; 9:ani9060302. [PMID: 31159180 PMCID: PMC6617173 DOI: 10.3390/ani9060302] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The health of piglets is an important issue in pig production. Nutritional support for intestinal development is a significant component of piglet care, and amino acids are essential for intestinal growth and development. For suckling piglets, the sows’ milk and the maternal environment shape the structure and support the function of the intestinal tract. The composition of milk affects intestinal morphology and the digestive, absorption and barrier function. After weaning, the optimal nutritional strategies of their diet are necessary to guarantee the piglets’ intestinal development and growth performance. Amino acids are the most important ingredient in piglet diets. The aim of this review is to collect and analyze the relationship between amino acid nutrition and intestinal development of piglets, and elucidate the impacts on piglet health. Abstract The amino acids and other components of diet provide nourishment for piglet intestinal development and maturation. However, early-weaned piglets struggle with tremendous stress, impairing normal intestinal health and leading to intestinal dysfunction and even death. The high prevalence worldwide of post-weaning diarrhoea syndrome (PWDS) in piglets has led to much interest in understanding the important role of nutrients in the establishment and maintenance of a functional intestinal tract. In particular, the impacts of amino acids on these functions must be considered. Amino acid levels greatly influence intestinal development in weaning piglets. The lack of amino acids can cause marked structural and functional changes in the intestine. Therefore, a comprehensive understanding of the functions of amino acids is necessary to optimize amino acid requirements of the developing intestinal tract to maximize piglet health and growth performance. This review summarizes the role of specific amino acids (arginine, glutamate, threonine, sulphur-containing amino acids (SCAAs), and branched-chain amino acids (BCAAs)) that have been proven to be beneficial for the intestinal health of weaned piglets.
Collapse
|
18
|
Li L, Jones K, Mei H. Doublecotin-Like Kinase 1 Increases Chemoresistance of Colorectal Cancer Cells through the Anti-Apoptosis Pathway. JOURNAL OF STEM CELL RESEARCH & THERAPY 2019; 9. [PMID: 31372308 DOI: 10.4172/2157-7633.1000447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Colorectal Cancer (CRC) is the third most common cancer diagnosed and the second leading cause of cancer-related deaths in the United States. Cancer Stem Cells (CSCs) are believed to be the primary reason for the recurrence of CRC. Specific stem cell marker, doublecortin-like kinase 1 (DCLK1) plays critical roles in the tumorigenesis and progression of CRC. Up-regulation of DCLK1 is correlated with poor prognosis. Whether DCLK1 is correlated with enhanced chemoresistance of CRC cells is unclear. We aim to reveal the association of DCLK1 with chemoresistance of CRC cells and the underlying molecular mechanisms. Methods Stable DCLK1 over-expression cells (DCLK1+) were established using the HCT116 cells (WT). DCLK1+ and WT cells were treated with 5-Fluorouracil (5-Fu) at different doses for 24 or 48 hours. MTT assay was used to evaluate cell viability and IC50 of 5-Fu was determined. Quantitative real-time PCR was applied to determine the gene expression of caspase-3 (casp-3), casp-4, and casp-10. Cleaved casp-3 expression was investigated using Western blot and immunofluorescence. Results Our results demonstrated that IC50 of 5-Fu for the DCLK1+ cells was significantly higher than that of the WT cells for both 24 and 48-hour treatment (p=0.002 and 0.048 respectively), indicating increased chemoresistance of the DCLK1+ cells. Gene expression of casp-3, casp-4, and casp-10 were significantly inhibited in the DCLK1+ cells after 5-Fu treatment compared to the WT cells (p=7.616e-08, 1.575e-05 and 5.307e-08, respectively). Cleaved casp-3 amount and casp-3 positive cells were significantly decreased in the DCLK1+ cells after 5-Fu treatment compared to the WT cells (p=0.015). Conclusions In conclusion, our results demonstrated that DCLK1 overexpression enhanced the chemoresistance of CRC cells to 5-Fu treatment by suppressing gene expression of key caspases in the apoptosis pathway and activation of the apoptosis pathway. DCLK1 can be an intriguing therapeutic target for the effective treatment of CRC patients.
Collapse
Affiliation(s)
- Lianna Li
- Biology Department, Tougaloo College, Tougaloo, USA
| | - Kierra Jones
- Biology Department, Tougaloo College, Tougaloo, USA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, USA
| |
Collapse
|
19
|
Lan SY, Tan MA, Yang SH, Cai JZ, Chen B, Li PW, Fan DM, Liu FB, Yu T, Chen QK. Musashi 1-positive cells derived from mouse embryonic stem cells treated with LY294002 are prone to differentiate into intestinal epithelial-like tissues. Int J Mol Med 2019; 43:2471-2480. [PMID: 30942388 DOI: 10.3892/ijmm.2019.4145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/13/2019] [Indexed: 11/06/2022] Open
Abstract
The majority of Musashi 1 (Msi1)‑positive cells derived from mouse embryonic stem cells (mESCs) are prone to differentiate into neural epithelial‑like cells, and only a small proportion of Msi1‑positive cells differentiate into intestinal epithelial‑like cells. Whether inhibiting the phosphatidylinositol 3‑kinase (PI3K) signaling of mESCs can promote the differentiation of Msi1‑positive cells into intestinal epithelial‑like cells remains to be fully elucidated. In the present study, to inhibit PI3K signaling, mESCs were treated with LY294002. A pMsi1‑green fluorescence protein reporter plasmid was used to sort the Msi1‑positive cells from mESCs treated and untreated with LY294002 (5 µmol/l). The Msi1‑positive cells were hypodermically engrafted into the backs of non‑obese diabetic/severe combined immunodeficient mice. The presence of neural and intestinal epithelial‑like cells in the grafts was detected by reverse transcription‑quantitative polymerase chain reaction analysis and immunohistochemistry. Compared with the Msi1‑positive cells derived from mESCs without LY294002 treatment, Msi1‑positive cells derived from mESCs treated with LY294002 expressed higher levels of leucine‑rich repeat‑containing G‑protein coupled receptor, a marker of intestinal epithelial stem cells, and lower levels of Nestin, a marker of neural epithelial stem cells. The grafts from Msi1‑positive cells treated with LY294002 contained more intestinal epithelial‑like tissues and fewer neural epithelial‑like tissues, compared with those from untreated Msi1‑positive cells. LY294002 had the ability to promote the differentiation of mESCs into intestinal epithelial‑like tissues. The Msi1‑positive cells selected from the cell population derived from mESCs treated with LY294002 exhibited more characteristics of intestinal epithelial stem cells than those from the untreated group.
Collapse
Affiliation(s)
- Shao-Yang Lan
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Mei-Ao Tan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shu-Hui Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jia-Zhong Cai
- Pi‑Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Bin Chen
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Pei-Wu Li
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Dong-Mei Fan
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Feng-Bin Liu
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Tao Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Qi-Kui Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
20
|
Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 2018; 155:1348-1361. [PMID: 30118745 PMCID: PMC7493459 DOI: 10.1053/j.gastro.2018.08.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Renewal of the intestinal epithelium occurs approximately every week and requires a careful balance between cell proliferation and differentiation to maintain proper lineage ratios and support absorptive, secretory, and barrier functions. We review models used to study the mechanisms by which intestinal stem cells (ISCs) fuel the rapid turnover of the epithelium during homeostasis and might support epithelial regeneration after injury. In anatomically defined zones of the crypt stem cell niche, phenotypically distinct active and reserve ISC populations are believed to support homeostatic epithelial renewal and injury-induced regeneration, respectively. However, other cell types previously thought to be committed to differentiated states might also have ISC activity and participate in regeneration. Efforts are underway to reconcile the proposed relatively strict hierarchical relationships between reserve and active ISC pools and their differentiated progeny; findings from models provide evidence for phenotypic plasticity that is common among many if not all crypt-resident intestinal epithelial cells. We discuss the challenges to consensus on ISC nomenclature, technical considerations, and limitations inherent to methodologies used to define reserve ISCs, and the need for standardized metrics to quantify and compare the relative contributions of different epithelial cell types to homeostatic turnover and post-injury regeneration. Increasing our understanding of the high-resolution genetic and epigenetic mechanisms that regulate reserve ISC function and cell plasticity will help refine these models and could affect approaches to promote tissue regeneration after intestinal injury.
