1
|
Haideri T, Lin J, Bao X, Lian XL. MAGIK: A rapid and efficient method to create lineage-specific reporters in human pluripotent stem cells. Stem Cell Reports 2024; 19:744-757. [PMID: 38579711 PMCID: PMC11103783 DOI: 10.1016/j.stemcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Precise insertion of fluorescent proteins into lineage-specific genes in human pluripotent stem cells (hPSCs) presents challenges due to low knockin efficiency and difficulties in isolating targeted cells. To overcome these hurdles, we present the modified mRNA (ModRNA)-based Activation for Gene Insertion and Knockin (MAGIK) method. MAGIK operates in two steps: first, it uses a Cas9-2A-p53DD modRNA with a mini-donor plasmid (without a drug selection cassette) to significantly enhance efficiency. Second, a deactivated Cas9 activator modRNA and a 'dead' guide RNA are used to temporarily activate the targeted gene, allowing for live cell sorting of targeted cells. Consequently, MAGIK eliminates the need for drug selection cassettes or labor-intensive single-cell colony screening, expediting precise gene editing. We showed MAGIK can be utilized to insert fluorescent proteins into various genes, including SOX17, NKX6.1, NKX2.5, and PDX1, across multiple hPSC lines. This underscores its robust performance and offers a promising solution for achieving knockin in hPSCs within a significantly shortened time frame.
Collapse
Affiliation(s)
- Tahir Haideri
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Jirong Lin
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Saleem A, Abbas MK, Wang Y, Lan F. hPSC gene editing for cardiac disease therapy. Pflugers Arch 2022; 474:1123-1132. [PMID: 36163402 DOI: 10.1007/s00424-022-02751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. However, the lack of human cardiomyocytes with proper genetic backgrounds limits the study of disease mechanisms. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have significantly advanced the study of these conditions. Moreover, hPSC-CMs made it easy to study CVDs using genome-editing techniques. This article discusses the applications of these techniques in hPSC for studying CVDs. Recently, several genome-editing systems have been used to modify hPSCs, including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9). We focused on the recent advancement of genome editing in hPSCs, which dramatically improved the efficiency of the cell-based mechanism study and therapy for cardiac diseases.
Collapse
Affiliation(s)
- Amina Saleem
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Research Institute Building, Beijinj Anzhen Hospital, Capital Medical University, Room 319, 2 Anzhen Road, Chaoyang District, Beijing, Beijing, 100029, China
| | - Muhammad Khawar Abbas
- BHMS Department, University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yongming Wang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- The Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction & Development in Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Research Institute Building, Beijinj Anzhen Hospital, Capital Medical University, Room 319, 2 Anzhen Road, Chaoyang District, Beijing, Beijing, 100029, China.
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Beijing, 100029, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Beijing, 100037, China.
| |
Collapse
|
3
|
Maria Cherian R, Prajapati C, Penttinen K, Häkli M, Koivisto JT, Pekkanen-Mattila M, Aalto-Setälä K. Fluorescent hiPSC-derived MYH6-mScarlet cardiomyocytes for real-time tracking, imaging, and cardiotoxicity assays. Cell Biol Toxicol 2022; 39:145-163. [PMID: 35870039 PMCID: PMC10042918 DOI: 10.1007/s10565-022-09742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
AbstractHuman induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) hold great potential in the cardiovascular field for human disease modeling, drug development, and regenerative medicine. However, multiple hurdles still exist for the effective utilization of hiPSC-CMs as a human-based experimental platform that can be an alternative to the current animal models. To further expand their potential as a research tool and bridge the translational gap, we have generated a cardiac-specific hiPSC reporter line that differentiates into fluorescent CMs using CRISPR-Cas9 genome editing technology. The CMs illuminated with the mScarlet fluorescence enable their non-invasive continuous tracking and functional cellular phenotyping, offering a real-time 2D/3D imaging platform. Utilizing the reporter CMs, we developed an imaging-based cardiotoxicity screening system that can monitor distinct drug-induced structural toxicity and CM viability in real time. The reporter fluorescence enabled visualization of sarcomeric disarray and displayed a drug dose–dependent decrease in its fluorescence. The study also has demonstrated the reporter CMs as a biomaterial cytocompatibility analysis tool that can monitor dynamic cell behavior and maturity of hiPSC-CMs cultured in various biomaterial scaffolds. This versatile cardiac imaging tool that enables real time tracking and high-resolution imaging of CMs has significant potential in disease modeling, drug screening, and toxicology testing.
