1
|
Tachino J, Togami Y, Matsumoto H, Matsubara T, Seno S, Ogura H, Oda J. Plasma proteomics profile-based comparison of torso versus brain injury: A prospective cohort study. J Trauma Acute Care Surg 2024; 97:557-565. [PMID: 38595266 PMCID: PMC11446512 DOI: 10.1097/ta.0000000000004356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Trauma-related deaths and posttraumatic sequelae are a global health concern, necessitating a deeper understanding of the pathophysiology to advance trauma therapy. Proteomics offers insights into identifying and analyzing plasma proteins associated with trauma and inflammatory conditions; however, current proteomic methods have limitations in accurately measuring low-abundance plasma proteins. This study compared plasma proteomics profiles of patients from different acute trauma subgroups to identify new therapeutic targets and devise better strategies for personalized medicine. METHODS This prospective observational single-center cohort study was conducted between August 2020 and September 2021 in the intensive care unit of Osaka University Hospital in Japan. Enrolling 59 consecutive patients with blunt trauma, we meticulously analyzed plasma proteomics profiles in participants with torso or head trauma, comparing them with those of controls (mild trauma). Using the Olink Explore 3072 instrument (Olink Proteomics AB, Uppsala, Sweden), we identified five endotypes (α-ε) via unsupervised hierarchical clustering. RESULTS The median time from injury to blood collection was 47 minutes [interquartile range, 36-64 minutes]. The torso trauma subgroup exhibited 26 unique proteins with significantly altered expression, while the head trauma subgroup showed 68 unique proteins with no overlap between the two. The identified endotypes included α (torso trauma, n = 8), β (young patients with brain injury, n = 5), γ (severe brain injury postsurgery, n = 8), δ (torso or brain trauma with mild hyperfibrinolysis, n = 18), and ε (minor trauma, n = 20). Patients with torso trauma showed changes in blood pressure, smooth muscle adaptation, hypermetabolism, and hypoxemia. Patients with traumatic brain injury had dysregulated blood coagulation and altered nerves regeneration and differentiation. CONCLUSION This study identified unique plasma protein expression patterns in patients with torso trauma and traumatic brain injury, helping categorize five distinct endotypes. Our findings may offer new insights for clinicians, highlighting potential strategies for personalized medicine and improved trauma-related care. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level III.
Collapse
|
2
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
3
|
Zhu Y, Luan C, Gong L, Gu Y, Wang X, Sun H, Chen Z, Zhou Q, Liu C, Shan Q, Gu X, Zhou S. SnRNA-seq reveals the heterogeneity of spinal ventral horn and mechanism of motor neuron axon regeneration. iScience 2023; 26:107264. [PMID: 37502257 PMCID: PMC10368823 DOI: 10.1016/j.isci.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Spinal motor neurons, the distinctive neurons of the central nervous system, extend into the peripheral nervous system and have outstanding ability of axon regeneration after injury. Here, we explored the heterogeneity of spinal ventral horn cells after rat sciatic nerve crush via single-nuclei RNA sequencing. Interestingly, regeneration mainly occurred in a Sncg+ and Anxa2+ motor neuron subtype (MN2) surrounded by a newly emerged microglia subtype (Mg6) after injury. Subsequently, microglia depletion slowed down the regeneration of sciatic nerve. OPCs were also involved into the regeneration process. Knockdown of Cacna2d2 in vitro and systemic blocking of Cacna2d2 in vivo improved the axon growth ability, hinting us the importance of Ca2+. Ultimately, we proposed three possible phases of motor neuron axon regeneration: preparation stage, early regeneration stage, and regeneration stage. Taken together, our study provided a resource for deciphering the underlying mechanism of motor neuron axon regeneration in a single cell dimension.
Collapse
Affiliation(s)
- Ye Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Chengcheng Luan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Qi Shan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
4
|
Xie W, Guo D, Li J, Yue L, Kang Q, Chen G, Zhou T, Wang H, Zhuang K, Leng L, Li H, Chen Z, Gao W, Zhang J. CEND1 deficiency induces mitochondrial dysfunction and cognitive impairment in Alzheimer's disease. Cell Death Differ 2022; 29:2417-2428. [PMID: 35732922 PMCID: PMC9751129 DOI: 10.1038/s41418-022-01027-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease featured with memory loss and cognitive function impairments. Chronic mitochondrial stress is a vital pathogenic factor for AD and finally leads to massive neuronal death. However, the underlying mechanism is unclear. By proteomic analysis, we identified a new mitochondrial protein, cell-cycle exit and neuronal differentiation 1 (CEND1), which was decreased significantly in the brain of 5xFAD mice. CEND1 is a neuronal specific protein and locates in the presynaptic mitochondria. Depletion of CEND1 leads to increased mitochondrial fission mediated by upregulation of dynamin related protein 1 (Drp1), resulting in abnormal mitochondrial functions. CEND1 deficiency leads to cognitive impairments in mice. Overexpression of CEND1 in the hippocampus of 5xFAD mice rescued cognitive deficits. Moreover, we identified that CDK5/p25 interacted with and phosphorylated CEND1 which promoted its degradation. Our study provides new mechanistic insights in mitochondrial function regulations by CEND1 in Alzheimer's disease.
Collapse
Affiliation(s)
- Wenting Xie
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Dong Guo
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jieyin Li
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lei Yue
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Qi Kang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guimiao Chen
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Tingwen Zhou
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Han Wang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kai Zhuang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lige Leng
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huifang Li
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenyi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Weiwei Gao
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350004, China.
| | - Jie Zhang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350004, China.
