1
|
Karimnia N, Harris J, Heazlewood SY, Cao B, Nilsson SK. Metabolic regulation of aged hematopoietic stem cells: key players and mechanisms. Exp Hematol 2023; 128:2-9. [PMID: 37778498 DOI: 10.1016/j.exphem.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Nazanin Karimnia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; School of Clinical Sciences, Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Shen Y Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| |
Collapse
|
2
|
Schneckmann R, Döring M, Gerfer S, Gorressen S, Heitmeier S, Helten C, Polzin A, Jung C, Kelm M, Fender AC, Flögel U, Grandoch M. Rivaroxaban attenuates neutrophil maturation in the bone marrow niche. Basic Res Cardiol 2023; 118:31. [PMID: 37580509 PMCID: PMC10425524 DOI: 10.1007/s00395-023-01001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Pharmacological inhibition of factor Xa by rivaroxaban has been shown to mediate cardioprotection and is frequently used in patients with, e.g., atrial fibrillation. Rivaroxaban's anti-inflammatory actions are well known, but the underlying mechanisms are still incompletely understood. To date, no study has focused on the effects of rivaroxaban on the bone marrow (BM), despite growing evidence that the BM and its activation are of major importance in the development/progression of cardiovascular disease. Thus, we examined the impact of rivaroxaban on BM composition under homeostatic conditions and in response to a major cardiovascular event. Rivaroxaban treatment of mice for 7 days markedly diminished mature leukocytes in the BM. While apoptosis of BM-derived mature myeloid leukocytes was unaffected, lineage-negative BM cells exhibited a differentiation arrest at the level of granulocyte-monocyte progenitors, specifically affecting neutrophil maturation via downregulation of the transcription factors Spi1 and Csfr1. To assess whether this persists also in situations of increased leukocyte demand, mice were subjected to cardiac ischemia/reperfusion injury (I/R): 7 d pretreatment with rivaroxaban led to reduced cardiac inflammation 72 h after I/R and lowered circulating leukocyte numbers. However, BM myelopoiesis showed a rescue of the leukocyte differentiation arrest, indicating that rivaroxaban's inhibitory effects are restricted to homeostatic conditions and are mainly abolished during emergency hematopoiesis. In translation, ST-elevation MI patients treated with rivaroxaban also exhibited reduced circulating leukocyte numbers. In conclusion, we demonstrate that rivaroxaban attenuates neutrophil maturation in the BM, which may offer a therapeutic option to limit overshooting of the immune response after I/R.
Collapse
Affiliation(s)
- R Schneckmann
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - M Döring
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - S Gerfer
- Department of Cardiothoracic Surgery, Heart Center of the University Hospital of Cologne, Cologne, Germany
| | - S Gorressen
- Institute for Pharmacology Düsseldorf, Medical Faculty, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - S Heitmeier
- Research & Development Pharmaceuticals, Bayer AG, Acute Hospital Research, Wuppertal, Germany
| | - C Helten
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - A Polzin
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - C Jung
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - M Kelm
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - A C Fender
- Institute of Pharmacology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - U Flögel
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - M Grandoch
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
4
|
Heazlewood SY, Ahmad T, Cao B, Cao H, Domingues M, Sun X, Heazlewood CK, Li S, Williams B, Fulton M, White JF, Nebl T, Nefzger CM, Polo JM, Kile BT, Kraus F, Ryan MT, Sun YB, Choong PFM, Ellis SL, Anko ML, Nilsson SK. High ploidy large cytoplasmic megakaryocytes are hematopoietic stem cells regulators and essential for platelet production. Nat Commun 2023; 14:2099. [PMID: 37055407 PMCID: PMC10102126 DOI: 10.1038/s41467-023-37780-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Megakaryocytes (MK) generate platelets. Recently, we and others, have reported MK also regulate hematopoietic stem cells (HSC). Here we show high ploidy large cytoplasmic megakaryocytes (LCM) are critical negative regulators of HSC and critical for platelet formation. Using a mouse knockout model (Pf4-Srsf3Δ/Δ) with normal MK numbers, but essentially devoid of LCM, we demonstrate a pronounced increase in BM HSC concurrent with endogenous mobilization and extramedullary hematopoiesis. Severe thrombocytopenia is observed in animals with diminished LCM, although there is no change in MK ploidy distribution, uncoupling endoreduplication and platelet production. When HSC isolated from a microenvironment essentially devoid of LCM reconstitute hematopoiesis in lethally irradiated mice, the absence of LCM increases HSC in BM, blood and spleen, and the recapitulation of thrombocytopenia. In contrast, following a competitive transplant using minimal numbers of WT HSC together with HSC from a microenvironment with diminished LCM, sufficient WT HSC-generated LCM regulates a normal HSC pool and prevents thrombocytopenia. Importantly, LCM are conserved in humans.