Graphical abstract
Collapse
|
4
|
Lock R, Al Asafen H, Fleischer S, Tamargo M, Zhao Y, Radisic M, Vunjak-Novakovic G. A framework for developing sex-specific engineered heart models. NATURE REVIEWS. MATERIALS 2021; 7:295-313. [PMID: 34691764 PMCID: PMC8527305 DOI: 10.1038/s41578-021-00381-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 05/02/2023]
Abstract
The convergence of tissue engineering and patient-specific stem cell biology has enabled the engineering of in vitro tissue models that allow the study of patient-tailored treatment modalities. However, sex-related disparities in health and disease, from systemic hormonal influences to cellular-level differences, are often overlooked in stem cell biology, tissue engineering and preclinical screening. The cardiovascular system, in particular, shows considerable sex-related differences, which need to be considered in cardiac tissue engineering. In this Review, we analyse sex-related properties of the heart muscle in the context of health and disease, and discuss a framework for including sex-based differences in human cardiac tissue engineering. We highlight how sex-based features can be implemented at the cellular and tissue levels, and how sex-specific cardiac models could advance the study of cardiovascular diseases. Finally, we define design criteria for sex-specific cardiac tissue engineering and provide an outlook to future research possibilities beyond the cardiovascular system.
Collapse
Affiliation(s)
- Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Hadel Al Asafen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario Canada
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Yimu Zhao
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario Canada
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Medicine, Columbia University, New York, NY USA
| |
Collapse
|
5
|
Sontayananon N, Redwood C, Davies B, Gehmlich K. Fluorescent PSC-Derived Cardiomyocyte Reporter Lines: Generation Approaches and Their Applications in Cardiovascular Medicine. BIOLOGY 2020; 9:biology9110402. [PMID: 33207727 PMCID: PMC7697758 DOI: 10.3390/biology9110402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Recent advances have made pluripotent stem cell (PSC)-derived cardiomyocytes an attractive option to model both normal and diseased cardiac function at the single-cell level. However, in vitro differentiation yields heterogeneous populations of cardiomyocytes and other cell types, potentially confounding phenotypic analyses. Fluorescent PSC-derived cardiomyocyte reporter systems allow specific cell lineages to be labelled, facilitating cell isolation for downstream applications including drug testing, disease modelling and cardiac regeneration. In this review, the different genetic strategies used to generate such reporter lines are presented with an emphasis on their relative technical advantages and disadvantages. Next, we explore how the fluorescent reporter lines have provided insights into cardiac development and cardiomyocyte physiology. Finally, we discuss how exciting new approaches using PSC-derived cardiomyocyte reporter lines are contributing to progress in cardiac cell therapy with respect to both graft adaptation and clinical safety.
Collapse
Affiliation(s)
- Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK; (N.S.); (C.R.)
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK; (N.S.); (C.R.)
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
- Correspondence: (B.D.); (K.G.)
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK; (N.S.); (C.R.)
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (B.D.); (K.G.)
| |
Collapse
|
6
|
Scholler J, Groux K, Goureau O, Sahel JA, Fink M, Reichman S, Boccara C, Grieve K. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. LIGHT, SCIENCE & APPLICATIONS 2020; 9:140. [PMID: 32864115 PMCID: PMC7429964 DOI: 10.1038/s41377-020-00375-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/19/2020] [Accepted: 07/27/2020] [Indexed: 05/07/2023]
Abstract
Optical coherence tomography offers astounding opportunities to image the complex structure of living tissue but lacks functional information. We present dynamic full-field optical coherence tomography as a technique to noninvasively image living human induced pluripotent stem cell-derived retinal organoids. Coloured images with an endogenous contrast linked to organelle motility are generated, with submicrometre spatial resolution and millisecond temporal resolution, creating a way to identify specific cell types in living tissue via their function.