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
5
|
Wang R, Yang DX, Liu YL, Ding J, Guo Y, Ding WH, Tian HL, Yuan F. Cell cycle exit and neuronal differentiation 1-engineered embryonic neural stem cells enhance neuronal differentiation and neurobehavioral recovery after experimental traumatic brain injury. Neural Regen Res 2022; 17:130-136. [PMID: 34100448 PMCID: PMC8451571 DOI: 10.4103/1673-5374.314316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Our previous study showed that cell cycle exit and neuronal differentiation 1 (CEND1) may participate in neural stem cell cycle exit and oriented differentiation. However, whether CEND1-transfected neural stem cells can improve the prognosis of traumatic brain injury remained unclear. In this study, we performed quantitative proteomic analysis and found that after traumatic brain injury, CEND1 expression was downregulated in mouse brain tissue. Three days after traumatic brain injury, we transplanted CEND1-transfected neural stem cells into the area surrounding the injury site. We found that at 5 weeks after traumatic brain injury, transplantation of CEND1-transfected neural stem cells markedly alleviated brain atrophy and greatly improved neurological function. In vivo and in vitro results indicate that CEND1 overexpression inhibited the proliferation of neural stem cells, but significantly promoted their neuronal differentiation. Additionally, CEND1 overexpression reduced protein levels of Notch1 and cyclin D1, but increased levels of p21 in CEND1-transfected neural stem cells. Treatment with CEND1-transfected neural stem cells was superior to similar treatment without CEND1 transfection. These findings suggest that transplantation of CEND1-transfected neural stem cells is a promising cell therapy for traumatic brain injury. This study was approved by the Animal Ethics Committee of the School of Biomedical Engineering of Shanghai Jiao Tong University, China (approval No. 2016034) on November 25, 2016.
Collapse
Affiliation(s)
- Ren Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dian-Xu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Liang Liu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jun Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Guo
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wan-Hai Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Multimodal Therapeutic Effects of Neural Precursor Cells Derived from Human-Induced Pluripotent Stem Cells through Episomal Plasmid-Based Reprogramming in a Rodent Model of Ischemic Stroke. Stem Cells Int 2020; 2020:4061516. [PMID: 32269595 PMCID: PMC7125504 DOI: 10.1155/2020/4061516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/15/2020] [Accepted: 03/03/2020] [Indexed: 01/07/2023] Open
Abstract
Stem cell therapy is a promising option for treating functional deficits in the stroke-damaged brain. Induced pluripotent stem cells (iPSCs) are attractive sources for cell therapy as they can be efficiently differentiated into neural lineages. Episomal plasmids (EPs) containing reprogramming factors can induce nonviral, integration-free iPSCs. Thus, iPSCs generated by an EP-based reprogramming technique (ep-iPSCs) have an advantage over gene-integrating iPSCs for clinical applications. However, there are few studies regarding the in vivo efficacy of ep-iPSCs. In this study, we investigated the therapeutic potential of intracerebral transplantation of neural precursor cells differentiated from ep-iPSCs (ep-iPSC-NPCs) in a rodent stroke model. The ep-iPSC-NPCs were transplanted intracerebrally in a peri-infarct area in a rodent stroke model. Rats transplanted with fibroblasts and vehicle were used as controls. The ep-iPSC-NPC-transplanted animals exhibited functional improvements in behavioral and electrophysiological tests. A small proportion of ep-iPSC-NPCs were detected up to 12 weeks after transplantation and were differentiated into both neuronal and glial lineages. In addition, transplanted cells promoted endogenous brain repair, presumably via increased subventricular zone neurogenesis, and reduced poststroke inflammation and glial scar formation. Taken together, these results strongly suggest that intracerebral transplantation of ep-iPSC-NPCs is a useful therapeutic option to treat clinical stroke through multimodal therapeutic mechanisms.
Collapse
|
7
|
Xu JT, Qian Y, Wang W, Chen XX, Li Y, Li Y, Yang ZY, Song XB, Lu D, Deng XL. Effect of stromal cell-derived factor-1/CXCR4 axis in neural stem cell transplantation for Parkinson's disease. Neural Regen Res 2020; 15:112-119. [PMID: 31535659 PMCID: PMC6862426 DOI: 10.4103/1673-5374.264470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson's disease, but its specific mechanism of action is still unclear. Stromal cell-derived factor-1 and its receptor, chemokine receptor 4 (CXCR4), are important regulators of cell migration. We speculated that the CXCR4/stromal cell-derived factor 1 axis may be involved in the therapeutic effect of neural stem cell transplantation in the treatment of Parkinson's disease. A Parkinson's disease rat model was injected with 6-hydroxydopamine via the right ascending nigrostriatal dopaminergic pathway, and then treated with 5 μL of neural stem cell suspension (1.5 × 104/L) in the right substantia nigra. Rats were intraperitoneally injected once daily for 3 days with 1.25 mL/kg of the CXCR4 antagonist AMD3100 to observe changes after neural stem cell transplantation. Parkinson-like behavior in rats was detected using apomorphine-induced rotation. Immunofluorescence staining was used to determine the immunoreactivity of tyrosine hydroxylase, CXCR4, and stromal cell-derived factor-1 in the brain. Using quantitative real-time polymerase chain reaction, the mRNA expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra were measured. In addition, western blot assays were performed to analyze the protein expression of stromal cell-derived factor-1 and CXCR4. Our results demonstrated that neural stem cell transplantation noticeably reduced apomorphine-induced rotation, increased the mRNA and protein expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra, and enhanced the immunoreactivity of tyrosine hydroxylase, CXCR4, and stromal cell-derived factor-1 in the brain. Injection of AMD3100 inhibited the aforementioned effects. These findings suggest that the stromal cell-derived factor-1/CXCR4 axis may play a significant role in the therapeutic effect of neural stem cell transplantation in a rat model of Parkinson's disease. This study was approved by the Animal Care and Use Committee of Kunming Medical University, China (approval No. SYXKK2015-0002) on April 1, 2014.