Collapse
Affiliation(s)
- Eric D. Bankaitis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew Ha
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305
| | - Calvin J. Kuo
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| | - Scott T. Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Joint Departments of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| |
Collapse
|
21
|
Sei Y, Feng J, Samsel L, White A, Zhao X, Yun S, Citrin D, McCoy JP, Sundaresan S, Hayes MM, Merchant JL, Leiter A, Wank SA. Mature enteroendocrine cells contribute to basal and pathological stem cell dynamics in the small intestine. Am J Physiol Gastrointest Liver Physiol 2018; 315:G495-G510. [PMID: 29848020 PMCID: PMC6230697 DOI: 10.1152/ajpgi.00036.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lgr5-expressing intestinal stem cells (ISCs) maintain continuous and rapid generation of the intestinal epithelium. Here, we present evidence that dedifferentiation of committed enteroendocrine cells (EECs) contributes to maintenance of the epithelium under both basal conditions and in response to injury. Lineage-tracing studies identified a subset of EECs that reside at +4 position for more than 2 wk, most of which were BrdU-label-retaining cells. Under basal conditions, cells derived from these EECs grow from the bottom of the crypt to generate intestinal epithelium according to neutral drift kinetics that is consistent with dedifferentiation of mature EECs to ISCs. The lineage tracing of EECs demonstrated reserve stem cell properties in response to radiation-induced injury with the generation of reparative EEC-derived epithelial patches. Finally, the enterochromaffin (EC) cell was the predominant EEC type participating in these stem cell dynamics. These results provide novel insights into the +4 reserve ISC hypothesis, stem cell dynamics of the intestinal epithelium, and in the development of EC-derived small intestinal tumors. NEW & NOTEWORTHY The current manuscript demonstrating that a subset of mature enteroendocrine cells (EECs), predominantly enterochromaffin cells, dedifferentiates to fully functional intestinal stem cells (ISCs) is novel, timely, and important. These cells dedifferentiate to ISCs not only in response to injury but also under basal homeostatic conditions. These novel findings provide a mechanism in which a specified cell can dedifferentiate and contribute to normal tissue plasticity as well as the development of EEC-derived intestinal tumors under pathologic conditions.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianying Feng
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Leigh Samsel
- 2Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ayla White
- 3Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xilin Zhao
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sajung Yun
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Deborah Citrin
- 3Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - J. Philip McCoy
- 2Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sinju Sundaresan
- 4Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Michael M. Hayes
- 4Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Juanita L. Merchant
- 5Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Andrew Leiter
- 6Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Stephen A. Wank
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
22
|
Han SW, Kim YY, Kang WJ, Kim HC, Ku SY, Kang BC, Yun JW. The Use of Normal Stem Cells and Cancer Stem Cells for Potential Anti-Cancer Therapeutic Strategy. Tissue Eng Regen Med 2018; 15:365-380. [PMID: 30603561 PMCID: PMC6171655 DOI: 10.1007/s13770-018-0128-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite recent advance in conventional cancer therapies including surgery, radiotherapy, chemotherapy, and immunotherapy to reduce tumor size, unfortunately cancer mortality and metastatic cancer incidence remain high. Along with a deeper understanding of stem cell biology, cancer stem cell (CSC) is important in targeted cancer therapy. Herein, we review representative patents using not only normal stem cells as therapeutics themselves or delivery vehicles, but also CSCs as targets for anti-cancer strategy. METHODS Relevant patent literatures published between 2005 and 2017 are discussed to present developmental status and experimental results on using normal stem cells and CSCs for cancer therapy and explore potential future directions in this field. RESULTS Stem cells have been considered as important element of regenerative therapy by promoting tissue regeneration. Particularly, there is a growing trend to use stem cells as a target drug-delivery system to reduce undesirable side effects in non-target tissues. Noteworthy, studies on CSC-specific markers for distinguishing CSCs from normal stem cells and mature cancer cells have been conducted as a selective anti-cancer therapy with few side effects. Many researchers have also reported the development of various substances with anticancer effects by targeting CSCs from cancer tissues. CONCLUSION There has been a continuing increase in the number of studies on therapeutic stem cells and CSC-specific markers for selective diagnosis and therapy of cancer. This review focuses on the current status in the use of normal stem cells and CSCs for targeted cancer therapy. Future direction is also proposed.
Collapse
Affiliation(s)
- Seung-Woo Han
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Woo-Ju Kang
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| |
Collapse
|
23
|
Sugahara D, Kobayashi Y, Akimoto Y, Kawakami H. Mouse intestinal niche cells express a distinct α1,2-fucosylated glycan recognized by a lectin from Burkholderia cenocepacia. Glycobiology 2018; 27:246-253. [PMID: 28177462 DOI: 10.1093/glycob/cww116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/04/2016] [Accepted: 11/17/2016] [Indexed: 01/23/2023] Open
Abstract
In this study, we examined the distribution of fucosylated glycans in mouse intestines using a lectin, BC2LCN (N-terminal domain of the lectin BC2L-C from Burkholderia cenocepacia), as a probe. BC2LCN is specific for glycans with a terminal Fucα1,2Galβ1,3-motif and it is a useful marker for discriminating the undifferentiated status of human induced/embryonic stem cells. Apparent BC2LCN reactivity was detected in the secretory granules of goblet cells in the ileum but not those in the colon. We also found distinctive reactivity in the crypt bottom, which is known as the stem cell zone, of the colon and the ileum. Other lectins for fucosylated glycans, including Ulex europaeus agglutinin-I, Pholiota squarrosa lectin and Aleuria aurantia lectin, did not exhibit similar reactivity in the crypt bottom. Remarkably, BC2LCN-positive epithelial cells could be labeled with a niche cell marker, c-Kit/CD117. Overall, our results indicate that intestinal niche cells express distinct fucosylated glycans recognized by BC2LCN. Increasing evidence suggests that the self-renewal and proliferation of stem cells depend on specific signals derived from niche cells. Our results highlight novel molecular properties of intestinal niche cells in terms of their glycosylation, which may help to understand the regulation of intestinal stem cells. The distinct expression of glycans may reflect the functional roles of niche cells. BC2LCN is a valuable tool for investigating the functional significance of protein glycosylation in stem cell regulation.
Collapse
Affiliation(s)
- Daisuke Sugahara
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Yuka Kobayashi
- J-Oil Mills, Inc., 11 Kagetoricho, Totsuka-ku, Yokohama, Kanagawa 245-0064, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
24
|
Banerjee A, McKinley ET, von Moltke J, Coffey RJ, Lau KS. Interpreting heterogeneity in intestinal tuft cell structure and function. J Clin Invest 2018; 128:1711-1719. [PMID: 29714721 DOI: 10.1172/jci120330] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type's structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its cellular neighbors. Moreover, single-cell approaches have revealed greater diversity in the tuft cell population than previously appreciated and uncovered novel markers to characterize this heterogeneity. Finally, advanced model systems have revealed tuft cells' roles in mucosal healing and orchestrating type 2 immunity against eukaryotic infection. While much remains unknown about intestinal tuft cells, these critical advances have illuminated the physiological importance of these previously understudied cells and provided experimentally tractable tools to interrogate this rare cell population. Tuft cells act as luminal sensors, linking the luminal microbiome to the host immune system, which may make them a potent clinical target for modulating host response to a variety of acute or chronic immune-driven conditions.