Collapse
Affiliation(s)
- Jules Scholler
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris, France
| | - Kassandra Groux
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012 France
- Fondation Ophtalmologique Rothschild, F-75019 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 United States
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris, France
| | - Sacha Reichman
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris, France
| | - Kate Grieve
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012 France
| |
Collapse
|
7
|
Schwach V, Slaats RH, Passier R. Human Pluripotent Stem Cell-Derived Cardiomyocytes for Assessment of Anticancer Drug-Induced Cardiotoxicity. Front Cardiovasc Med 2020; 7:50. [PMID: 32322588 PMCID: PMC7156610 DOI: 10.3389/fcvm.2020.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiotoxicity is a major cause of high attrition rates among newly developed drugs. Moreover, anti-cancer treatment-induced cardiotoxicity is one of the leading reasons of mortality in cancer survivors. Cardiotoxicity screening in vitro may improve predictivity of cardiotoxicity by novel drugs, using human pluripotent stem cell (hPSC)-derived-cardiomyocytes. Anthracyclines, including Doxorubicin, are widely used and highly effective chemotherapeutic agents for the treatment of different forms of malignancies. Unfortunately, anthracyclines cause many cardiac complications early or late after therapy. Anthracyclines exhibit their potent anti-cancer effect primarily via induction of DNA damage during the DNA replication phase in proliferative cells. In contrast, studies in animals and hPSC-cardiomyocytes have revealed that cardiotoxic effects particularly arise from (1) the generation of oxidative stress inducing mitochondrial dysfunction, (2) disruption of calcium homeostasis, and (3) changes in transcriptome and proteome, triggering apoptotic cell death. To increase the therapeutic index of chemotherapeutic Doxorubicin therapy several protective strategies have been developed or are under development, such as (1) reducing toxicity through modification of Doxorubicin (analogs), (2) targeted delivery of anthracyclines specifically to the tumor tissue or (3) cardioprotective agents that can be used in combination with Doxorubicin. Despite continuous progress in the field of cardio-oncology, cardiotoxicity is still one of the major complications of anti-cancer therapy. In this review, we focus on current hPSC-cardiomyocyte models for assessing anthracycline-induced cardiotoxicity and strategies for cardioprotection. In addition, we discuss latest developments toward personalized advanced pre-clinical models that are more closely recapitulating the human heart, which are necessary to support in vitro screening platforms with higher predictivity. These advanced models have the potential to reduce the time from bench-to-bedside of novel antineoplastic drugs with reduced cardiotoxicity.
Collapse
Affiliation(s)
- Verena Schwach
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Rolf H Slaats
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
8
|
A Novel Fluorescent Reporter System Identifies Laminin-511/521 as Potent Regulators of Cardiomyocyte Maturation. Sci Rep 2020; 10:4249. [PMID: 32144297 PMCID: PMC7060274 DOI: 10.1038/s41598-020-61163-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) hold great promise for disease modeling and drug discovery. However, PSC-CMs exhibit immature phenotypes in culture, and the lack of maturity limits their broad applications. While physical and functional analyses are generally used to determine the status of cardiomyocyte maturation, they could be time-consuming and often present challenges in comparing maturation-enhancing strategies. Therefore, there is a demand for a method to assess cardiomyocyte maturation rapidly and reproducibly. In this study, we found that Myomesin-2 (Myom2), encoding M-protein, is upregulated postnatally, and based on this, we targeted TagRFP to the Myom2 locus in mouse embryonic stem cells. Myom2-RFP+ PSC-CMs exhibited more mature phenotypes than RFP- cells in morphology, function and transcriptionally, conductive to sarcomere shortening assays. Using this system, we screened extracellular matrices (ECMs) and identified laminin-511/521 as potent enhancers of cardiomyocyte maturation. Together, we developed and characterized a novel fluorescent reporter system for the assessment of cardiomyocyte maturation and identified potent maturation-enhancing ECMs through this simple and rapid assay. This system is expected to facilitate use of PSC-CMs in a variety of scientific and medical investigations.