Collapse
Affiliation(s)
- Jiao-Tian Xu
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuan Qian
- Diagnosis Prenatal Unit, Department of Obstetrics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming; The People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan Province, China
| | - Xiao-Xiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yang Li
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yu Li
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhi-Yong Yang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiao-Bin Song
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Di Lu
- Rehabilitation Engineering Research Laboratory, Biomedicine Engineering Research Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xing-Li Deng
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
8
|
Cend1, a Story with Many Tales: From Regulation of Cell Cycle Progression/Exit of Neural Stem Cells to Brain Structure and Function. Stem Cells Int 2019; 2019:2054783. [PMID: 31191667 PMCID: PMC6525816 DOI: 10.1155/2019/2054783] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Neural stem/precursor cells (NPCs) generate the large variety of neuronal phenotypes comprising the adult brain. The high diversity and complexity of this organ have its origin in embryonic life, during which NPCs undergo symmetric and asymmetric divisions and then exit the cell cycle and differentiate to acquire neuronal identities. During these processes, coordinated regulation of cell cycle progression/exit and differentiation is essential for generation of the appropriate number of neurons and formation of the correct structural and functional neuronal circuits in the adult brain. Cend1 is a neuronal lineage-specific modulator involved in synchronization of cell cycle exit and differentiation of neuronal precursors. It is expressed all along the neuronal lineage, from neural stem/progenitor cells to mature neurons, and is associated with the dynamics of neuron-generating divisions. Functional studies showed that Cend1 has a critical role during neurogenesis in promoting cell cycle exit and neuronal differentiation. Mechanistically, Cend1 acts via the p53-dependent/Cyclin D1/pRb signaling pathway as well as via a p53-independent route involving a tripartite interaction with RanBPM and Dyrk1B. Upon Cend1 function, Notch1 signaling is suppressed and proneural genes such as Mash1 and Neurogenins 1/2 are induced. Due to its neurogenic activity, Cend1 is a promising candidate therapeutic gene for brain repair, while the Cend1 minimal promoter is a valuable tool for neuron-specific gene delivery in the CNS. Mice with Cend1 genetic ablation display increased NPC proliferation, decreased migration, and higher levels of apoptosis during development. As a result, they show in the adult brain deficits in a range of motor and nonmotor behaviors arising from irregularities in cerebellar cortex lamination and impaired Purkinje cell differentiation as well as a paucity in GABAergic interneurons of the cerebral cortex, hippocampus, and amygdala. Taken together, these studies highlight the necessity for Cend1 expression in the formation of a structurally and functionally normal brain.
Collapse
|
9
|
Lin D, Shi Y, Hu Y, Du X, Tu G. miR‑329‑3p regulates neural stem cell proliferation by targeting E2F1. Mol Med Rep 2019; 19:4137-4146. [PMID: 30942449 PMCID: PMC6472110 DOI: 10.3892/mmr.2019.10096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022] Open
Abstract
Neural stem cells (NSCs) are a class of self‑renewing and undifferentiated progenitor cells that retain the ability to differentiate to neurons, astrocytes and oligodendrocytes. MicroRNAs (miRNAs) are small noncoding RNAs that serve crucial roles in regulating a number of cellular processes, including cell proliferation, differentiation and apoptosis. Our previous GeneChip data indicated that the expression of miR‑329‑3p was increased in neurons compared with NSCs. However, whether miRNA‑329‑3p participates in regulating NSC function remains to be elucidated. In the present study, it was identified that the expression of miR‑329‑3p was upregulated in NSCs during neuronal differentiation, whereas expression of transcription factor E2F1 (E2F1), a putative target gene of miR‑329‑3p, was downregulated. Using luciferase reporter assays, it was confirmed that miR‑329‑3p regulated E2F1 expression. As differentiation has been demonstrated to limit the proliferative capacity of NSCs, the effects of miR‑329‑3p and E2F1 modulation on NSC proliferation were examined. Forced overexpression of miR‑329‑3p or RNA‑mediated silencing of E2F1 inhibited NSC proliferation, and overexpression of miR‑329‑3p also inhibited E2F1 expression. Notably, ectopic expression of E2F1 reversed the inhibition of NSC proliferation induced by miR‑329‑3p overexpression. These results indicated that miR‑329‑3p may serve crucial roles in regulating the proliferation of NSCs, at least in part via inhibition of E2F1 expression. These data improve the understanding of the microRNA‑mRNA regulatory network that controls NSC proliferation.
Collapse
Affiliation(s)
- Dapeng Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yao Shi
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yiwen Hu
- Department of Orthopedic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiaowen Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guanjun Tu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
10
|
Rybachuk O, Kopach O, Pivneva T, Kyryk V. Isolation of Neural Stem Cells from the embryonic mouse hippocampus for in vitro growth or engraftment into a host tissue. Bio Protoc 2019; 9:e3165. [PMID: 33654971 DOI: 10.21769/bioprotoc.3165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/29/2022] Open
Abstract
For both stem cell research and treatment of the central nervous system disorders, neural stem/progenitor cells (NSPCs) represent an important breakthrough tool. In the expanded stem cell-based therapy use, NSPCs not only provide a powerful cell source for neural cell replacement but a useful model for developmental biology research. Despite numerous approaches were described for isolation of NSPCs from either fetal or adult brain, the main issue remains in extending cell survival following isolation. Here we provide a simple and affordable protocol for making viable NSPCs from the fetal mouse hippocampi, which are capable of maintaining the high viability in a 2D monolayer cell culture or generating 3D neuro-spheroids of cell aggregates. Further, we describe the detailed method for engraftment of embryonic NSPCs onto a host hippocampal tissue for promoting multilinear cell differentiation and maturation within endogenous environment. Our experimental data demonstrate that embryonic NSPCs isolated using this approach show the high viability (above 88%). Within a host tissue, these cells were capable of differentiating to the main neural subpopulations (principal neurons, oligodendrocytes, astroglia). Finally, NSPC-derived neurons demonstrated matured functional properties (electrophysiological activity), becoming functionally integrated into the host hippocampal circuits within a couple of weeks after engraftment.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,State Institute of Genetic and Regenerative Medicine, Kyiv, Ukraine
| | - Olga Kopach
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Tetyana Pivneva
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,State Institute of Genetic and Regenerative Medicine, Kyiv, Ukraine
| | - Vitaliy Kyryk
- State Institute of Genetic and Regenerative Medicine, Kyiv, Ukraine
| |
Collapse
|
11
|
Segklia K, Stamatakis A, Stylianopoulou F, Lavdas AA, Matsas R. Increased Anxiety-Related Behavior, Impaired Cognitive Function and Cellular Alterations in the Brain of Cend1-deficient Mice. Front Cell Neurosci 2019; 12:497. [PMID: 30760981 PMCID: PMC6361865 DOI: 10.3389/fncel.2018.00497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
Cend1 is a neuronal-lineage specific modulator involved in coordination of cell cycle exit and differentiation of neuronal precursors. We have previously shown that Cend1-/- mice show altered cerebellar layering caused by increased proliferation of granule cell precursors, delayed radial granule cell migration and compromised Purkinje cell differentiation, leading to ataxic gait and deficits in motor coordination. To further characterize the effects of Cend1 genetic ablation we determined herein a range of behaviors, including anxiety and exploratory behavior in the elevated plus maze (EPM), associative learning in fear conditioning, and spatial learning and memory in the Morris water maze (MWM). We observed significant deficits in all tests, suggesting structural and/or functional alterations in brain regions such as the cortex, amygdala and the hippocampus. In agreement with these findings, immunohistochemistry revealed reduced numbers of γ amino butyric acid (GABA) GABAergic interneurons, but not of glutamatergic projection neurons, in the adult cerebral cortex. Reduced GABAergic interneurons were also observed in the amygdala, most notably in the basolateral nucleus. The paucity in GABAergic interneurons in adult Cend1-/- mice correlated with increased proliferation and apoptosis as well as reduced migration of neuronal progenitors from the embryonic medial ganglionic eminence (MGE), the origin of these cells. Further we noted reduced GABAergic neurons and aberrant neurogenesis in the adult dentate gyrus (DG) of the hippocampus, which has been previously shown to confer spatial learning and memory deficits. Our data highlight the necessity of Cend1 expression in the formation of a structurally and functionally normal brain phenotype.
