1
|
Yang Z, Li L, Wei J, He H, Ma M, Wen Y. Integration of bulk RNA sequencing to reveal protein arginine methylation regulators have a good prognostic value in immunotherapy to treat lung adenocarcinoma. Heliyon 2024; 10:e24816. [PMID: 38317982 PMCID: PMC10838759 DOI: 10.1016/j.heliyon.2024.e24816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Background Given the differential expression and biological functions of protein arginine methylation (PAM) regulators in lung adenocarcinoma (LUAD), it may be of great value in the diagnosis, prognosis, and treatment of LUAD. However, the expression and function of PAM regulators in LUAD and its relationship with prognosis are unclear. Methods 8 datasets including 1798 LUAD patients were selected. During the bioinformatic study in LUAD, we performed (i) consensus clustering to identify clusters based on 9 PAM regulators related expression profile data, (ii) to identify hub genes between the 2 clusters, (iii) principal component analysis to construct a PAM.score based on above genes, and (iv) evaluation of the effect of PAM.score on the deconstruction of tumor microenvironment and guidance of immunotherapy. Results We identified two different clusters and a robust and clinically practicable prognostic scoring system. Meanwhile, a higher PAM.score subgroup showed poorer prognosis, and was validated by multiple cohorts. Its prognostic effect was validated by ROC (Receiver operating characteristic curve) curve and found to have a relatively good prediction efficacy. High PAM.score group exhibited lower immune score, which associated with an immunosuppressive microenvironment in LUAD. Finally, patients exhibiting a lower PAM.score presented noteworthy therapeutic benefits and clinical advantages. Conclusion Our PAM.score model can help clinicians to select personalized therapy for LUAD patients, and PAM.score may act a part in the development of LUAD.
Collapse
Affiliation(s)
- Zhiqiang Yang
- Department of Respiratory and Critical Care, Zhoushan Hospital, Wenzhou Medical University, Zhejiang, 316000, China
| | - Lue Li
- Department of Respiratory and Critical Care, Zhoushan Hospital, Wenzhou Medical University, Zhejiang, 316000, China
| | - Jianguo Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hui He
- Department of Pathology, Zhoushan Hospital, Wenzhou Medical University, Zhejiang, 316000, China
| | - Minghui Ma
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming, Guangdong, 525000, China
| | - Yuanyuan Wen
- Department of Pathology, Zhoushan Hospital, Wenzhou Medical University, Zhejiang, 316000, China
| |
Collapse
|
2
|
Liu TY, Liao CC, Chang YS, Chen YC, Chen HD, Lai IL, Peng CY, Chung CC, Chou YP, Tsai FJ, Jeng LB, Chang JG. Identification of 13 Novel Loci in a Genome-Wide Association Study on Taiwanese with Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16417. [PMID: 38003606 PMCID: PMC10671380 DOI: 10.3390/ijms242216417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Liver cancer is caused by complex interactions among genetic factors, viral infection, alcohol abuse, and metabolic diseases. We conducted a genome-wide association study and polygenic risk score (PRS) model in Taiwan, employing a nonspecific etiology approach, to identify genetic risk factors for hepatocellular carcinoma (HCC). Our analysis of 2836 HCC cases and 134,549 controls revealed 13 novel associated loci such as the FAM66C gene, noncoding genes, liver-fibrosis-related genes, metabolism-related genes, and HCC-related pathway genes. We incorporated the results from the UK Biobank and Japanese database into our study for meta-analysis to validate our findings. We also identified specific subtypes of the major histocompatibility complex that influence both viral infection and HCC progression. Using this data, we developed a PRS to predict HCC risk in the general population, patients with HCC, and HCC-affected families. The PRS demonstrated higher risk scores in families with multiple HCCs and other cancer cases. This study presents a novel approach to HCC risk analysis, identifies seven new genes associated with HCC development, and introduces a reproducible PRS model for risk assessment.
Collapse
Affiliation(s)
- Ting-Yuan Liu
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chi-Chou Liao
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Ya-Sian Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Yu-Chia Chen
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - I-Lu Lai
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Cheng-Yuan Peng
- Department of Internal Medicine, Section of Hepatobiliary Tract, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Chin-Chun Chung
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Yu-Pao Chou
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Pediatric Genetics, Children’s Hospital of China Medical University, Taichung 40447, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Long-Bin Jeng
- Department of Surgery, Section of Hepatobiliary Tract, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Jan-Gowth Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
3
|
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther 2023; 8:345. [PMID: 37699892 PMCID: PMC10497558 DOI: 10.1038/s41392-023-01569-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.