Collapse
Affiliation(s)
- Amrita Banerjee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Ge Y, Weygant N, Qu D, May R, Berry WL, Yao J, Chandrakesan P, Zheng W, Zhao L, Zhao KL, Drake M, Vega KJ, Bronze MS, Tomasek JJ, An G, Houchen CW. Alternative splice variants of DCLK1 mark cancer stem cells, promote self-renewal and drug-resistance, and can be targeted to inhibit tumorigenesis in kidney cancer. Int J Cancer 2018; 143:1162-1175. [PMID: 29577277 DOI: 10.1002/ijc.31400] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/17/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
Abstract
Renal cell carcinoma (RCC) is a common and devastating disease characterized by a hypoxic microenvironment, epithelial-mesenchymal transition and potent resistance to therapy evidencing the presence of cancer stem cells (CSCs). Various CSC markers have been studied in RCC, but overall there is limited data on their role and most markers studied have been relatively nonspecific. Doublecortin-like kinase 1 (DCLK1) is a validated CSC marker in the gastrointestinal tract and evidence for an equivalent role in other cancers is accumulating. We used bioinformatics, immunohistochemistry, flow cytometry, spheroid self-renewal and chemoresistance assays in combination with overexpression and siRNA-knockdown to study the stem cell-supportive role of DCLK1 alternative splice variants (DCLK1 ASVs) in RCC. To target tumor cells expressing DCLK1 ASVs directly, we developed a novel monoclonal antibody (CBT-15) and delivered it systemically to RCC tumor xenografts. DCLK1 ASVs were overexpressed, enriched together with CSC markers and predictive of overall and recurrence-free survival in RCC patients. In vitro, DCLK1 ASVs were able to directly stimulate essential molecular and functional characteristics of renal CSCs including expression of aldehyde dehydrogenase, self-renewal and resistance to FDA-approved receptor tyrosine kinase and mTOR inhibitors, while targeted downregulation of DCLK1 reversed these characteristics. Finally, targeting DCLK1 ASV-positive cells with the novel CBT-15 monoclonal antibody blocked RCC tumorigenesis in vivo. These findings establish DCLK1 as a CSC marker with implications for therapy, disease progression and survival in RCC and demonstrate the therapeutic value of DCLK1-targeted monoclonal antibodies against renal CSCs.
Collapse
Affiliation(s)
- Yang Ge
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Nathaniel Weygant
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,COARE Biotechnology Inc., Oklahoma City, OK
| | - Dongfeng Qu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,COARE Biotechnology Inc., Oklahoma City, OK.,The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK.,United States Department of Veterans Affairs Medical Center, Oklahoma City, OK
| | - Randal May
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,COARE Biotechnology Inc., Oklahoma City, OK.,United States Department of Veterans Affairs Medical Center, Oklahoma City, OK
| | - William L Berry
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Parthasarathy Chandrakesan
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,COARE Biotechnology Inc., Oklahoma City, OK.,The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK
| | - Wei Zheng
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lichao Zhao
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Karena L Zhao
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Michael Drake
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kenneth J Vega
- Department of Medicine, National Jewish Health, Denver, CO
| | - Michael S Bronze
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - James J Tomasek
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Courtney W Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,COARE Biotechnology Inc., Oklahoma City, OK.,The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK.,United States Department of Veterans Affairs Medical Center, Oklahoma City, OK
| |
Collapse
|
26
|
Kalantari E, Asadi Lari MH, Roudi R, Korourian A, Madjd Z. Lgr5High/DCLK1High phenotype is more common in early stage and intestinal subtypes of gastric carcinomas. Cancer Biomark 2017; 20:563-573. [DOI: 10.3233/cbm-170383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asadi Lari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Korourian
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Middelhoff M, Westphalen CB, Hayakawa Y, Yan KS, Gershon MD, Wang TC, Quante M. Dclk1-expressing tuft cells: critical modulators of the intestinal niche? Am J Physiol Gastrointest Liver Physiol 2017; 313:G285-G299. [PMID: 28684459 PMCID: PMC5668570 DOI: 10.1152/ajpgi.00073.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 01/31/2023]
Abstract
Dclk1-expressing tuft cells constitute a unique intestinal epithelial lineage that is distinct from enterocytes, Paneth cells, goblet cells, and enteroendocrine cells. Tuft cells express taste-related receptors and distinct transcription factors and interact closely with the enteric nervous system, suggesting a chemosensory cell lineage. In addition, recent work has shown that tuft cells interact closely with cells of the immune system, with a critical role in the cellular regulatory network governing responses to luminal parasites. Importantly, ablation of tuft cells severely impairs epithelial proliferation and tissue regeneration after injury, implicating tuft cells in the modulation of epithelial stem/progenitor function. Finally, tuft cells expand during chronic inflammation and in preneoplastic tissues, suggesting a possible early role in inflammation-associated tumorigenesis. Hence, we outline and discuss emerging evidence that strongly supports tuft cells as key regulatory cells in the complex network of the intestinal microenvironment.
Collapse
Affiliation(s)
- Moritz Middelhoff
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York; ,2II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany;
| | - C. Benedikt Westphalen
- 3Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany;
| | - Yoku Hayakawa
- 4Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan;
| | - Kelley S. Yan
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York; ,5Department of Genetics and Development, Columbia University Medical Center, New York, New York; and
| | - Michael D. Gershon
- 6Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Timothy C. Wang
- 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York;
| | - Michael Quante
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany;
| |
Collapse
|
28
|
A novel antibody against cancer stem cell biomarker, DCLK1-S, is potentially useful for assessing colon cancer risk after screening colonoscopy. J Transl Med 2017; 97:1245-1261. [PMID: 28414327 PMCID: PMC5623180 DOI: 10.1038/labinvest.2017.40] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
DCLK1 expression is critically required for maintaining growth of human colon cancer cells (hCCCs). Human colorectal tumors (CRCs) and hCCCs express a novel short isoform of DCLK1 (DCLK1-S; isoform 2) from β-promoter of hDCLK1 gene, while normal colons express long isoform (DCLK1-L; isoform 1) from 5'(α)-promoter, suggesting that DCLK1-S, and not DCLK1-L, marks cancer stem cells (CSCs). Even though DCLK1-S differs from DCLK1-L by only six amino acids, we succeeded in generating a monospecific DCLK1-S-Antibody (PS41014), which does not cross-react with DCLK1-L, and specifically detects CSCs. Subcellular localization of S/L-isoforms was examined by immune-electron-microscopy (IEM). Surprisingly, besides plasma membrane and cytosolic fractions, S/L also localized to nuclear/mitochondrial fractions, with pronounced localization of S-isoform in the nuclei and mitochondria. Sporadic CRCs develop from adenomas. Screening colonoscopy is used for detection/resection of growths, and morphological/pathological criteria are used for risk assessment and recommendations for follow-up colonoscopy. But, these features are not precise and majority of the patients will never develop cancer. We hypothesized that antibody-based assay(s), which identify CSCs, will significantly improve prognostic value of morphological/pathological criteria. We conducted a pilot retrospective study with PS41014-Ab, by staining archived adenoma specimens from patients who developed (high-risk), or did not develop (low-risk) adenocarcinomas within 10-15 years. PS41014-Ab stained adenomas from initial and follow-up colonoscopies of high-risk patients, at significantly higher levels (three to fivefold) than adenomas from low-risk patients, suggesting that PS41014-Ab could be used as an additional tool for assessing CRC risk. CRC patients, with high DCLK1-S-expressing tumors (by qRT-PCR), were reported to have worse overall survival than low expressers. We now report that DCLK1-S-specific Ab may help to identify high-risk patients at the time of index/screening colonoscopy.
Collapse
|
29
|
Fan M, Qian N, Dai G. Expression and prognostic significance of doublecortin-like kinase 1 in patients with hepatocellular carcinoma. Oncol Lett 2017; 14:7529-7537. [PMID: 29344199 DOI: 10.3892/ol.2017.7082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a putative cancer stem cell marker in intestinal and pancreatic tumors, is associated with tumor pathogenesis and progression, and poor survival outcomes in numerous types of cancer. However, DCLK1 expression and its prognostic value remain unclear in hepatocellular carcinoma (HCC). In the present study, the expression of DCLK1 was assessed using immunohistochemistry in 96 resected HCC and 68 adjacent tissue specimens. The staining intensity and the percentage of stained cells were scored on a scale of 0-3 and 0-4, respectively. Tissue was defined as positive for DCLK1 if the composite multiple score was >3. Cytoplasmic expression of DCLK1 was observed in HCC and adjacent tissue specimens with an expression rate of 81% (78/96) and 74% (50/68), respectively; the median score was 4.6 and 3.9, respectively, and no statistically significant difference was observed between HCC and adjacent tissues (P=0.087). DCLK1 expression was positively associated with intrahepatic metastasis (P=0.035). Furthermore, univariate analysis revealed that DCLK1 expression was significantly associated with poor disease-free survival (DFS) and overall survival (P=0.024 and 0.034). Multivariate analysis also demonstrated that DCLK1 expression was an independent prognostic factor for DFS in HCC (P=0.019; hazard ratio, 1.546; 95% confidence interval, 1.330-1.725). Stratified Kaplan-Meier survival curves revealed that DCLK1 expression predicted poorer DFS with respect to positivity for three characteristics: Portal venous metastasis, intrahepatic metastasis, and cirrhosis (P=0.020, P=0.007 and P=0.017, respectively). Collectively, the results of the present study suggested that DCLK1, functioning as a tumor promoter, is frequently overexpressed in HCC, and that DCLK1 expression is associated with poor DFS in patients with HCC. DCLK1 may represent a promising therapeutic target in HCC and requires further study.