Collapse
Affiliation(s)
- Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros A Lavdas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
12
|
Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation 2016; 13:208. [PMID: 27567678 PMCID: PMC5002215 DOI: 10.1186/s12974-016-0685-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022] Open
Abstract
Background Neural stem/precursor cells (NSCs) are of particular interest because of their potential application in cell therapy for brain damage. However, most brain injury cases are followed with neuroinflammatory stress, which affects the lineage selection of grafted NSCs by promoting astrocytogenesis, thus hampering the potential for neural replacement. The present study investigated the role of miR-17-92 in protecting against detrimental effects of neuroinflammation on NSC differentiation in cell therapy. Methods NSCs were treated with conditioned medium from lesioned astrocytes with/without neutralizing antibodies of leukemia inhibitory factor (LIF) or/and ciliary neurotrophic factor (CNTF), respectively. Afterward, the levels of p-STAT3 and p-JAK2 were determined by western blotting while expression of glial fibrillary acidic protein (GFAP) and β-tubulin III was assessed by immunostaining. The activation of JAK-STAT pathway and cell differentiation were also evaluated after we overexpressed miR-17-92 in NSCs under different neuroinflammatory conditions. After the transplantation of miR-17-92-overexpressing NSCs into injured mouse cortex, PH3, nestin, GFAP, and NeuN were analyzed by immunostaining. In addition, motor coordination of mice was evaluated by rotarod test. Results Conditioned medium from lesioned astrocytes activated JAK-STAT pathway and facilitated astrocytic differentiation in NSCs while neutralizing antibodies of LIF and CNTF remarkably attenuated such effects. miR-17-92 cluster repressed the expression of multiple proteins including GP130, CNTFR, JAK2, and STAT3 in JAK-STAT pathway. Overexpression of miR-17-92 in NSCs systematically blocked the activation of JAK-STAT pathway mediated by LIF and CNTF, which facilitated neuronal differentiation in vitro. Furthermore, miR-17-92 increased neuronal generation of grafted NSCs and reduced astrogliosis, which resulted in the improvement of motor coordination of brain-injured mice. Conclusions Our results suggest that miR-17-92 promotes neuronal differentiation of grafted NSCs under neuroinflammatory condition via inhibition of multiple proteins in JAK-STAT pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0685-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susu Mao
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China.,Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiuhua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
13
|
Koutsoudaki PN, Papastefanaki F, Stamatakis A, Kouroupi G, Xingi E, Stylianopoulou F, Matsas R. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury. Glia 2015; 64:763-79. [PMID: 26712314 DOI: 10.1002/glia.22959] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 01/09/2023]
Abstract
The central nervous system has limited capacity for regeneration after traumatic injury. Transplantation of neural stem/progenitor cells (NPCs) has been proposed as a potential therapeutic approach while insulin-like growth factor I (IGF-I) has neuroprotective properties following various experimental insults to the nervous system. We have previously shown that NPCs transduced with a lentiviral vector for IGF-I overexpression have an enhanced ability to give rise to neurons in vitro but also in vivo, upon transplantation in a mouse model of temporal lobe epilepsy. Here we studied the regenerative potential of NPCs, IGF-I-transduced or not, in a mouse model of hippocampal mechanical injury. NPC transplantation, with or without IGF-I transduction, rescued the injury-induced spatial learning deficits as revealed in the Morris Water Maze. Moreover, it had beneficial effects on the host tissue by reducing astroglial activation and microglial/macrophage accumulation while enhancing generation of endogenous oligodendrocyte precursor cells. One or two months after transplantation the grafted NPCs had migrated towards the lesion site and in the neighboring myelin-rich regions. Transplanted cells differentiated toward the oligodendroglial, but not the neuronal or astrocytic lineages, expressing the early and late oligodendrocyte markers NG2, Olig2, and CNPase. The newly generated oligodendrocytes reached maturity and formed myelin internodes. Our current and previous observations illustrate the high plasticity of transplanted NPCs which can acquire injury-dependent phenotypes within the host CNS, supporting the fact that reciprocal interactions between transplanted cells and the host tissue are an important factor to be considered when designing prospective cell-based therapies for CNS degenerative conditions.
Collapse
Affiliation(s)
- Paraskevi N Koutsoudaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, University of Athens, Athens, 11527, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, University of Athens, Athens, 11527, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| |
Collapse
|
14
|
Gennai S, Monsel A, Hao Q, Liu J, Gudapati V, Barbier EL, Lee JW. Cell-based therapy for traumatic brain injury. Br J Anaesth 2015; 115:203-12. [PMID: 26170348 DOI: 10.1093/bja/aev229] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury is a major economic burden to hospitals in terms of emergency department visits, hospitalizations, and utilization of intensive care units. Current guidelines for the management of severe traumatic brain injuries are primarily supportive, with an emphasis on surveillance (i.e. intracranial pressure) and preventive measures to reduce morbidity and mortality. There are no direct effective therapies available. Over the last fifteen years, pre-clinical studies in regenerative medicine utilizing cell-based therapy have generated enthusiasm as a possible treatment option for traumatic brain injury. In these studies, stem cells and progenitor cells were shown to migrate into the injured brain and proliferate, exerting protective effects through possible cell replacement, gene and protein transfer, and release of anti-inflammatory and growth factors. In this work, we reviewed the pathophysiological mechanisms of traumatic brain injury, the biological rationale for using stem cells and progenitor cells, and the results of clinical trials using cell-based therapy for traumatic brain injury. Although the benefits of cell-based therapy have been clearly demonstrated in pre-clinical studies, some questions remain regarding the biological mechanisms of repair and safety, dose, route and timing of cell delivery, which ultimately will determine its optimal clinical use.