Collapse
Affiliation(s)
- Shen Y Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Tanveer Ahmad
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Huimin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Melanie Domingues
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Chad K Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Songhui Li
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Madeline Fulton
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Jacinta F White
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
| | - Tom Nebl
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
| | - Christian M Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jose M Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
| | - Benjamin T Kile
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Felix Kraus
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michael T Ryan
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Yu B Sun
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
| | - Peter F M Choong
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
- Bone and Soft Tissue Sarcoma Service, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Orthopaedics, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Sarah L Ellis
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Minna-Liisa Anko
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Amit M, Xie T, Gleber-Netto FO, Hunt PJ, Mehta GU, Bell D, Silverman DA, Yaman I, Ye Y, Burks JK, Fuller GN, Gidley PW, Nader ME, Raza SM, DeMonte F. Distinct immune signature predicts progression of vestibular schwannoma and unveils a possible viral etiology. J Exp Clin Cancer Res 2022; 41:292. [PMID: 36195959 PMCID: PMC9531347 DOI: 10.1186/s13046-022-02473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The management of sub-totally resected sporadic vestibular schwannoma (VS) may include observation, re-resection or irradiation. Identifying the optimal choice can be difficult due to the disease's variable progression rate. We aimed to define an immune signature and associated transcriptomic fingerprint characteristic of rapidly-progressing VS to elucidate the underpinnings of rapidly progressing VS and identify a prognostic model for determining rate of progression. METHODS We used multiplex immunofluorescence to characterize the immune microenvironment in 17 patients with sporadic VS treated with subtotal surgical resection alone. Transcriptomic analysis revealed differentially-expressed genes and dysregulated pathways when comparing rapidly-progressing VS to slowly or non-progressing VS. RESULTS Rapidly progressing VS was distinctly enriched in CD4+, CD8+, CD20+, and CD68+ immune cells. RNA data indicated the upregulation of anti-viral innate immune response and T-cell senescence. K - Top Scoring Pair analysis identified 6 pairs of immunosenescence-related genes (CD38-KDR, CD22-STAT5A, APCS-CXCR6, MADCAM1-MPL, IL6-NFATC3, and CXCL2-TLR6) that had high sensitivity (100%) and specificity (78%) for identifying rapid VS progression. CONCLUSION Rapid progression of residual vestibular schwannoma following subtotal surgical resection has an underlying immune etiology that may be virally originating; and despite an abundant adaptive immune response, T-cell immunosenescence may be associated with rapid progression of VS. These findings provide a rationale for clinical trials evaluating immunotherapy in patients with rapidly progressing VS.