Collapse
Affiliation(s)
- Mengjiao Fan
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Niansong Qian
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Guanghai Dai
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
30
|
Sarkar S, O'Connell MR, Okugawa Y, Lee BS, Toiyama Y, Kusunoki M, Daboval RD, Goel A, Singh P. FOXD3 Regulates CSC Marker, DCLK1-S, and Invasive Potential: Prognostic Implications in Colon Cancer. Mol Cancer Res 2017; 15:1678-1691. [PMID: 28851816 DOI: 10.1158/1541-7786.mcr-17-0287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/26/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
The 5' (α)-promoter of the human doublecortin-like kinase 1 (DCLK1) gene becomes epigenetically silenced during colon carcinogenesis, resulting in loss of expression of the canonical long(L)-isoform1 (DCLK1-L) in human colon adenocarcinomas (hCRCs). Instead, hCRCs express a short(S)-isoform2 (DCLK1-S) from an alternate (β)-promoter of DCLK1. The current study, examined if the transcriptional activity of the (β)-promoter is suppressed in normal versus cancerous cells. On the basis of in silico and molecular approaches, it was discovered that FOXD3 potently inhibits the transcriptional activity of the (β)-promoter. FOXD3 becomes methylated in human colon cancer cells (hCCC), with loss of FOXD3 expression, allowing expression of the DCLK1(S) variant in hCCCs/hCRCs. Relative levels of FOXD3/DCLK1(S/L) were measured in a cohort of CRC patient specimens (n = 92), in relation to overall survival (OS). Patients expressing high DCLK1(S), with or without low FOXD3, had significantly worse OS compared with patients expressing low DCLK1(S). The relative levels of DCLK1-L did not correlate with OS. In a pilot retrospective study, colon adenomas from high-risk patients (who developed CRCs in <15 years) demonstrated significantly higher staining for DCLK1(S) + significantly lower staining for FOXD3, compared with adenomas from low-risk patients (who remained free of CRCs). Latter results strongly suggest a prognostic value of measuring DCLK1(S)/FOXD3 in adenomas. Overexpression of DCLK1(S), but not DCLK1(L), caused a significant increase in the invasive potential of hCCCs, which may explain worse outcomes for patients with high DCLK1-S-expressing tumors. On the basis of these data, FOXD3 is a potent repressor of DCLK1-S expression in normal cells; loss of FOXD3 in hCCCs/hCRCs allows upregulation of DCLK1-S, imparting a potent invasive potential to the cells. Mol Cancer Res; 15(12); 1678-91. ©2017 AACR.
Collapse
Affiliation(s)
- Shubhashish Sarkar
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Malaney R O'Connell
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas.,Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Brian S Lee
- Medical School, University of Texas Medical Branch, Galveston, Texas
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Robert D Daboval
- Medical School, University of Texas Medical Branch, Galveston, Texas
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
31
|
Nishio K, Kimura K, Amano R, Nakata B, Yamazoe S, Ohira G, Miura K, Kametani N, Tanaka H, Muguruma K, Hirakawa K, Ohira M. Doublecortin and CaM kinase-like-1 as an independent prognostic factor in patients with resected pancreatic carcinoma. World J Gastroenterol 2017; 23:5764-5772. [PMID: 28883702 PMCID: PMC5569291 DOI: 10.3748/wjg.v23.i31.5764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/11/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the effect of expression of doublecortin and CaM kinase-like-1 (DCLK1) in patients with pancreatic ductal adenocarcinoma (PDAC).
METHODS Tumor specimens were obtained from 136 patients with pancreatic cancer who had undergone resection without preoperative therapy between January 2000 and December 2013 at the Department of Surgical Oncology, Osaka City University. The resected specimens were analyzed for associations with clinicopathological data, including DCLK1 expression, epithelial mesenchymal transition (EMT) marker expression, and cancer stem cell (CSC) marker expression. Univariate and multivariate survival analyses were performed and we assessed the association between DCLK1 expression and clinicopathological factors, including the EMT marker and CSC marker.
RESULTS In total, 48.5% (66/136) of the pancreatic cancer samples were positive for DCLK1. Patients with DCLK1-positive tumors had significantly shorter survival times than those with DCLK1-negative tumors (median, 18.7 mo vs 49.5 mo, respectively; P < 0.0001). Positive DCLK1 expression correlated with histological grade (P = 0.0290), preoperative CA19-9 level (P = 0.0060), epithelial cell adhesion molecule (EpCAM) expression (P = 0.0235), and the triple-positive expression of CD44/CD24/EpCAM (P = 0.0139). On univariate survival analysis, five factors were significantly associated with worse overall survival: histological grade of G2 to G4 (P = 0.0091), high preoperative serum SPan-1 level (P = 0.0034), R1/2 (P < 0.0001), positive expression of DCLK1 (P < 0.0001) or CD44 (P = 0.0245). On multivariate survival analysis, R1/2 [odds ratio (OR) = 2.019, 95% confidence interval (CI): 1.380-2.933; P = 0.0004] and positive DCLK1 expression (OR = 1.848, 95%CI: 1.2854-2.661; P = 0.0009) were independent prognostic factors.
CONCLUSION DCLK1 expression was found to be an independent prognostic factor and it may play a crucial prognostic role by promoting acquisition of stemness.
Collapse
Affiliation(s)
- Kohei Nishio
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Kenjiro Kimura
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Ryosuke Amano
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Bunzo Nakata
- Department of Surgery, Kashiwara Municipal Hospital, Kashiwara City, Osaka 582-0005, Japan
| | - Sadaaki Yamazoe
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Go Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Kotaro Miura
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Naoki Kametani
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Kazuya Muguruma
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
32
|
Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS, Larkin KA, Davies PS, Cheng ZF, Kaddis JS, Han A, Roelf K, Calderon RI, Cynn E, Hu X, Mandleywala K, Wilhelmy J, Grimes SM, Corney DC, Boutet SC, Terry JM, Belgrader P, Ziraldo SB, Mikkelsen TS, Wang F, von Furstenberg RJ, Smith NR, Chandrakesan P, May R, Chrissy MAS, Jain R, Cartwright CA, Niland JC, Hong YK, Carrington J, Breault DT, Epstein J, Houchen CW, Lynch JP, Martin MG, Plevritis SK, Curtis C, Ji HP, Li L, Henning SJ, Wong MH, Kuo CJ. Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell 2017; 21:78-90.e6. [PMID: 28686870 PMCID: PMC5642297 DOI: 10.1016/j.stem.2017.06.014] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/17/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5+ ISCs, the most well-defined ISC pool, but Bmi1-GFP+ cells were distinct and enriched for enteroendocrine (EE) markers, including Prox1. Prox1-GFP+ cells exhibited sustained clonogenic growth in vitro, and lineage-tracing of Prox1+ cells revealed long-lived clones during homeostasis and after radiation-induced injury in vivo. Single-cell mRNA-seq revealed two subsets of Prox1-GFP+ cells, one of which resembled mature EE cells while the other displayed low-level EE gene expression but co-expressed tuft cell markers, Lgr5 and Ascl2, reminiscent of label-retaining secretory progenitors. Our data suggest that the EE lineage, including mature EE cells, comprises a reservoir of homeostatic and injury-inducible ISCs, extending our understanding of cellular plasticity and stemness.