Collapse
Affiliation(s)
- S Gennai
- Department of Emergency Medicine, Grenoble University Hospital, La Tronche, France
| | - A Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Q Hao
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - J Liu
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - V Gudapati
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - E L Barbier
- Grenoble Institut des Neurosciences, Unité Inserm U 836, La Tronche, France
| | - J W Lee
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Aravantinou-Fatorou K, Ortega F, Chroni-Tzartou D, Antoniou N, Poulopoulou C, Politis PK, Berninger B, Matsas R, Thomaidou D. CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons. Stem Cell Reports 2015; 5:405-18. [PMID: 26321141 PMCID: PMC4618597 DOI: 10.1016/j.stemcr.2015.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/10/2023] Open
Abstract
Recent studies demonstrate that astroglia from non-neurogenic brain regions can be reprogrammed into functional neurons through forced expression of neurogenic factors. Here we explored the effect of CEND1 and NEUROG2 on reprogramming of mouse cortical astrocytes and embryonic fibroblasts. Forced expression of CEND1, NEUROG2, or both resulted in acquisition of induced neuronal cells expressing subtype-specific markers, while long-term live-cell imaging highlighted the existence of two different modes of neuronal trans-differentiation. Of note, a subpopulation of CEND1 and NEUROG2 double-transduced astrocytes formed spheres exhibiting neural stem cell properties. mRNA and protein expression studies revealed a reciprocal feedback loop existing between the two molecules, while knockdown of endogenous CEND1 demonstrated that it is a key mediator of NEUROG2-driven neuronal reprogramming. Our data suggest that common reprogramming mechanisms exist driving the conversion of lineage-distant somatic cell types to neurons and reveal a critical role for CEND1 in NEUROG2-driven astrocytic reprogramming. CEND1 reprograms astrocytes and fibroblasts to GABAergic neurons Neurospheres are formed from CEND1+ and NEUROG2+ cells through the β-catenin pathway CEND1 and NEUROG2 participate in a reciprocal feedback loop leading to neurogenesis CEND1 is a key mediator of NEUROG2 reprogramming function
Collapse
Affiliation(s)
| | - Felipe Ortega
- Research Group Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Dafni Chroni-Tzartou
- Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, Athens 11521, Greece; Department of Neurology, Laboratory of Experimental Neurophysiology, University of Athens Medical School, Eginition Hospital, 72-74 Vasilissis Sofias Avenue, Athens 11521, Greece
| | - Nasia Antoniou
- Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, Athens 11521, Greece
| | - Cornelia Poulopoulou
- Department of Neurology, Laboratory of Experimental Neurophysiology, University of Athens Medical School, Eginition Hospital, 72-74 Vasilissis Sofias Avenue, Athens 11521, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Benedikt Berninger
- Research Group Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Rebecca Matsas
- Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, Athens 11521, Greece
| | - Dimitra Thomaidou
- Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, Athens 11521, Greece.
| |
Collapse
|
16
|
Theotokis P, Kleopa KA, Touloumi O, Lagoudaki R, Lourbopoulos A, Nousiopoulou E, Kesidou E, Poulatsidou KN, Dardiotis E, Hadjigeorgiou G, Karacostas D, Cifuentes-Diaz C, Irinopoulou T, Grigoriadis N. Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis. Glia 2015; 63:1772-83. [PMID: 25914045 DOI: 10.1002/glia.22843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 01/19/2023]
Abstract
Exogenous transplanted neural precursor cells (NPCs) exhibit miscellaneous immune-modulatory effects in models of autoimmune demyelination. However, the regional interactions of NPCs with the host brain tissue in remissive inflammatory events have not been adequately studied. In this study we used the chronic MOG-induced Experimental Autoimmune Encephalomyelitis (EAE) model in C57BL/six mice. Based on previous data, we focused on neuropathology at Day 50 post-induction (D50) and studied the expression of connexin43 (Cx43) and Cx47, two of the main glial gap junction (GJ) proteins, in relation to the intraventricular transplantation of GFP(+) NPCs and their integration with the host tissue. By D50, NPCs had migrated intraparenchymally and were found in the corpus callosum at the level of the lateral ventricles and hippocampus. The majority of GFP(+) cells differentiated with simple or ramified processes expressing mainly markers of mature GLIA (GFAP and NogoA) and significantly less of precursor glial cells. GFP(+) NPCs expressed connexins and formed GJs around the hippocampus more than lateral ventricles. The presence of NPCs did not alter the increase in Cx43 GJ plaques at D50 EAE, but prevented the reduction of oligodendrocytic Cx47, increased the number of oligodendrocytes, local Cx47 levels and Cx47 GJ plaques per cell. These findings suggest that transplanted NPCs may have multiple effects in demyelinating pathology, including differentiation and direct integration into the panglial syncytium, as well as amelioration of oligodendrocyte GJ loss, increasing the supply of potent myelinating cells to the demyelinated tissue.