Collapse
Affiliation(s)
- Moran Amit
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Tongxin Xie
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Frederico O. Gleber-Netto
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Patrick J. Hunt
- grid.39382.330000 0001 2160 926XMedical Scientist Training Program, Baylor College of Medicine, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Gautam U. Mehta
- grid.240145.60000 0001 2291 4776Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.417670.30000 0001 0357 1050Division of Neurosurgery, House Ear Institute, Los Angeles, CA USA
| | - Diana Bell
- grid.410425.60000 0004 0421 8357Anatomic Pathology, Head and Neck Disease Alignment Team, City of Hope Comprehensive Cancer Center, Duarte, CA USA ,grid.240145.60000 0001 2291 4776Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Deborah A. Silverman
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ismail Yaman
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yi Ye
- grid.137628.90000 0004 1936 8753Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY USA ,grid.137628.90000 0004 1936 8753Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY USA ,grid.137628.90000 0004 1936 8753Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY USA
| | - Jared K. Burks
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Gregory N. Fuller
- grid.240145.60000 0001 2291 4776Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Brain Tumor Center, The University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Paul W. Gidley
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marc-Elie Nader
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Shaan M. Raza
- grid.240145.60000 0001 2291 4776Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Franco DeMonte
- grid.240145.60000 0001 2291 4776Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
6
|
Alvarez MB, Xu L, Childress PJ, Maupin KA, Mohamad SF, Chitteti BR, Himes E, Olivos DJ, Cheng YH, Conway SJ, Srour EF, Kacena MA. Megakaryocyte and Osteoblast Interactions Modulate Bone Mass and Hematopoiesis. Stem Cells Dev 2019; 27:671-682. [PMID: 29631496 DOI: 10.1089/scd.2017.0178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence demonstrates that megakaryocytes (MK) play key roles in regulating skeletal homeostasis and hematopoiesis. To test if the loss of MK negatively impacts osteoblastogenesis and hematopoiesis, we generated conditional knockout mice where Mpl, the receptor for the main MK growth factor, thrombopoietin, was deleted specifically in MK (Mplf/f;PF4cre). Unexpectedly, at 12 weeks of age, these mice exhibited a 10-fold increase in platelets, a significant expansion of hematopoietic/mesenchymal precursors, and a remarkable 20-fold increase in femoral midshaft bone volume. We then investigated whether MK support hematopoietic stem cell (HSC) function through the interaction of MK with osteoblasts (OB). LSK cells (Lin-Sca1+CD117+, enriched HSC population) were co-cultured with OB+MK for 1 week (1wk OB+MK+LSK) or OB alone (1wk OB+LSK). A significant increase in colony-forming units was observed with cells from 1wk OB+MK cultures. Competitive repopulation studies demonstrated significantly higher engraftment in mice transplanted with cells from 1wk OB+MK+LSK cultures compared to 1wk OB+LSK or LSK cultured alone for 1 week. Furthermore, single-cell expression analysis of OB cultured±MK revealed adiponectin as the most significantly upregulated MK-induced gene, which is required for optimal long-term hematopoietic reconstitution. Understanding the interactions between MK, OB, and HSC can inform the development of novel treatments to enhance both HSC recovery following myelosuppressive injuries, as well as bone loss diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Marta B Alvarez
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - LinLin Xu
- 2 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Paul J Childress
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Kevin A Maupin
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Safa F Mohamad
- 2 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | | | - Evan Himes
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - David J Olivos
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Ying-Hua Cheng
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Simon J Conway
- 3 Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | - Edward F Srour
- 2 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,3 Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | - Melissa A Kacena
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
7
|
Osteopontin is An Important Regulative Component of the Fetal Bone Marrow Hematopoietic Stem Cell Niche. Cells 2019; 8:cells8090985. [PMID: 31461896 PMCID: PMC6770910 DOI: 10.3390/cells8090985] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN) is an important component in both bone and blood regulation, functioning as a bridge between the two. Previously, thrombin-cleaved osteopontin (trOPN), the dominant form of OPN in adult bone marrow (BM), was demonstrated to be a critical negative regulator of adult hematopoietic stem cells (HSC) via interactions with α4β1 and α9β1 integrins. We now demonstrate OPN is also required for fetal hematopoiesis in maintaining the HSC and progenitor pool in fetal BM. Specifically, we showed that trOPN is highly expressed in fetal BM and its receptors, α4β1 and α9β1 integrins, are both highly expressed and endogenously activated on fetal BM HSC and progenitors. Notably, the endogenous activation of integrins expressed by HSC was attributed to high concentrations of three divalent metal cations, Ca2+, Mg2+ and Mn2+, which were highly prevalent in developing fetal BM. In contrast, minimal levels of OPN were detected in fetal liver, and α4β1 and α9β1 integrins expressed by fetal liver HSC were not in the activated state, thereby permitting the massive expansion of HSC and progenitors required during early fetal hematopoiesis. Consistent with these results, no differences in the number or composition of hematopoietic cells in the liver of fetal OPN-/- mice were detected, but significant increases in the hematopoietic progenitor pool in fetal BM as well as an increase in the BM HSC pool following birth and into adulthood were observed. Together, the data demonstrates OPN is a necessary negative regulator of fetal and neonatal BM progenitors and HSC, and it exhibits preserved regulatory roles during early development, adulthood and ageing.