Collapse
Affiliation(s)
- Kelley S Yan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Olivier Gevaert
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Benedict Anchang
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher S Probert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn A Larkin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paige S Davies
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Zhuan-Fen Cheng
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Arnold Han
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Columbia Center for Translational Immunology, Department of Medicine, Division of Digestive and Liver Diseases, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kelly Roelf
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruben I Calderon
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Esther Cynn
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaoyi Hu
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Komal Mandleywala
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Julie Wilhelmy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sue M Grimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David C Corney
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | - Fengchao Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Nicholas R Smith
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Parthasarathy Chandrakesan
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Randal May
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mary Ann S Chrissy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Joyce C Niland
- Department of Diabetes and Cancer Discovery Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Young-Kwon Hong
- Departments of Surgery and of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jill Carrington
- National Institutes of Health, Division of Digestive Diseases and Nutrition, NIDDK, Bethesda, MD 20892, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan Epstein
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Courtney W Houchen
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - John P Lynch
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sylvia K Plevritis
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina Curtis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hanlee P Ji
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Susan J Henning
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa H Wong
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Hou Q, Ye L, Huang L, Yu Q. The Research Progress on Intestinal Stem Cells and Its Relationship with Intestinal Microbiota. Front Immunol 2017; 8:599. [PMID: 28588586 PMCID: PMC5440531 DOI: 10.3389/fimmu.2017.00599] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The intestine is home to trillions of microorganisms, and the vast diversity within this gut microbiota exists in a balanced state to protect the intestinal mucosal barrier. Research into the association of the intestinal microbiota with health and disease (including diet, nutrition, obesity, inflammatory bowel disease, and cancer) continues to expand, with the field advancing at a rapid rate. Intestinal stem cells (ISCs) are the fundamental component of the mucosal barrier; they undergo continuous proliferation to replace the epithelium, which is also intimately involved in intestinal diseases. The intestinal microbiota, such as Lactobacillus, communicates with ISCs both directly and indirectly to regulate the proliferation and differentiation of ISCs. Moreover, Salmonella infection significantly decreased the expression of intestinal stem cell markers Lgr5 and Bmi1. However, the detailed interaction of intestinal microbiota and ISCs are still unclear. This review considers the progress of research on the model and niches of ISCs, as well as the complex interplay between the gut microbiota and ISCs, which will be crucial for explaining the mechanisms of intestinal diseases related to imbalances in the intestinal microbiota and ISCs.
Collapse
Affiliation(s)
- Qihang Hou
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| | - Lulu Ye
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| | - Lulu Huang
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| | - Qinghua Yu
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
Doublecortin-like kinase 1 is a novel biomarker for prognosis and regulates growth and metastasis in basal-like breast cancer. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.01.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
35
|
Chandrakesan P, May R, Weygant N, Qu D, Berry WL, Sureban SM, Ali N, Rao C, Huycke M, Bronze MS, Houchen CW. Intestinal tuft cells regulate the ATM mediated DNA Damage response via Dclk1 dependent mechanism for crypt restitution following radiation injury. Sci Rep 2016; 6:37667. [PMID: 27876863 PMCID: PMC5120335 DOI: 10.1038/srep37667] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Crypt epithelial survival and regeneration after injury require highly coordinated complex interplay between resident stem cells and diverse cell types. The function of Dclk1 expressing tuft cells regulating intestinal epithelial DNA damage response for cell survival/self-renewal after radiation-induced injury is unclear. Intestinal epithelial cells (IECs) were isolated and purified and utilized for experimental analysis. We found that small intestinal crypts of VillinCre;Dclk1f/f mice were hypoplastic and more apoptotic 24 h post-total body irradiation, a time when stem cell survival is p53-independent. Injury-induced ATM mediated DNA damage response, pro-survival genes, stem cell markers, and self-renewal ability for survival and restitution were reduced in the isolated intestinal epithelial cells. An even greater reduction in these signaling pathways was observed 3.5 days post-TBI, when peak crypt regeneration occurs. We found that interaction with Dclk1 is critical for ATM and COX2 activation in response to injury. We determined that Dclk1 expressing tuft cells regulate the whole intestinal epithelial cells following injury through paracrine mechanism. These findings suggest that intestinal tuft cells play an important role in regulating the ATM mediated DNA damage response, for epithelial cell survival/self-renewal via a Dclk1 dependent mechanism, and these processes are indispensable for restitution and function after severe radiation-induced injury.
Collapse
Affiliation(s)
- Parthasarathy Chandrakesan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Randal May
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Nathaniel Weygant
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - William L. Berry
- OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sripathi M. Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally Rao
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark Huycke
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael S. Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- COARE Biotechnology, Inc., Oklahoma City, OK 73104, USA
| |
Collapse
|
36
|
Singh P, O'Connell M, Shubhashish S. Epigenetic regulation of human DCLK-1 gene during colon-carcinogenesis: clinical and mechanistic implications. Stem Cell Investig 2016; 3:51. [PMID: 27777940 DOI: 10.21037/sci.2016.09.07] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/08/2016] [Indexed: 12/26/2022]
Abstract
Colorectal carcinogenesis is a multi-step process. While ~25% of colorectal cancers (CRCs) arise in patients with a family history (genetic predisposition), ~75% of CRCs are due to age-associated accumulation of epigenetic alterations which can result in the suppression of key tumor suppressor genes leading to mutations and activation of oncogenic pathways. Sporadic colon-carcinogenesis is facilitated by many molecular pathways of genomic instability which include chromosomal instability (CIN), micro-satellite instability (MSI) and CpG island methylator phenotype (CIMP), leading towards loss of homeostasis and onset of neoplastic transformation. The unopposed activation of Wnt/β-catenin pathways, either due to loss of APC function or up-regulation of related stimulatory pathways, results in unopposed hyperproliferation of colonic crypts, considered the single most important risk factor for colon carcinogenesis. Hypermethylation of CpG islands within the promoters of specific genes can potentially inactivate DNA repair genes and/or critical tumor suppressor genes. Recently, CpG methylation of the 5' promoter of human (h) DCLK1 gene was reported in many human epithelial cancers, including colorectal cancers (CRCs), resulting in the loss of expression of the canonical long isoform of DCLK1 (DCLK1-L) in hCRCs. Instead, a shorter isoform of DCLK1 (DCLK1-S) was discovered to be expressed in hCRCs, from an alternate β promoter of DCLKL1-gene; the clinical and biological implications of these novel findings, in relation to recent publications is discussed.
Collapse
Affiliation(s)
- Pomila Singh
- Neuroscience and Cell Biology Department, University of Texas and Medical Branch, Galveston, TX, USA
| | - Malaney O'Connell
- Neuroscience and Cell Biology Department, University of Texas and Medical Branch, Galveston, TX, USA
| | - Sarkar Shubhashish
- Neuroscience and Cell Biology Department, University of Texas and Medical Branch, Galveston, TX, USA
| |
Collapse
|
37
|
Leppänen J, Helminen O, Huhta H, Kauppila JH, Miinalainen I, Ronkainen VP, Saarnio J, Lehenkari PP, Karttunen TJ. Doublecortin-like kinase 1-positive enterocyte - a new cell type in human intestine. APMIS 2016; 124:958-965. [PMID: 27677532 DOI: 10.1111/apm.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a microtubule-associated kinase. In murine intestine, DCLK1 marks tuft cells with characteristic microvilli, features of neuroendocrine cells and also quiescent stem cell-like properties. The occurrence and pathological role of DCLK1-positive cells in human intestinal mucosa is unknown. We analysed DCLK1 expression in healthy duodenal, jejunal and colorectal mucosa samples (n = 35), and in duodenal specimens from patients with coeliac disease (n = 20). The samples were immunohistochemically double-stained with DCLK1, and synaptophysin, chromogranin A and Ki-67. Ultrastructure of DCLK1-expressing duodenal cells was assessed using correlative light and electron microscopy. DCLK1 expression was seen in about 1% of epithelial cells diffusely scattered through the intestinal epithelium. Electron microscopy showed that the duodenal DCLK1-positive cells had short apical microvilli similar to neighbouring enterocytes and cytoplasmic granules on the basal side. DCLK1-positive cells were stained with synaptophysin. The number of DCLK1-positive cells was decreased in villus atrophy in coeliac disease. Our findings indicate that in human intestinal epithelium, DLCK1-positive cells form a subpopulation of non-proliferating neuroendocrine cells with apical brush border similar to that in enterocytes, and their number is decreased in untreated coeliac disease.