Collapse
Affiliation(s)
- Paschalis Theotokis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Kleopas A Kleopa
- Neurology Clinics and Neuroscience Laboratory, the Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Olga Touloumi
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Roza Lagoudaki
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Athanasios Lourbopoulos
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Nousiopoulou
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Kyriaki-Nepheli Poulatsidou
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Dimitris Karacostas
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | | | | | - Nikolaos Grigoriadis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| |
Collapse
|
17
|
Gao F, Zhang J, Jiang P, Gong D, Wang JW, Xia Y, Østergaard MV, Wang J, Sangild PT. Marked methylation changes in intestinal genes during the perinatal period of preterm neonates. BMC Genomics 2014; 15:716. [PMID: 25163507 PMCID: PMC4153944 DOI: 10.1186/1471-2164-15-716] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022] Open
Abstract
Background The serious feeding- and microbiota-associated intestinal disease, necrotizing enterocolitis (NEC), occurs mainly in infants born prematurely (5-10% of all newborns) and most frequently after formula-feeding. We hypothesized that changes in gene methylation is involved in the prenatal maturation of the intestine and its response to the first days of formula feeding, potentially leading to NEC in preterm pigs used as models for preterm infants. Results Reduced Representation Bisulfite Sequencing (RRBS) was used to assess if changes in intestinal DNA methylation are associated with formula-induced NEC outbreak and advancing age from 10 days before birth to 4 days after birth. Selected key genes with differentially methylated gene regions (DMRs) between groups were further validated by HiSeq-based bisulfite sequencing PCR and RT-qPCR to assess methylation and expression levels. Consistent with the maturation of many intestinal functions in the perinatal period, methylation level of most genes decreased with advancing pre- and postnatal age. The highest number of DMRs was identified between the newborn and 4 d-old preterm pigs. There were few intestinal DMR differences between unaffected pigs and pigs with initial evidence of NEC. In the 4 d-old formula-fed preterm pigs, four genes associated with intestinal metabolism (CYP2W1, GPR146, TOP1MT, CEND1) showed significant hyper-methylation in their promoter CGIs, and thus, down-regulated transcription. Methylation-driven down-regulation of such genes may predispose the immature intestine to later metabolic dysfunctions and severe NEC lesions. Conclusions Pre- and postnatal changes in intestinal DNA methylation may contribute to high NEC sensitivity in preterm neonates. Optimizing gene methylation changes via environmental stimuli (e.g. diet, nutrition, gut microbiota), may help to make immature newborn infants more resistant to gut dysfunctions, both short and long term. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-716) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Wang
- Department of Science & Technology, BGI-Shenzhen, Shenzhen, China.
| | | |
Collapse
|
18
|
Dai X, Lu X, Cheng F, Hao H, Qian T, Yu W, Tang L, Li L. Neurogenin 2 enhances the neuronal differentiation of skin-derived precursors. Int J Neurosci 2014; 125:367-74. [DOI: 10.3109/00207454.2014.935375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Chen D, Yu SP, Wei L. Ion channels in regulation of neuronal regenerative activities. Transl Stroke Res 2014; 5:156-62. [PMID: 24399572 DOI: 10.1007/s12975-013-0320-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 02/08/2023]
Abstract
The regeneration of the nervous system is achieved by the regrowth of damaged neuronal axons, the restoration of damaged nerve cells, and the generation of new neurons to replace those that have been lost. In the central nervous system, the regenerative ability is limited by various factors including damaged oligodendrocytes that are essential for neuronal axon myelination, an emerging glial scar, and secondary injury in the surrounding areas. Stem cell transplantation therapy has been shown to be a promising approach to treat neurodegenerative diseases because of the regenerative capability of the stem cells that secrete neurotrophic factors and give rise to differentiated progeny. However, some issues of stem cell transplantation, such as survival, homing, and efficiency of neural differentiation after transplantation, still need to be improved. Ion channels allow for the exchange of ions between the intra- and extracellular spaces or between the cytoplasm and organelles. These ion channels maintain the ion homeostasis in the brain and play a key role in regulating the physiological function of the nervous system and allowing the processing of neuronal signals. In seeking a potential strategy to enhance the efficacy of stem cell therapy in neurological and neurodegenerative diseases, this review briefly summarizes the roles of ion channels in cell proliferation, differentiation, migration, chemotropic axon guidance of growth cones, and axon outgrowth after injury.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | | | | |
Collapse
|
20
|
Abstract
The central nervous system (CNS) can be damaged by a wide range of conditions resulting in loss of specific populations of neurons and/or glial cells and in the development of defined psychiatric or neurological symptoms of varying severity. As the CNS has limited inherent capacity to regenerate lost tissue and self-repair, the development of therapeutic strategies for the treatment of CNS insults remains a serious scientific challenge with potential important clinical applications. In this context, strategies involving transplantation of specific cell populations, such as stem cells and neural stem cells (NSCs), to replace damaged cells offers an opportunity for the development of cell-based therapies. Along these lines, in this review we describe a protocol which involves transplantation of NPCs, genetically engineered to overexpress the neurogenic molecule Cend1 and have thus the potency to differentiate with higher frequency towards the neuronal lineage in a rodent model of stab wound cortical injury.
Collapse
Affiliation(s)
- Dimitra Thomaidou
- Laboratory of Cellular and Molecular Neurobiology & Imaging Unit, Hellenic Pasteur Institute, 127 Vassilissis Sophias Avenue, Athens, 11521, Greece,
| |
Collapse
|
21
|
Tsioras K, Papastefanaki F, Politis PK, Matsas R, Gaitanou M. Functional Interactions between BM88/Cend1, Ran-binding protein M and Dyrk1B kinase affect cyclin D1 levels and cell cycle progression/exit in mouse neuroblastoma cells. PLoS One 2013; 8:e82172. [PMID: 24312406 PMCID: PMC3842983 DOI: 10.1371/journal.pone.0082172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022] Open
Abstract
BM88/Cend1 is a neuronal-lineage specific modulator with a pivotal role in coordination of cell cycle exit and differentiation of neuronal precursors. In the current study we identified the signal transduction scaffolding protein Ran-binding protein M (RanBPM) as a BM88/Cend1 binding partner and showed that BM88/Cend1, RanBPM and the dual specificity tyrosine-phosphorylation regulated kinase 1B (Dyrk1B) are expressed in mouse brain as well as in cultured embryonic cortical neurons while RanBPM can form complexes with either of the two other proteins. To elucidate a potential mechanism involving BM88/Cend1, RanBPM and Dyrk1B in cell cycle progression/exit, we transiently co-expressed these proteins in mouse neuroblastoma Neuro 2a cells. We found that the BM88/Cend1-dependent or Dyrk1B-dependent down-regulation of cyclin D1 is reversed following their functional interaction with RanBPM. More specifically, functional interaction of RanBPM with either BM88/Cend1 or Dyrk1B stabilizes cyclin D1 in the nucleus and promotes 5-bromo-2'-deoxyuridine (BrdU) incorporation as a measure of enhanced cell proliferation. However, the RanBPM-dependent Dyrk1B cytosolic retention and degradation is reverted in the presence of Cend1 resulting in cyclin D1 destabilization. Co-expression of RanBPM with either BM88/Cend1 or Dyrk1B also had a negative effect on Neuro 2a cell differentiation. Our results suggest that functional interactions between BM88/Cend1, RanBPM and Dyrk1B affect the balance between cellular proliferation and differentiation in Neuro 2a cells and indicate that a potentially similar mechanism may influence cell cycle progression/exit and differentiation of neuronal precursors.