Collapse
|
9
|
Bao X, Adil MM, Muckom R, Zimmermann JA, Tran A, Suhy N, Xu Y, Sampayo RG, Clark DS, Schaffer DV. Gene Editing to Generate Versatile Human Pluripotent Stem Cell Reporter Lines for Analysis of Differentiation and Lineage Tracing. Stem Cells 2019; 37:1556-1566. [DOI: 10.1002/stem.3096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/22/2019] [Accepted: 08/23/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaoping Bao
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
- Davidson School of Chemical Engineering; Purdue University; West Lafayette Indiana USA
| | - Maroof M. Adil
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Riya Muckom
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Joshua A. Zimmermann
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Aurelie Tran
- Department of Molecular and Cell Biology; University of California; Berkeley California USA
| | - Natalie Suhy
- Department of Molecular and Cell Biology; University of California; Berkeley California USA
| | - Yibo Xu
- Davidson School of Chemical Engineering; Purdue University; West Lafayette Indiana USA
| | - Rocío G. Sampayo
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
- Department of Chemistry; University of California; Berkeley California USA
| | - David V. Schaffer
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
- Davidson School of Chemical Engineering; Purdue University; West Lafayette Indiana USA
- Department of Molecular and Cell Biology; University of California; Berkeley California USA
| |
Collapse
|
10
|
Devalla HD, Passier R. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med 2019; 10:10/435/eaah5457. [PMID: 29618562 DOI: 10.1126/scitranslmed.aah5457] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 07/15/2016] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Cellular models comprising cardiac cell types derived from human pluripotent stem cells are valuable for studying heart development and disease. We discuss transcriptional differences that define cellular identity in the heart, current methods for generating different cardiomyocyte subtypes, and implications for disease modeling, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands.
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands. .,Department of Applied Stem Cell Technologies, Technical Medical Center, University of Twente, 7500 AE Enschede, Netherlands
| |
Collapse
|
11
|
Vanslambrouck JM, Wilson SB, Tan KS, Soo JYC, Scurr M, Spijker HS, Starks LT, Neilson A, Cui X, Jain S, Little MH, Howden SE. A Toolbox to Characterize Human Induced Pluripotent Stem Cell-Derived Kidney Cell Types and Organoids. J Am Soc Nephrol 2019; 30:1811-1823. [PMID: 31492807 DOI: 10.1681/asn.2019030303] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The generation of reporter lines for cell identity, lineage, and physiologic state has provided a powerful tool in advancing the dissection of mouse kidney morphogenesis at a molecular level. Although use of this approach is not an option for studying human development in vivo, its application in human induced pluripotent stem cells (iPSCs) is now feasible. METHODS We used CRISPR/Cas9 gene editing to generate ten fluorescence reporter iPSC lines designed to identify nephron progenitors, podocytes, proximal and distal nephron, and ureteric epithelium. Directed differentiation to kidney organoids was performed according to published protocols. Using immunofluorescence and live confocal microscopy, flow cytometry, and cell sorting techniques, we investigated organoid patterning and reporter expression characteristics. RESULTS Each iPSC reporter line formed well patterned kidney organoids. All reporter lines showed congruence of endogenous gene and protein expression, enabling isolation and characterization of kidney cell types of interest. We also demonstrated successful application of reporter lines for time-lapse imaging and mouse transplantation experiments. CONCLUSIONS We generated, validated, and applied a suite of fluorescence iPSC reporter lines for the study of morphogenesis within human kidney organoids. This fluorescent iPSC reporter toolbox enables the visualization and isolation of key populations in forming kidney organoids, facilitating a range of applications, including cellular isolation, time-lapse imaging, protocol optimization, and lineage-tracing approaches. These tools offer promise for enhancing our understanding of this model system and its correspondence with human kidney morphogenesis.