Collapse
Affiliation(s)
- Joni Leppänen
- Department of Pathology, University of Oulu, Oulu, Finland. .,Department of Surgery, University of Oulu, Oulu, Finland. .,Medical Research Center Oulu, Oulu, Finland. .,Oulu University Hospital, Oulu, Finland.
| | - Olli Helminen
- Department of Pathology, University of Oulu, Oulu, Finland.,Department of Surgery, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Department of Pathology, University of Oulu, Oulu, Finland.,Department of Surgery, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| | - Joonas H Kauppila
- Department of Pathology, University of Oulu, Oulu, Finland.,Department of Surgery, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| | | | | | - Juha Saarnio
- Department of Surgery, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| | - Petri P Lehenkari
- Department of Surgery, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Department of Anatomy and Cell biology, University of Oulu, Oulu, Finland
| | - Tuomo J Karttunen
- Department of Pathology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| |
Collapse
|
38
|
Chandrakesan P, May R, Qu D, Weygant N, Taylor VE, Li JD, Ali N, Sureban SM, Qante M, Wang TC, Bronze MS, Houchen CW. Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal. Oncotarget 2016; 6:30876-86. [PMID: 26362399 PMCID: PMC4741574 DOI: 10.18632/oncotarget.5129] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/19/2015] [Indexed: 11/25/2022] Open
Abstract
To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1+ cells, we FACS-sorted Dclk1+ cells from mouse small intestinal epithelium using transgenic mice expressing YFP under the control of the Dclk1 promoter (Dclk1-CreER;Rosa26-YFP). Analysis of sorted YFP+ cells demonstrated marked enrichment (~6000 fold) for Dclk1 mRNA compared with YFP- cells. Dclk1+ population display ~6 fold enrichment for the putative quiescent stem cell marker Bmi1. We observed significantly greater expression of pluripotency genes, pro-survival genes, and quiescence markers in the Dclk1+ population. A significant increase in self-renewal capability (14-fold) was observed in in vitro isolated Dclk1+ cells. The unique genetic report presented in this manuscript suggests that Dclk1+ cells may maintain quiescence, pluripotency, and metabolic activity for survival/longevity. Functionally, these reserve characteristics manifest in vitro, with Dclk1+ cells exhibiting greater ability to self-renew. These findings indicate that quiescent stem-like functionality is a feature of Dclk1-expressing tuft cells.
Collapse
Affiliation(s)
- Parthasarathy Chandrakesan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Randal May
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Nathaniel Weygant
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vivian E Taylor
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - James D Li
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Naushad Ali
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sripathi M Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael Qante
- Klinikum rechts der Isar, II. Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Timothy C Wang
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA
| | - Michael S Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Courtney W Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA.,COARE Biotechnology, Oklahoma City, OK, USA
| |
Collapse
|
39
|
The Progress and Prospects of Putative Biomarkers for Liver Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cells Int 2016; 2016:7614971. [PMID: 27610139 PMCID: PMC5005617 DOI: 10.1155/2016/7614971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/06/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence suggests that hepatocellular carcinoma (HCC) is organized by liver cancer stem cells (LCSCs), which are a subset of cells with “stem-like” characteristics. Identification of the LCSCs is a fundamental and important problem in HCC research. LCSCs have been investigated by various stem cell biomarkers. There is still lack of consensus regarding the existence of a “global” marker for LCSCs in HCC. In this review article, we summarize the progress and prospects of putative biomarkers for LCSCs in the past decades, which is essential to develop future therapies targeting CSCs and to predict prognosis and curative effect of these therapies.
Collapse
|
40
|
Gao T, Wang M, Xu L, Wen T, Liu J, An G. DCLK1 is up-regulated and associated with metastasis and prognosis in colorectal cancer. J Cancer Res Clin Oncol 2016; 142:2131-40. [PMID: 27520310 DOI: 10.1007/s00432-016-2218-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Metastasis is a primary cause of colorectal cancer (CRC)-related death, and cancer stem cells (CSCs) are thought to be majorly responsible for initiating metastatic behaviors. Doublecortin-like kinase 1 (DCLK1) was recently discovered to be a marker for gastrointestinal CSCs. Here, we aimed to explore whether DCLK1 is associated with CRC metastasis through clinical and in vitro investigations. METHODS The expression levels of DCLK1 mRNA and protein in human CRC tissues were analyzed through quantitative RT-PCR and immunohistochemistry staining, respectively. Human CRC cell line SW480 was selected to explore the effect of DCLK1 overexpression on cell migration and invasion. Besides, the associations between DCLK1 and epithelial-mesenchymal transition (EMT) were determined. RESULTS Compared to normal colorectal tissues, DCLK1 expression was significantly up-regulated in human CRC tissues and correlated well with high lymphatic metastasis and poor prognosis in patients. DCLK1 expression was inversely associated with overall survival in CRC patients. Overexpression of DCLK1 in SW480 cells markedly promoted cell migration and invasion. Furthermore, we validated that DCLK1 could facilitate EMT in cancer cells by up-regulation of the mesenchymal markers Vimentin and ZEB1 and down-regulation of the epithelial marker E-cadherin in SW480 cells. CONCLUSIONS DCLK1 up-regulation may play a contributory role in CRC metastasis and poor prognosis via activation of EMT. DCLK1 may serve as an independent predictor for CRC prognosis.
Collapse
Affiliation(s)
- Tianbo Gao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Min Wang
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Lingling Xu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Jian Liu
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China.
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China.
| |
Collapse
|
41
|
Ali N, Chandrakesan P, Nguyen CB, Husain S, Gillaspy AF, Huycke M, Berry WL, May R, Qu D, Weygant N, Sureban SM, Bronze MS, Dhanasekaran DN, Houchen CW. Inflammatory and oncogenic roles of a tumor stem cell marker doublecortin-like kinase (DCLK1) in virus-induced chronic liver diseases. Oncotarget 2016; 6:20327-44. [PMID: 25948779 PMCID: PMC4653008 DOI: 10.18632/oncotarget.3972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 04/11/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. We previously showed that a tumor/cancer stem cell (CSC) marker, doublecortin-like kinase (DCLK1) positively regulates hepatitis C virus (HCV) replication, and promotes tumor growth in colon and pancreas. Here, we employed transcriptome analysis, RNA interference, tumor xenografts, patient's liver tissues and hepatospheroids to investigate DCLK1-regulated inflammation and tumorigenesis in the liver. Our studies unveiled novel DCLK1-controlled feed-forward signaling cascades involving calprotectin subunit S100A9 and NFκB activation as a driver of inflammation. Validation of transcriptome data suggests that DCLK1 co-expression with HCV induces BRM/SMARCA2 of SW1/SNF1 chromatin remodeling complexes. Frequently observed lymphoid aggregates including hepatic epithelial and stromal cells of internodular septa extensively express DCLK1 and S100A9. The DCLK1 overexpression also correlates with increased levels of S100A9, c-Myc, and BRM levels in HCV/HBV-positive patients with cirrhosis and HCC. DCLK1 silencing inhibits S100A9 expression and hepatoma cell migration. Normal human hepatocytes (NHH)-derived spheroids exhibit CSC properties. These results provide new insights into the molecular mechanism of the hepatitis B/C-virus induced liver inflammation and tumorigenesis via DCLK1-controlled networks. Thus, DCLK1 appears to be a novel therapeutic target for the treatment of inflammatory diseases and HCC.