Collapse
|
8
|
Woods B, Chen W, Chiu S, Marinaccio C, Fu C, Gu L, Bulic M, Yang Q, Zouak A, Jia S, Suraneni PK, Xu K, Levine RL, Crispino JD, Wen QJ. Activation of JAK/STAT Signaling in Megakaryocytes Sustains Myeloproliferation In Vivo. Clin Cancer Res 2019; 25:5901-5912. [PMID: 31217200 DOI: 10.1158/1078-0432.ccr-18-4089] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/26/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE The myeloproliferative neoplasms (MPN), including polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are characterized by the expansion of the erythroid, megakaryocytic, and granulocytic lineages. A common feature of these disorders is the presence of abnormal megakaryocytes, which have been implicated as causative agents in the development of bone marrow fibrosis. However, the specific contributions of megakaryocytes to MPN pathogenesis remain unclear. EXPERIMENTAL DESIGN We used Pf4-Cre transgenic mice to drive expression of JAK2V617F in megakaryocyte lineage-committed hematopoietic cells. We also assessed the critical role of mutant megakaryocytes in MPN maintenance through cell ablation studies in JAK2V617F and MPLW515L BMT models of MPN. RESULTS JAK2V617F -mutant presence in megakaryocytes was sufficient to induce enhanced erythropoiesis and promote fibrosis, which leads to a myeloproliferative state with expansion of mutant and nonmutant hematopoietic cells. The increased erythropoiesis was associated with elevated IL6 level, which was also required for aberrant erythropoiesis in vivo. Furthermore, depletion of megakaryocytes in the JAK2V617F and MPLW515L BMT models ameliorated polycythemia and leukocytosis in addition to expected effects on megakaryopoiesis. CONCLUSIONS Our observations reveal that JAK/STAT pathway activation in megakaryocytes induces myeloproliferation and is necessary for MPN maintenance in vivo. These observations indicate that MPN clone can influence the behavior of the wild-type hematopoietic milieu, at least, in part, via altered production of proinflammatory cytokines and chemokines. Our findings resonate with patients who present with a clinical MPN and a low JAK2V617F allele burden, and support the development of MPN therapies aimed at targeting megakaryocytes.
Collapse
Affiliation(s)
- Brittany Woods
- Human Oncology and Pathogenesis Program, Center for Hematologic Malignancies and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wei Chen
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, China
| | - Sophia Chiu
- Human Oncology and Pathogenesis Program, Center for Hematologic Malignancies and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Chunling Fu
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, China
| | - Lilly Gu
- Human Oncology and Pathogenesis Program, Center for Hematologic Malignancies and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinka Bulic
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anouar Zouak
- Human Oncology and Pathogenesis Program, Center for Hematologic Malignancies and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shengxian Jia
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | | | - Kailin Xu
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, China
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Center for Hematologic Malignancies and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Qiang Jeremy Wen
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
9
|
Hoffman CM, Han J, Calvi LM. Impact of aging on bone, marrow and their interactions. Bone 2019; 119:1-7. [PMID: 30010082 DOI: 10.1016/j.bone.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Hematopoiesis in land dwelling vertebrates and marine mammals occurs within the bone marrow, continually providing mature progeny over the course of an organism's lifetime. This conserved dependency highlights the critical relationship between these two organs, yet the skeletal and hematopoietic systems are often thought of as separate. In fact, data are beginning to show that skeletal disease pathogenesis influences hematopoiesis and viceversa, offering novel opportunities to approach disease affecting bone and blood. With a growing global population of aged individuals, interest has focused on cell autonomous changes in hematopoietic and skeletal systems that result in dysfunction. The purpose of this review is to summarize the literature on aging effects in both fields, and provide critical examples of organ cross-talk in the aging process.