Collapse
Affiliation(s)
| | - Sean B Wilson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joanne Y-C Soo
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Michelle Scurr
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - H Siebe Spijker
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lakshi T Starks
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Amber Neilson
- Department of Genetics, Genome Engineering and iPSC Center and
| | - Xiaoxia Cui
- Department of Genetics, Genome Engineering and iPSC Center and
| | - Sanjay Jain
- Department of Medicine, Kidney Translational Research Center, Washington University School of Medicine, St. Louis, Missouri; and
| | - Melissa Helen Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics and.,Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics and
| |
Collapse
|
12
|
Apáti Á, Varga N, Berecz T, Erdei Z, Homolya L, Sarkadi B. Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:61-75. [PMID: 30526128 DOI: 10.1080/17425255.2019.1558207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human pluripotent stem cells (hPSCs) are capable of differentiating into all types of cells in the body and so provide suitable toxicology screening systems even for hard-to-obtain human tissues. Since hPSCs can also be generated from differentiated cells and current gene editing technologies allow targeted genome modifications, hPSCs can be applied for drug toxicity screening both in normal and disease-specific models. Targeted hPSC differentiation is still a challenge but cardiac, neuronal or liver cells, and complex cellular models are already available for practical applications. Areas covered: The authors review new gene-editing and cell-biology technologies to generate sensitive toxicity screening systems based on hPSCs. Then the authors present the use of undifferentiated hPSCs for examining embryonic toxicity and discuss drug screening possibilities in hPSC-derived models. The authors focus on the application of human cardiomyocytes, hepatocytes, and neural cultures in toxicity testing, and discuss the recent possibilities for drug screening in a 'body-on-a-chip' model system. Expert opinion: hPSCs and their genetically engineered derivatives provide new possibilities to investigate drug toxicity in human tissues. The key issues in this regard are still the selection and generation of proper model systems, and the interpretation of the results in understanding in vivo drug effects.
Collapse
Affiliation(s)
- Ágota Apáti
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Nóra Varga
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Tünde Berecz
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Zsuzsa Erdei
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - László Homolya
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Balázs Sarkadi
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| |
Collapse
|
13
|
Goedel A, Zawada DM, Zhang F, Chen Z, Moretti A, Sinnecker D. Subtype-specific Optical Action Potential Recordings in Human Induced Pluripotent Stem Cell-derived Ventricular Cardiomyocytes. J Vis Exp 2018. [PMID: 30320759 DOI: 10.3791/58134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cardiomyocytes generated from human induced pluripotent stem cells (iPSC-CMs) are an emerging tool in cardiovascular research. Rather than being a homogenous population of cells, the iPSC-CMs generated by current differentiation protocols represent a mixture of cells with ventricular-, atrial-, and nodal-like phenotypes, which complicates phenotypic analyses. Here, a method to optically record action potentials specifically from ventricular-like iPSC-CMs is presented. This is achieved by lentiviral transduction with a construct in which a genetically-encoded voltage indicator is under the control of a ventricular-specific promoter element. When iPSC-CMs are transduced with this construct, the voltage sensor is expressed exclusively in ventricular-like cells, enabling subtype-specific optical membrane potential recordings using time-lapse fluorescence microscopy.
Collapse
Affiliation(s)
- Alexander Goedel
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance
| | - Dorota M Zawada
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich
| | - Fangfang Zhang
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich
| | - Zhifen Chen
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Alessandra Moretti
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance
| | - Daniel Sinnecker
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance;
| |
Collapse
|
14
|
Veevers J, Farah EN, Corselli M, Witty AD, Palomares K, Vidal JG, Emre N, Carson CT, Ouyang K, Liu C, van Vliet P, Zhu M, Hegarty JM, Deacon DC, Grinstein JD, Dirschinger RJ, Frazer KA, Adler ED, Knowlton KU, Chi NC, Martin JC, Chen J, Evans SM. Cell-Surface Marker Signature for Enrichment of Ventricular Cardiomyocytes Derived from Human Embryonic Stem Cells. Stem Cell Reports 2018; 11:828-841. [PMID: 30122443 PMCID: PMC6135222 DOI: 10.1016/j.stemcr.2018.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/01/2023] Open
Abstract
To facilitate understanding of human cardiomyocyte (CM) subtype specification, and the study of ventricular CM biology in particular, we developed a broadly applicable strategy for enrichment of ventricular cardiomyocytes (VCMs) derived from human embryonic stem cells (hESCs). A bacterial artificial chromosome transgenic H9 hESC line in which GFP expression was driven by the human ventricular-specific myosin light chain 2 (MYL2) promoter was generated, and screened to identify cell-surface markers specific for MYL2-GFP-expressing VCMs. A CD77+/CD200- cell-surface signature facilitated isolation of >97% cardiac troponin I-positive cells from H9 hESC differentiation cultures, with 65% expressing MYL2-GFP. This study provides a tool for VCM enrichment when using some, but not all, human pluripotent stem cell lines. Tools generated in this study can be utilized toward understanding CM subtype specification, and enriching for VCMs for therapeutic applications.