Collapse
Affiliation(s)
- Konstantinos Tsioras
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
22
|
Miltiadous P, Kouroupi G, Stamatakis A, Koutsoudaki PN, Matsas R, Stylianopoulou F. Subventricular zone-derived neural stem cell grafts protect against hippocampal degeneration and restore cognitive function in the mouse following intrahippocampal kainic acid administration. Stem Cells Transl Med 2013; 2:185-98. [PMID: 23417642 DOI: 10.5966/sctm.2012-0074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a major neurological disease, often associated with cognitive decline. Since approximately 30% of patients are resistant to antiepileptic drugs, TLE is being considered as a possible clinical target for alternative stem cell-based therapies. Given that insulin-like growth factor I (IGF-I) is neuroprotective following a number of experimental insults to the nervous system, we investigated the therapeutic potential of neural stem/precursor cells (NSCs) transduced, or not, with a lentiviral vector for overexpression of IGF-I after transplantation in a mouse model of kainic acid (KA)-induced hippocampal degeneration, which represents an animal model of TLE. Exposure of mice to the Morris water maze task revealed that unilateral intrahippocampal NSC transplantation significantly prevented the KA-induced cognitive decline. Moreover, NSC grafting protected against neurodegeneration at the cellular level, reduced astrogliosis, and maintained endogenous granule cell proliferation at normal levels. In some cases, as in the reduction of hippocampal cell loss and the reversal of the characteristic KA-induced granule cell dispersal, the beneficial effects of transplanted NSCs were manifested earlier and were more pronounced when these were transduced to express IGF-I. However, differences became less pronounced by 2 months postgrafting, since similar amounts of IGF-I were detected in the hippocampi of both groups of mice that received cell transplants. Grafted NSCs survived, migrated, and differentiated into neurons-including glutamatergic cells-and not glia, in the host hippocampus. Our results demonstrate that transplantation of IGF-I producing NSCs is neuroprotective and restores cognitive function following KA-induced hippocampal degeneration.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Behavior, Animal
- Cell Movement
- Cell Proliferation
- Cell Survival
- Cognition
- Disease Models, Animal
- Epilepsy, Temporal Lobe/chemically induced
- Epilepsy, Temporal Lobe/genetics
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/pathology
- Epilepsy, Temporal Lobe/physiopathology
- Epilepsy, Temporal Lobe/psychology
- Epilepsy, Temporal Lobe/therapy
- Genetic Therapy/methods
- Genetic Vectors
- Glutamic Acid/metabolism
- Green Fluorescent Proteins/biosynthesis
- Green Fluorescent Proteins/genetics
- Hippocampus/metabolism
- Hippocampus/pathology
- Hippocampus/physiopathology
- Hippocampus/surgery
- Insulin-Like Growth Factor I/biosynthesis
- Insulin-Like Growth Factor I/genetics
- Kainic Acid
- Lentivirus/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nerve Degeneration
- Neural Stem Cells/metabolism
- Neural Stem Cells/transplantation
- Neurogenesis
- Neurons/metabolism
- Neurons/pathology
- Spheroids, Cellular
- Time Factors
- Transduction, Genetic
Collapse
|
23
|
Reekmans K, Praet J, Daans J, Reumers V, Pauwels P, Van der Linden A, Berneman ZN, Ponsaerts P. Current challenges for the advancement of neural stem cell biology and transplantation research. Stem Cell Rev Rep 2012; 8:262-78. [PMID: 21537994 DOI: 10.1007/s12015-011-9266-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transplantation of neural stem cells (NSC) is hoped to become a promising primary or secondary therapy for the treatment of various neurodegenerative disorders of the central nervous system (CNS), as demonstrated by multiple pre-clinical animal studies in which functional recovery has already been demonstrated. However, for NSC therapy to be successful, the first challenge will be to define a transplantable cell population. In the first part of this review, we will briefly discuss the main features of ex vivo culture and characterisation of NSC. Next, NSC grafting itself may not only result in the regeneration of lost tissue, but more importantly has the potential to improve functional outcome through many bystander mechanisms. In the second part of this review, we will briefly discuss several pre-clinical studies that contributed to a better understanding of the therapeutic potential of NSC grafts in vivo. However, while many pre-clinical animal studies mainly report on the clinical benefit of NSC grafting, little is known about the actual in vivo fate of grafted NSC. Therefore, the third part of this review will focus on non-invasive imaging techniques for monitoring cellular grafts in the brain under in vivo conditions. Finally, as NSC transplantation research has evolved during the past decade, it has become clear that the host micro-environment itself, either in healthy or injured condition, is an important player in defining success of NSC grafting. The final part of this review will focus on the host environmental influence on survival, migration and differentiation of grafted NSC.
Collapse
Affiliation(s)
- Kristien Reekmans
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang K, Wang H, Wang J, Xie Y, Chen J, Yan H, Liu Z, Wen T. System approaches reveal the molecular networks involved in neural stem cell differentiation. Protein Cell 2012; 3:213-24. [PMID: 22492180 DOI: 10.1007/s13238-012-0014-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/12/2012] [Indexed: 12/31/2022] Open
Abstract
The self-renewal and multipotent potentials in neural stem cells (NSCs) maintain the normal physiological functions of central nervous system (CNS). The abnormal differentiation of NSCs would lead to CNS disorders. However, the mechanisms of how NSCs differentiate into astrocytes, oligodendrocytes (OLs) and neurons are still unclear, which is mainly due to the complexity of differentiation processes and the limitation of the cell separation method. In this study, we modeled the dynamics of neural cell interactions in a systemic approach by mining the high-throughput genomic and proteomic data, and identified 8615 genes that are involved in various biological processes and functions with significant changes during the differentiation processes. A total of 1559 genes are specifically expressed in neural cells, in which 242 genes are NSC specific, 215 are astrocyte specific, 551 are OL specific, and 563 are neuron specific. In addition, we proposed 57 transcriptional regulators specifically expressed in NSCs may play essential roles in the development courses. These findings provide more comprehensive analysis for better understanding the endogenous mechanisms of NSC fate determination.