Collapse
Affiliation(s)
- Corey M Hoffman
- University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jimin Han
- University of Rochester Medical Center, Rochester, NY, United States of America
| | - Laura M Calvi
- University of Rochester Medical Center, Rochester, NY, United States of America.
| |
Collapse
|
10
|
Extravascular coagulation in hematopoietic stem and progenitor cell regulation. Blood 2018; 132:123-131. [PMID: 29866813 DOI: 10.1182/blood-2017-12-768986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
The hemostatic system plays pivotal roles in injury repair, innate immunity, and adaptation to inflammatory challenges. We review the evidence that these vascular-protective mechanisms have nontraditional roles in hematopoietic stem cell (HSC) maintenance in their physiological bone marrow (BM) niches at steady-state and under stress. Expression of coagulation factors and the extrinsic coagulation initiator tissue factor by osteoblasts, tissue-resident macrophages, and megakaryocytes suggests that endosteal and vascular HSC niches are functionally regulated by extravascular coagulation. The anticoagulant endothelial protein C receptor (EPCR; Procr) is highly expressed by primitive BM HSCs and endothelial cells. EPCR is associated with its major ligand, activated protein C (aPC), in proximity to thrombomodulin-positive blood vessels, enforcing HSC integrin α4 adhesion and chemotherapy resistance in the context of CXCL12-CXCR4 niche retention signals. Protease-activated receptor 1-biased signaling by EPCR-aPC also maintains HSC retention, whereas thrombin signaling activates HSC motility and BM egress. Furthermore, HSC mobilization under stress is enhanced by the fibrinolytic and complement cascades that target HSCs and their BM niches. In addition, coagulation, fibrinolysis, and HSC-derived progeny, including megakaryocytes, synergize to reestablish functional perivascular HSC niches during BM stress. Therapeutic restoration of the anticoagulant pathway has preclinical efficacy in reversing BM failure following radiation injury, but questions remain about how antithrombotic therapy influences extravascular coagulation in HSC maintenance and hematopoiesis.
Collapse
|
11
|
|
12
|
Magdaleno F, Ge X, Fey H, Lu Y, Gaskell H, Blajszczak CC, Aloman C, Fiel MI, Nieto N. Osteopontin deletion drives hematopoietic stem cell mobilization to the liver and increases hepatic iron contributing to alcoholic liver disease. Hepatol Commun 2018; 2:84-98. [PMID: 29404515 PMCID: PMC5776866 DOI: 10.1002/hep4.1116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the role of osteopontin (OPN) in hematopoietic stem cell (HPSC) mobilization to the liver and its contribution to alcoholic liver disease (ALD). We analyzed young (14-16 weeks) and old (>1.5 years) wild-type (WT) littermates and global Opn knockout (Opn-/- ) mice for HPSC mobilization to the liver. In addition, WT and Opn-/- mice were chronically fed the Lieber-DeCarli diet for 7 weeks. Bone marrow (BM), blood, spleen, and liver were analyzed by flow cytometry for HPSC progenitors and polymorphonuclear neutrophils (PMNs). Chemokines, growth factors, and cytokines were measured in serum and liver. Prussian blue staining for iron deposits and naphthol AS-D chloroacetate esterase staining for PMNs were performed on liver sections. Hematopoietic progenitors were lower in liver and BM of young compared to old Opn-/- mice. Granulocyte colony-stimulating factor and macrophage colony-stimulating factor were increased in Opn-/- mice, suggesting potential migration of HPSCs from the BM to the liver. Furthermore, ethanol-fed Opn-/- mice showed significant hepatic PMN infiltration and hemosiderin compared to WT mice. As a result, ethanol feeding caused greater liver injury in Opn-/- compared to WT mice. Conclusion: Opn deletion promotes HPSC mobilization, PMN infiltration, and iron deposits in the liver and thereby enhances the severity of ALD. The age-associated contribution of OPN to HPSC mobilization to the liver, the prevalence of PMNs, and accumulation of hepatic iron, which potentiates oxidant stress, reveal novel signaling mechanisms that could be targeted for therapeutic benefit in patients with ALD. (Hepatology Communications 2018;2:84-98).