Collapse
Affiliation(s)
- Jennifer Veevers
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Elie N Farah
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mirko Corselli
- BD Biosciences, 11077 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alec D Witty
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karina Palomares
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jason G Vidal
- BD Biosciences, 11077 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nil Emre
- BD Biosciences, 11077 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Kunfu Ouyang
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Canzhao Liu
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Patrick van Vliet
- Skaggs School of Pharmacy, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maggie Zhu
- Skaggs School of Pharmacy, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeffrey M Hegarty
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Dekker C Deacon
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jonathan D Grinstein
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ralf J Dirschinger
- Skaggs School of Pharmacy, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Eric D Adler
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kirk U Knowlton
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Neil C Chi
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jody C Martin
- BD Biosciences, 11077 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ju Chen
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Sylvia M Evans
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Browne AW, Arnesano C, Harutyunyan N, Khuu T, Martinez JC, Pollack HA, Koos DS, Lee TC, Fraser SE, Moats RA, Aparicio JG, Cobrinik D. Structural and Functional Characterization of Human Stem-Cell-Derived Retinal Organoids by Live Imaging. Invest Ophthalmol Vis Sci 2017; 58:3311-3318. [PMID: 28672397 PMCID: PMC5495152 DOI: 10.1167/iovs.16-20796] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Human pluripotent stem cell (hPSC)-derived retinal organoids are a platform for investigating retinal development, pathophysiology, and cellular therapies. In contrast to histologic analysis in which multiple specimens fixed at different times are used to reconstruct developmental processes, repeated analysis of the same living organoids provides a more direct means to characterize changes. New live imaging modalities can provide insights into retinal organoid structure and metabolic function during in vitro growth. This study employed live tissue imaging to characterize retinal organoid development, including metabolic changes accompanying photoreceptor differentiation. Methods Live hPSC-derived retinal organoids at different developmental stages were examined for microanatomic organization and metabolic function by phase contrast microscopy, optical coherence tomography (OCT), fluorescence lifetime imaging microscopy (FLIM), and hyperspectral imaging (HSpec). Features were compared to those revealed by histologic staining, immunostaining, and microcomputed tomography (micro-CT) of fixed organoid tissue. Results We used FLIM and HSpec to detect changes in metabolic activity as organoids differentiated into organized lamellae. FLIM detected increased glycolytic activity and HSpec detected retinol and retinoic acid accumulation in the organoid outer layer, coinciding with photoreceptor genesis. OCT enabled imaging of lamellae formed during organoid maturation. Micro-CT revealed three-dimensional structure, but failed to detect lamellae. Conclusions Live imaging modalities facilitate real-time and nondestructive imaging of retinal organoids as they organize into lamellar structures. FLIM and HSpec enable rapid detection of lamellar structure and photoreceptor metabolism. Live imaging techniques may aid in the continuous evaluation of retinal organoid development in diverse experimental and cell therapy settings.
Collapse
Affiliation(s)
- Andrew W Browne
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Cosimo Arnesano
- Translational Imaging Center, University of Southern California, Los Angeles, California, United States 3Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States
| | - Narine Harutyunyan
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - Thien Khuu
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - Juan Carlos Martinez
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Harvey A Pollack
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States 6Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - David S Koos
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States 6Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - Thomas C Lee
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 4The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - Scott E Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, California, United States 3Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States 5The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States 7Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States
| | - Rex A Moats
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States 6Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, United States 7Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States
| | - Jennifer G Aparicio
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - David Cobrinik
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 4The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California, United States 5The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States 8Department of Biochemistry & Molecular Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| |
Collapse
|
16
|
Abstract
Defined genetic models based on human pluripotent stem cells have opened new avenues for understanding disease mechanisms and drug screening. Many of these models assume cell-autonomous mechanisms of disease but it is possible that disease phenotypes or drug responses will only be evident if all cellular and extracellular components of a tissue are present and functionally mature. To derive optimal benefit from such models, complex multicellular structures with vascular components that mimic tissue niches will thus likely be necessary. Here we consider emerging research creating human tissue mimics and provide some recommendations for moving the field forward.