Collapse
Affiliation(s)
- Naushad Ali
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Department of Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Parthasarathy Chandrakesan
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Charles B Nguyen
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Sanam Husain
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Allison F Gillaspy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Mark Huycke
- Infectious Diseases, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Department of Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Randal May
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Dongfeng Qu
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Nathaniel Weygant
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Sripathi M Sureban
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Department of Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Michael S Bronze
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Danny N Dhanasekaran
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Courtney W Houchen
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,Department of Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA.,COARE Biotechnology, Oklahoma City, Oklahoma, OK, USA
| |
Collapse
|
42
|
Sei Y, Feng J, Zhao X, Forbes J, Tang D, Nagashima K, Hanson J, Quezado MM, Hughes MS, Wank SA. Polyclonal Crypt Genesis and Development of Familial Small Intestinal Neuroendocrine Tumors. Gastroenterology 2016; 151:140-51. [PMID: 27003604 PMCID: PMC5578471 DOI: 10.1053/j.gastro.2016.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors believed to originate from enterochromaffin (EC) cells. Intestinal stem cell (ISC) are believed to contribute to the formation of SI-NETs, although little is known about tumor formation or development. We investigated the relationship between EC cells, ISCs, and SI-NETs. METHODS We analyzed jejuno-ileal tissue specimens from 14 patients with familial SI-NETs enrolled in the Natural History of Familial Carcinoid Tumor study at the National Institutes of Health from January 2009 to December 2014. Frozen and paraffin-embedded tumor tissues of different stages and isolated crypts were analyzed by in situ hybridization and immunohistochemistry. Tumor clonality was assessed by analyses of mitochondrial DNA. RESULTS We identified multifocal aberrant crypt-containing endocrine cell clusters (ACECs) that contain crypt EC cell microtumors in patients with familial SI-NETs. RNA in situ hybridization revealed expression of the EC cell and reserve stem cell genes TPH1, BMI1, HOPX, and LGR5(low), in the ACECs and more advanced extraepithelial tumor nests. This expression pattern resembled that of reserve EC cells that express reserve ISC genes; most reside at the +4 position in normal crypts. The presence of multifocal ACECs from separate tumors and in the macroscopic tumor-free mucosa indicated widespread, independent, multifocal tumorigenesis. Analyses of mitochondrial DNA confirmed the independent origin of the ACECs. CONCLUSIONS Familial SI-NETs originate from a subset of EC cells (reserve EC cells that express reserve ISC genes) via multifocal and polyclonal processes. Increasing our understanding of the role of these reserve EC cells in the genesis of multifocal SI-NETs could improve diagnostic and therapeutic strategies for this otherwise intractable disease.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Jianying Feng
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Xilin Zhao
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Joanne Forbes
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Derek Tang
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701
| | - Jeffrey Hanson
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | - Martha M. Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | - Marybeth S. Hughes
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Stephen A. Wank
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804,To whom correspondence should be addressed. Stephen A. Wank, M.D., Address: DDB/NIDDK/NIH, 10/9C-101, Bethesda, MD 20892, , Phone: (301) 402-3704
| |
Collapse
|
43
|
Khan S, Karmokar A, Howells L, Thomas AL, Bayliss R, Gescher A, Brown K. Targeting cancer stem-like cells using dietary-derived agents - Where are we now? Mol Nutr Food Res 2016; 60:1295-309. [PMID: 27060283 DOI: 10.1002/mnfr.201500887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/17/2022]
Abstract
Diet has been linked to an overwhelming proportion of cancers. Current chemotherapy and targeted therapies are limited by toxicity and the development of resistance against these treatments results in cancer recurrence or progression. In vitro evidence indicates that a number of dietary-derived agents have activity against a highly tumorigenic, chemoradiotherapy resistant population of cells within a tumour. This population is associated with cancer recurrence and is therefore clinically significant. Targeting this subpopulation, termed cancer stem-like cells with dietary-derived agents provides a potentially low toxicity strategy to enhance current treatment regimens. In addition, dietary-derived compounds also provide a novel approach to cancer prevention strategies. This review focusses on selected diet-derived agents that have been shown to specifically target cancer stem-like cells using in vivo models, or in clinical trials. Furthermore, the potential limitations of these studies are discussed, and areas of research that need to be addressed to allow successful translation of dietary-derived agents to the clinical arena are highlighted.
Collapse
Affiliation(s)
- Sameena Khan
- Department of Cancer Studies, University of Leicester, Leicester, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Ankur Karmokar
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Lynne Howells
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Anne L Thomas
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Richard Bayliss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Andreas Gescher
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Karen Brown
- Department of Cancer Studies, University of Leicester, Leicester, UK
| |
Collapse
|
44
|
Novel regenerative peptide TP508 mitigates radiation-induced gastrointestinal damage by activating stem cells and preserving crypt integrity. J Transl Med 2015; 95:1222-33. [PMID: 26280221 PMCID: PMC4626368 DOI: 10.1038/labinvest.2015.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/22/2015] [Accepted: 07/07/2015] [Indexed: 01/25/2023] Open
Abstract
In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis, and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin) 24 h after lethal radiation exposure (9 Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post exposure prevents the disintegration of GI crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also upregulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24 h post exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment.
Collapse
|
45
|
Epigenetic changes and alternate promoter usage by human colon cancers for expressing DCLK1-isoforms: Clinical Implications. Sci Rep 2015; 5:14983. [PMID: 26447334 PMCID: PMC4597220 DOI: 10.1038/srep14983] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022] Open
Abstract
DCLK1 specifically marks colon/pancreatic cancers in mice, and is expressed by human colon adenocarcinomas (hCRCs). Down-regulation of DCLK1 results in loss of cancer-stem-cells (CSCs), and inhibits spheroidal/xenograft growths from hCRC-cells. The 5'-promoter of DCLK1-gene is reportedly hypermethylated in hCRCs, resulting in loss of expression of DCLK1-transcripts, originating from 5'(α)-promoter (termed DCLK1-L, in here). However, in mouse colon-tumors, 5'-promoter of DCLK1-gene remains unchanged, and DCLK1-L, originating from 5'(α)-promoter, is expressed. We hypothesized that elevated levels of DCLK1-protein in hCRC-cells, may be transcribed/translated from an alternate-promoter. Several in silico and molecular biology approaches were used to test our hypothesis. We report for the first time that majority of hCRCs express short-transcripts of DCLK1 (termed DCLK1-S, in here) from an alternate β-promoter in IntronV of the gene, while normal-colons mainly express DCLK1-L from 5'(α)-promoter. We additionally report an important role of β-catenin and TCF4/LEF binding-sites for activating (α)-promoter, while activated NF-κBp65 (bound to NF-κB-cis-element), activates (β)-promoter in cancer-cells. DCLK1-S expression was examined in a cohort of 92 CRC patients; high-expressors had significantly worse overall-survival compared to low-expressors. Our novel findings' regarding usage of alternate (β)-promoter by hCRCs, suggests that DCLK1-S may represent an important target for preventing/inhibiting colon-cancers, and for eliminating colon-CSCs.
Collapse
|
46
|
Qu D, Weygant N, May R, Chandrakesan P, Madhoun M, Ali N, Sureban SM, An G, Schlosser MJ, Houchen CW. Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis. PLoS One 2015; 10:e0134212. [PMID: 26285154 PMCID: PMC4540568 DOI: 10.1371/journal.pone.0134212] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/07/2015] [Indexed: 12/14/2022] Open
Abstract
Doublecortin-like kinase 1 (Dclk1), a microtubule-associated kinase, marks the fifth lineage of intestinal epithelial cells called tuft cells that function as tumor stem cells in Apc mutant models of colon cancer. In order to determine the role of Dclk1 in dextran sulfate sodium (DSS) induced colonic inflammation both intestinal epithelial specific Dclk1 deficient (VillinCre;Dclk1f/f) and control (Dclk1f/f) mice were fed 3% DSS in drinking water for 9 days, allowed to recover for 2 days, and killed. The clinical and histological features of DSS-induced colitis were scored and immunohistochemical, gene expression, pro-inflammatory cytokines/chemokines, and immunoblotting analyses were used to examine epithelial barrier integrity, inflammation, and stem and tuft cell features. In DSS-induced colitis, VillinCre;Dclk1f/f mice demonstrated exacerbated injury including higher clinical colitis scores, increased epithelial barrier permeability, higher levels of pro-inflammatory cytokines and chemokines, decreased levels of Lgr5, and dysregulated Wnt/b-Catenin pathway genes. These results suggest that Dclk1 plays an important role in regulating colonic inflammatory response and colonic epithelial integrity.