Collapse
Affiliation(s)
| | - Xiaodong Ge
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Holger Fey
- Division of Digestive DiseasesRush University Medical CenterChicagoIL
| | - Yongke Lu
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Harriet Gaskell
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
| | | | - Costica Aloman
- Division of Digestive DiseasesRush University Medical CenterChicagoIL
| | - M. Isabel Fiel
- Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Natalia Nieto
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
- Department of Medicine, Division of Gastroenterology and HepatologyUniversity of Illinois at ChicagoChicagoIL
| |
Collapse
|
13
|
Hoggatt J, Kfoury Y, Scadden DT. Hematopoietic Stem Cell Niche in Health and Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:555-81. [PMID: 27193455 DOI: 10.1146/annurev-pathol-012615-044414] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Regulation of stem cells in adult tissues is a key determinant of how well an organism can respond to the stresses of physiological challenge and disease. This is particularly true of the hematopoietic system, where demands on host defenses can call for an acute increase in cell production. Hematopoietic stem cells receive the regulatory signals for cell production in adult mammals in the bone marrow, a tissue with higher-order architectural and functional organization than previously appreciated. Here, we review the data defining particular structural components and heterologous cells in the bone marrow that participate in hematopoietic stem cell function. Further, we explore the case for stromal-hematopoietic cell interactions contributing to neoplastic myeloid disease. As the hematopoietic regulatory networks in the bone marrow are revealed, it is anticipated that strategies will emerge for how to enhance or inhibit production of specific blood cells. In that way, the control of hematopoiesis will enter the domain of therapies to modulate broad aspects of hematopoiesis, both normal and malignant.
Collapse
Affiliation(s)
- Jonathan Hoggatt
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114;
| | - Youmna Kfoury
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114;
| | - David T Scadden
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114;
| |
Collapse
|
14
|
Domingues MJ, Cao H, Heazlewood SY, Cao B, Nilsson SK. Niche Extracellular Matrix Components and Their Influence on HSC. J Cell Biochem 2017; 118:1984-1993. [PMID: 28112429 DOI: 10.1002/jcb.25905] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/16/2022]
Abstract
Maintenance of hematopoietic stem cells (HSC) takes place in a highly specialized microenvironment within the bone marrow. Technological improvements, especially in the field of in vivo imaging, have helped unravel the complexity of the niche microenvironment and have completely changed the classical concept from what was previously believed to be a static supportive platform, to a dynamic microenvironment tightly regulating HSC homeostasis through the complex interplay between diverse cell types, secreted factors, extracellular matrix molecules, and the expression of different transmembrane receptors. To add to the complexity, non-protein based metabolites have also been recognized as a component of the bone marrow niche. The objective of this review is to discuss the current understanding on how the different extracellular matrix components of the niche regulate HSC fate, both during embryonic development and in adulthood. Special attention will be provided to the description of non-protein metabolites, such as lipids and metal ions, which contribute to the regulation of HSC behavior. J. Cell. Biochem. 118: 1984-1993, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mélanie J Domingues
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Huimin Cao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Shen Y Heazlewood
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Susan K Nilsson
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
15
|
Levesque JP, Winkler IG. Cell Adhesion Molecules in Normal and Malignant Hematopoiesis: from Bench to Bedside. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Ramasamy SK, Kusumbe AP, Itkin T, Gur-Cohen S, Lapidot T, Adams RH. Regulation of Hematopoiesis and Osteogenesis by Blood Vessel-Derived Signals. Annu Rev Cell Dev Biol 2016; 32:649-675. [PMID: 27576121 DOI: 10.1146/annurev-cellbio-111315-124936] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their conventional role as a versatile transport system, blood vessels provide signals controlling organ development, regeneration, and stem cell behavior. In the skeletal system, certain capillaries support perivascular osteoprogenitor cells and thereby control bone formation. Blood vessels are also a critical component of niche microenvironments for hematopoietic stem cells. Here we discuss key pathways and factors controlling endothelial cell behavior in bone, the role of vessels in osteogenesis, and the nature of vascular stem cell niches in bone marrow.