Collapse
|
17
|
In Vitro Osteogenic Potential of Green Fluorescent Protein Labelled Human Embryonic Stem Cell-Derived Osteoprogenitors. Stem Cells Int 2016; 2016:1659275. [PMID: 28003831 PMCID: PMC5149650 DOI: 10.1155/2016/1659275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/27/2016] [Indexed: 01/26/2023] Open
Abstract
Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However, limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs) are potentially an unlimited source of healthy and functional osteoprogenitors (OPs) that could be utilized for bone regenerative applications. However, limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence, in this study, we aimed to establish hESC-derived OPs (hESC-OPs) expressing green fluorescent protein (GFP) and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPsGFP+ stably expressed high levels of GFP, CD73, CD90, and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1, RUNX2, OSTERIX, and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin, alkaline phosphatase, and collagen-I. In conclusion, we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future, these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration, safety, and therapeutic efficacy.
Collapse
|
18
|
Middelkamp HH, van der Meer AD, Hummel JM, Stamatialis DF, Mummery CL, Passier R, IJzerman MJ. Organs-on-Chips in Drug Development: The Importance of Involving Stakeholders in Early Health Technology Assessment. ACTA ACUST UNITED AC 2016. [DOI: 10.1089/aivt.2015.0029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Heleen H.T. Middelkamp
- Department of Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Andries D. van der Meer
- Department of Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - J. Marjan Hummel
- Department of Health Technology and Services Research, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Dimitrios F. Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Christine L. Mummery
- Department of Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Maarten J. IJzerman
- Department of Health Technology and Services Research, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
19
|
Bellayr IH, Marklein RA, Lo Surdo JL, Bauer SR, Puri RK. Identification of Predictive Gene Markers for Multipotent Stromal Cell Proliferation. Stem Cells Dev 2016; 25:861-73. [PMID: 27036644 DOI: 10.1089/scd.2015.0374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multipotent stromal cells (MSCs) are known for their distinctive ability to differentiate into different cell lineages, such as adipocytes, chondrocytes, and osteocytes. They can be isolated from numerous tissue sources, including bone marrow, adipose tissue, skeletal muscle, and others. Because of their differentiation potential and secretion of growth factors, MSCs are believed to have an inherent quality of regeneration and immune suppression. Cellular expansion is necessary to obtain sufficient numbers for use; however, MSCs exhibit a reduced capacity for proliferation and differentiation after several rounds of passaging. In this study, gene markers of MSC proliferation were identified and evaluated for their ability to predict proliferative quality. Microarray data of human bone marrow-derived MSCs were correlated with two proliferation assays. A collection of 24 genes were observed to significantly correlate with both proliferation assays (|r| >0.70) for eight MSC lines at multiple passages. These 24 identified genes were then confirmed using an additional set of MSCs from eight new donors using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The proliferative potential of the second set of MSCs was measured for each donor/passage for confluency fraction, fraction of EdU+ cells, and population doubling time. The second set of MSCs exhibited a greater proliferative potential at passage 4 in comparison to passage 8, which was distinguishable by 15 genes; however, only seven of the genes (BIRC5, CCNA2, CDC20, CDK1, PBK, PLK1, and SPC25) demonstrated significant correlation with MSC proliferation regardless of passage. Our analyses revealed that correlation between gene expression and proliferation was consistently reduced with the inclusion of non-MSC cell lines; therefore, this set of seven genes may be more strongly associated with MSC proliferative quality. Our results pave the way to determine the quality of an MSC population for a particular cellular therapy in lieu of an extended in vitro or in vivo assay.
Collapse
Affiliation(s)
- Ian H Bellayr
- 1 Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Ross A Marklein
- 2 Division of Cellular and Gene Therapies, Cellular and Tissue Therapies Branch, Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Jessica L Lo Surdo
- 2 Division of Cellular and Gene Therapies, Cellular and Tissue Therapies Branch, Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Steven R Bauer
- 2 Division of Cellular and Gene Therapies, Cellular and Tissue Therapies Branch, Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Raj K Puri
- 1 Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research , US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|