Collapse
Affiliation(s)
- Kai Wang
- Laboratory of Molecular Neurobiology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zanier ER, Montinaro M, Vigano M, Villa P, Fumagalli S, Pischiutta F, Longhi L, Leoni ML, Rebulla P, Stocchetti N, Lazzari L, De Simoni MG. Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit Care Med 2011; 39:2501-10. [PMID: 21725237 DOI: 10.1097/ccm.0b013e31822629ba] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate whether human umbilical cord blood mesenchymal stem cells, a novel source of progenitors with multilineage potential: 1) decrease traumatic brain injury sequelae and restore brain function; 2) are able to survive and home to the lesioned region; and 3) induce relevant changes in the environment in which they are infused. DESIGN Prospective experimental study. SETTING Research laboratory. SUBJECTS Male C57Bl/6 mice. INTERVENTIONS Mice were subjected to controlled cortical impact/sham brain injury. At 24 hrs postinjury, human umbilical cord blood mesenchymal stem cells (150,000/5 μL) or phosphate-buffered saline (control group) were infused intracerebroventricularly contralateral to the injured side. Immunosuppression was achieved by cyclosporine A (10 mg/kg intraperitoneally). MEASUREMENTS AND MAIN RESULTS After controlled cortical impact, human umbilical cord blood mesenchymal stem cell transplantation induced an early and long-lasting improvement in sensorimotor functions assessed by neuroscore and beam walk tests. One month postinjury, human umbilical cord blood mesenchymal stem cell mice showed attenuated learning dysfunction at the Morris water maze and reduced contusion volume compared with controls. Hoechst positive human umbilical cord blood mesenchymal stem cells homed to lesioned tissue as early as 1 wk after injury in 67% of mice and survived in the injured brain up to 5 wks. By 3 days postinjury, cell infusion significantly increased brain-derived neurotrophic factor concentration into the lesioned tissue, restoring its expression close to the levels observed in sham operated mice. By 7 days postinjury, controlled cortical impact human umbilical cord blood mesenchymal stem cell mice showed a nonphagocytic activation of microglia/macrophages as shown by a selective rise (260%) in CD11b staining (a marker of microglia/macrophage activation/recruitment) associated with a decrease (58%) in CD68 (a marker of active phagocytosis). Thirty-five days postinjury, controlled cortical impact human umbilical cord blood mesenchymal stem cell mice showed a decrease of glial fibrillary acidic protein positivity in the scar region compared with control mice. CONCLUSIONS These findings indicate that human umbilical cord blood mesenchymal stem cells stimulate the injured brain and evoke trophic events, microglia/macrophage phenotypical switch, and glial scar inhibitory effects that remodel the brain and lead to significant improvement of neurologic outcome.
Collapse
Affiliation(s)
- Elisa R Zanier
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hwang DH, Jeong SR, Kim BG. Gene transfer mediated by stem cell grafts to treat CNS injury. Expert Opin Biol Ther 2011; 11:1599-610. [PMID: 22017608 DOI: 10.1517/14712598.2011.631908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Stem cell transplantation holds promise for promoting anatomical repair and functional recovery after traumatic or ischemic injuries to the CNS. Harnessing stem cells with therapeutic genes of interest is regarded as an attractive approach to augment therapeutic benefits of stem cell grafts. AREAS COVERED The advantage of stem-cell-mediated gene transfer is the engraftibility of stem cells that can ensure a long-term and stable expression of therapeutic genes. In addition, stem-cell-gene interaction may synergistically amplify therapeutic benefits. Delivery of classical neurotrophic factor genes provided neuroprotective and pro-regenerative effects in various injury models. Some studies employed therapeutic genes targeting post-injury microenvironment to support endogenous repair. Recent trials of stem-cell-mediated transfer of nonclassical growth factors showed relatively novel biological effects. Combinatorial strategies seem to have the potential to improve therapeutic efficacy. EXPERT OPINION Future development of induced pluripotent stem cells and novel scaffolding biomaterials will greatly expedite the advances in ex vivo gene therapy to treat CNS injury. Before moving to a clinical stage, rigorous preclinical evaluations are needed to identify an optimal gene or gene combination in different injury settings. Improving the safety of viral vectors will be a critical prerequisite for the clinical translation.
Collapse
Affiliation(s)
- Dong H Hwang
- Ajou University School of Medicine, Brain Disease Research Center, Institute for Medical Sciences, Suwon, Republic of Korea
| | | | | |
Collapse
|
27
|
Naegele JR, Maisano X, Yang J, Royston S, Ribeiro E. Recent advancements in stem cell and gene therapies for neurological disorders and intractable epilepsy. Neuropharmacology 2010; 58:855-64. [PMID: 20146928 DOI: 10.1016/j.neuropharm.2010.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 12/11/2022]
Abstract
The potential applications of stem cell therapies for treating neurological disorders are enormous. Many laboratories are focusing on stem cell treatments for CNS diseases, including spinal cord injury, Amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, multiple sclerosis, stroke, traumatic brain injury, and epilepsy. Among the many stem cell types under testing for neurological treatments, the most common are fetal and adult brain stem cells, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. An expanding toolbox of molecular probes is now available to allow analyses of neural stem cell fates prior to and after transplantation. Concomitantly, protocols are being developed to direct the fates of stem cell-derived neural progenitors, and also to screen stem cells for tumorigenicity and aneuploidy. The rapid progress in the field suggests that novel stem cell and gene therapies for neurological disorders are in the pipeline.
Collapse
Affiliation(s)
- Janice R Naegele
- Department of Biology and Program in Neuroscience and Behavior, Hall Atwater Laboratory, 52 Lawn Avenue, Wesleyan University, Middletown, CT 06459, USA.
| | | | | | | | | |
Collapse
|