Collapse
Affiliation(s)
- Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, United States of America
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK, 73104, United States of America
| | - Nathaniel Weygant
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Randal May
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, United States of America
| | - Parthasarathy Chandrakesan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK, 73104, United States of America
| | - Mohammad Madhoun
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Naushad Ali
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK, 73104, United States of America
| | - Sripathi M. Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, United States of America
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK, 73104, United States of America
| | - Guangyu An
- Department of Oncology, Beijing Chaoyang Hospital, Capitol Medicinal University, Beijing, 100020, China
| | | | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, United States of America
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK, 73104, United States of America
- COARE Biotechnology, Oklahoma City, OK, 73104, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
Cancer patients in general, either due to the nature of their underlying illness or because of being on chemotherapeutic regimens, are at increased risk of infection. Indeed, microbes can exploit the innate plasticity of the epithelial cells to promote their trans-differentiation into a mesenchymal phenotype in a process called epithelial-to-mesenchymal transition (EMT). This process as well as the reverse, mesenchymal-epithelial transition, occurs repeatedly during normal embryonic development and is recapitulated during pathologies such as tissue fibrosis or tumor metastasis. Multiple signaling pathways including TGFβ, Wnt and Notch working together with transcription factors such as Slug, Snail, Twist, Zeb1 and 2 suppress E-cadherin, induce EMT and result in loss of cell-cell adhesion, increased tumor progression and migration. In addition, in approximately 20% of all cases, microbial organisms including pathobionts of the commensal microbiota, have been implicated in inflammatory processes that promote tumor growth. Thus, the dynamic process of EMT serves to enhance tumor progression and is also involved in the generation of cancer stem cells (CSCs) across multiple organ systems including colon cancer. Suffice to say, EMT and CSC molecular pathways activated by pathogens, may represent a unique therapeutic alternative to conventional anti-neoplastic strategy to mitigate early stage metastasis and/or frank malignancy.
Collapse
Affiliation(s)
- Shahid Umar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
48
|
Rao CV, Mohammed A. New insights into pancreatic cancer stem cells. World J Stem Cells 2015; 7:547-555. [PMID: 25914762 PMCID: PMC4404390 DOI: 10.4252/wjsc.v7.i3.547] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has been one of the deadliest of all cancers, with almost uniform lethality despite aggressive treatment. Recently, there have been important advances in the molecular, pathological and biological understanding of pancreatic cancer. Even after the emergence of recent new targeted agents and the use of multiple therapeutic combinations, no treatment option is viable in patients with advanced cancer. Developing novel strategies to target progression of PC is of intense interest. A small population of pancreatic cancer stem cells (CSCs) has been found to be resistant to chemotherapy and radiation therapy. CSCs are believed to be responsible for tumor initiation, progression and metastasis. The CSC research has recently achieved much progress in a variety of solid tumors, including pancreatic cancer to some extent. This leads to focus on understanding the role of pancreatic CSCs. The focus on CSCs may offer new targets for prevention and treatment of this deadly cancer. We review the most salient developments in important areas of pancreatic CSCs. Here, we provide a review of current updates and new insights on the role of CSCs in pancreatic tumor progression with special emphasis on DclK1 and Lgr5, signaling pathways altered by CSCs, and the role of CSCs in prevention and treatment of PC.
Collapse
|
49
|
Liu Y, Rager T, Johnson J, Enmark J, Besner GE. Enriched Intestinal Stem Cell Seeding Improves the Architecture of Tissue-Engineered Intestine. Tissue Eng Part C Methods 2015; 21:816-24. [PMID: 25603285 DOI: 10.1089/ten.tec.2014.0389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To develop a methodology to separate intestinal stem cell (ISC)-enriched crypts from differentiated epithelial cell (DEC)-containing villi to improve the morphology of tissue-engineered intestine (TEI). METHODS Small intestinal tissues from 5- to 7-day-old transgenic Lgr5-EGFP mice (with fluorescently labeled ISCs) were used to measure the height of villi and the depth of crypts. Based on the significant size difference between crypts and villi, a novel cell filtration system was developed. Filtration of mixed organoid units from full-thickness intestine of transgenic Lgr5-EGFP mice allowed determination of the percentage of ISCs in the different size-based filtration fractions obtained. In vivo, 5-7-day-old Lewis rat pups were used as cell donors to obtain purified crypts and villi, and the dams of the pups served as recipients. Flat and tubular polyglycolic acid (PGA) scaffolds were seeded with either ISC-enriched crypts or DEC-containing villi and implanted intra-abdominally on the anterior abdominal wall. After 1, 3, 7, 14, 21, and 28 days of in vivo incubation, explants were processed for histologic evaluation. RESULTS Small intestine from transgenic Lgr5-EGFP mice contained villi with an average height of 134.89±41.91 μm and crypts with an average depth of 49.59±8.95 μm. After filtration, we found that the 100-200 μm fractions contained relatively pure villi in which DECs were located, whereas the 25-70 μm range fractions contained concentrated crypts in which ISCs were located. In vivo, flat PGA scaffolds implanted with purified crypts formed well-developed mucosa by day 14 postimplantation, whereas flat scaffolds seeded with villi were replaced with fibrous tissue. Tubular scaffolds seeded with the crypt fraction developed a well-formed mucosal layer on the interior surface, with 80.9% circumferential mucosal engraftment and an average villous height of 478±65 μm, which was very close to native intestine (512±98 μm), whereas tubular scaffolds seeded with the villous fraction only had 21.7% circumferential mucosal engraftment and an average villous height of 243±78 μm. CONCLUSION The novel filtration system described can effectively and efficiently isolate ISC-containing crypts. TEI produced from ISC-containing crypts has an improved morphology that is similar to native intestine.
Collapse
Affiliation(s)
- Yanchun Liu
- 1 Department of Pediatric Surgery and The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Terrence Rager
- 1 Department of Pediatric Surgery and The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | | | | | - Gail E Besner
- 1 Department of Pediatric Surgery and The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| |
Collapse
|
50
|
Phosphorylation of Smad2/3 at specific linker threonine indicates slow-cycling intestinal stem-like cells before reentry to cell cycle. Dig Dis Sci 2015; 60:362-74. [PMID: 25185661 DOI: 10.1007/s10620-014-3348-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 08/25/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Quiescent (slow-cycling) and active (rapid-cycling) stem cells are demonstrated in small intestines. We have identified significant expression of Smad2/3, phosphorylated at specific linker threonine residues (pSmad2/3L-Thr), in murine stomach, and suggested these cells are epithelial stem cells. AIM Here, we explore whether pSmad2/3L-Thr could serve as a biomarker for small intestine and colon stem cells. METHODS We examined small intestines and colons from C57BL/6 mice and colons with dextran sulfate sodium (DSS)-induced colitis. We performed double-immunofluorescent staining of pSmad2/3L-Thr with Ki67, cytokeratin 8, chromogranin A, CDK4, DCAMKL1, and Musashi-1. Small intestines and colons from Lgr5-EGFP knock-in mice were examined by pSmad2/3L-Thr immunofluorescent staining. To examine BrdU label retention of pSmad2/3L-Thr immunostaining-positive cells, we collected specimens after BrdU administration and observed double-immunofluorescent staining of pSmad2/3L-Thr with BrdU. RESULTS In small intestines and colons, pSmad2/3L-Thr immunostaining-strongly positive cells were detected around crypt bases. Immunohistochemical co-localization of pSmad2/3L-Thr with Ki67 was not observed. pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with cytokeratin 8, CDK4, and Musashi-1 and different localization from chromogranin A and DCAMKL1 immunostaining-positive cells. Under a light microscope, pSmad2/3L-Thr immunostaining-strongly positive cells were morphologically undifferentiated. In Lgr5-EGFP knock-in mice, some but not all pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with Lgr5. pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with BrdU at 5, 10, and 15 days after administration. In DSS-induced colitis, pSmad2/3L-Thr and Ki67 immunostaining-positive cells increased in the regeneration phase and decreased in the injury phase. CONCLUSION In murine small intestines and colons, we suggest pSmad2/3L-Thr immunostaining-strongly positive cells are epithelial stem-like cells just before reentry to the cell cycle.
Collapse
|