Collapse
Affiliation(s)
- Saravana K Ramasamy
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48169 Münster, Germany; .,Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Anjali P Kusumbe
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48169 Münster, Germany; .,Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Tomer Itkin
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel;
| | - Shiri Gur-Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel;
| | - Tsvee Lapidot
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel;
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48169 Münster, Germany; .,Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
17
|
Cao B, Zhang Z, Grassinger J, Williams B, Heazlewood CK, Churches QI, James SA, Li S, Papayannopoulou T, Nilsson SK. Therapeutic targeting and rapid mobilization of endosteal HSC using a small molecule integrin antagonist. Nat Commun 2016; 7:11007. [PMID: 26975966 PMCID: PMC4796355 DOI: 10.1038/ncomms11007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/10/2016] [Indexed: 12/24/2022] Open
Abstract
The inherent disadvantages of using granulocyte colony-stimulating factor (G-CSF) for hematopoietic stem cell (HSC) mobilization have driven efforts to identify alternate strategies based on single doses of small molecules. Here, we show targeting α9β1/α4β1 integrins with a single dose of a small molecule antagonist (BOP (N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)tyrosine)) rapidly mobilizes long-term multi-lineage reconstituting HSC. Synergistic engraftment augmentation is observed when BOP is co-administered with AMD3100. Impressively, HSC in equal volumes of peripheral blood (PB) mobilized with this combination effectively out-competes PB mobilized with G-CSF. The enhanced mobilization observed using BOP and AMD3100 is recapitulated in a humanized NODSCIDIL2Rγ−/− model, demonstrated by a significant increase in PB CD34+ cells. Using a related fluorescent analogue of BOP (R-BC154), we show that this class of antagonists preferentially bind human and mouse HSC and progenitors via endogenously primed/activated α9β1/α4β1 within the endosteal niche. These results support using dual α9β1/α4β1 inhibitors as effective, rapid and transient mobilization agents with promising clinical applications. Mobilizing haematopoietic stem cells to the peripheral blood has largely replaced bone marrow transplants as a strategy in the clinic. Here, Cao et al. report the use of an α9β1/α4β1 integrin antagonist to induce rapid mobilization of blood stem cells from the bone marrow in a humanized mouse model.
Collapse
Affiliation(s)
- Benjamin Cao
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Zhen Zhang
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - Jochen Grassinger
- University Hospital Regensberg, Department of Hematology and Oncology, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Brenda Williams
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chad K Heazlewood
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Quentin I Churches
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - Simon A James
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Songhui Li
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Thalia Papayannopoulou
- Department of Medicine/Hematology, University of Washington Seattle, 1705 NE Pacific, Box 357710, Seattle, Washington 98195-7710, USA
| | - Susan K Nilsson
- Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
18
|
Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood 2015; 127:616-25. [PMID: 26637787 DOI: 10.1182/blood-2015-06-653113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022] Open
Abstract
In vitro evidence suggests that the bone marrow microenvironment (BMME) is altered in myelodysplastic syndromes (MDSs). Here, we study the BMME in MDS in vivo using a transgenic murine model of MDS with hematopoietic expression of the translocation product NUP98-HOXD13 (NHD13). This model exhibits a prolonged period of cytopenias prior to transformation to leukemia and is therefore ideal to interrogate the role of the BMME in MDS. In this model, hematopoietic stem and progenitor cells (HSPCs) were decreased in NHD13 mice by flow cytometric analysis. The reduction in the total phenotypic HSPC pool in NHD13 mice was confirmed functionally with transplantation assays. Marrow microenvironmental cellular components of the NHD13 BMME were found to be abnormal, including increases in endothelial cells and in dysfunctional mesenchymal and osteoblastic populations, whereas megakaryocytes were decreased. Both CC chemokine ligand 3 and vascular endothelial growth factor, previously shown to be increased in human MDS, were increased in NHD13 mice. To assess whether the BMME contributes to disease progression in NHD13 mice, we performed transplantation of NHD13 marrow into NHD13 mice or their wild-type (WT) littermates. WT recipients as compared with NHD13 recipients of NHD13 marrow had a lower rate of the combined outcome of progression to leukemia and death. Moreover, hematopoietic function was superior in a WT BMME as compared with an NHD13 BMME. Our data therefore demonstrate a contributory role of the BMME to disease progression in MDS and support a therapeutic strategy whereby manipulation of the MDS microenvironment may improve hematopoietic function and overall survival.
Collapse
|