Collapse
Affiliation(s)
- Zhe-Nan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Yi-Fan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jun-Nan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jia-Hua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China.
| |
Collapse
|
4
|
Aprile D, Alessio N, Squillaro T, Di Bernardo G, Peluso G, Galderisi U. Role of glycosphingolipid SSEA-3 and FGF2 in the stemness and lineage commitment of multilineage differentiating stress enduring (MUSE) cells. Cell Prolif 2022; 56:e13345. [PMID: 36225120 PMCID: PMC9816924 DOI: 10.1111/cpr.13345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Multilineage differentiating Stress Enduring (MUSE) cells are endogenous, stress-resistant stem cells, expressing pluripotency master genes and able to differentiate in cells of the three embryonic sheets. Stage-Specific Embryonic Antigen 3 (SSEA-3), a glycosphingolipid (GSL), is the marker for identifying MUSE cells and is used to isolate this population from mesenchymal stromal cells. GSLs modulate signal transduction by interacting with plasma membrane components. The growth factor FGF2, important for MUSE cells biology, may interact with GSLs. Specific cell surface markers represent an invaluable tool for stem cell isolation. Nonetheless their role, if any, in stem cell biology is poorly investigated. Functions of stem cells, however, depend on niche external cues, which reach cells through surface markers. We addressed the role of SSEA-3 in MUSE cell behaviour, trying to define whether SSEA-3 is just a marker or if it plays a functional role in this cell population by determining if it has any relationship with FGF2 activity. RESULTS We evidenced how the SSEA-3 and FGF2 cooperation affected the self-renewal and clonogenic capacity of MUSE cells. The block of SSEA-3 significantly reduced the multilineage potential of MUSE cells with production of nullipotent clones. CONCLUSIONS We contributed to dissecting the mechanisms underlying MUSE cell properties for establishing successful stem-cell-based therapies and the promotion of MUSE cells as a tool for the in vitro disease model.
Collapse
Affiliation(s)
- Domenico Aprile
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly,Sbarro Institute for Cancer Research and Molecular Medicine, Center for BiotechnologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Gianfranco Peluso
- Faculty of Medicine and SurgerySaint Camillus International University of Health SciencesRomeItaly
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly,Sbarro Institute for Cancer Research and Molecular Medicine, Center for BiotechnologyTemple UniversityPhiladelphiaPennsylvaniaUSA,Genome and Stem Cell Center (GENKOK)Erciyes UniversityKayseriTurkey
| |
Collapse
|
5
|
Kim SM, Kwon EJ, Kim YJ, Go YH, Oh JY, Park S, Do JT, Kim KT, Cha HJ. Dichotomous role of Shp2 for naïve and primed pluripotency maintenance in embryonic stem cells. Stem Cell Res Ther 2022; 13:329. [PMID: 35850773 PMCID: PMC9290224 DOI: 10.1186/s13287-022-02976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background The requirement of the Mek1 inhibitor (iMek1) during naïve pluripotency maintenance results from the activation of the Mek1-Erk1/2 (Mek/Erk) signaling pathway upon leukemia inhibitory factor (LIF) stimulation. Methods Through a meta-analysis of previous genome-wide screening for negative regulators of naïve pluripotency, Ptpn11 (encoding the Shp2 protein, which serves both as a tyrosine phosphatase and putative adapter), was predicted as one of the key factors for the negative modulation of naïve pluripotency through LIF-dependent Jak/Stat3 signaling. Using an isogenic pair of naïve and primed mouse embryonic stem cells (mESCs), we demonstrated the differential role of Shp2 in naïve and primed pluripotency. Results Loss of Shp2 increased naïve pluripotency by promoting Jak/Stat3 signaling and disturbed in vivo differentiation potential. In sharp contrast, Shp2 depletion significantly impeded the self-renewal of ESCs under primed culture conditions, which was concurrent with a reduction in Mek/Erk signaling. Similarly, upon treatment with an allosteric Shp2 inhibitor (iShp2), the cells sustained Stat3 phosphorylation and decoupled Mek/Erk signaling, thus iShp2 can replace the use of iMek1 for maintenance of naïve ESCs. Conclusions Taken together, our findings highlight the differential roles of Shp2 in naïve and primed pluripotency and propose the usage of iShp2 instead of iMek1 for the efficient maintenance and establishment of naïve pluripotency. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02976-z.
Collapse
Affiliation(s)
- Seong-Min Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyun Go
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seokwoo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Nguyen T, Wei Y, Nakada Y, Zhou Y, Zhang J. Cardiomyocyte Cell-Cycle Regulation in Neonatal Large Mammals: Single Nucleus RNA-Sequencing Data Analysis via an Artificial-Intelligence–Based Pipeline. Front Bioeng Biotechnol 2022; 10:914450. [PMID: 35860330 PMCID: PMC9289371 DOI: 10.3389/fbioe.2022.914450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Adult mammalian cardiomyocytes have very limited capacity to proliferate and repair the myocardial infarction. However, when apical resection (AR) was performed in pig hearts on postnatal day (P) 1 (ARP1) and acute myocardial infarction (MI) was induced on P28 (MIP28), the animals recovered with no evidence of myocardial scarring or decline in contractile performance. Furthermore, the repair process appeared to be driven by cardiomyocyte proliferation, but the regulatory molecules that govern the ARP1-induced enhancement of myocardial recovery remain unclear. Single-nucleus RNA sequencing (snRNA-seq) data collected from fetal pig hearts and the hearts of pigs that underwent ARP1, MIP28, both ARP1 and MI, or neither myocardial injury were evaluated via autoencoder, cluster analysis, sparse learning, and semisupervised learning. Ten clusters of cardiomyocytes (CM1–CM10) were identified across all experimental groups and time points. CM1 was only observed in ARP1 hearts on P28 and was enriched for the expression of T-box transcription factors 5 and 20 (TBX5 and TBX20, respectively), Erb-B2 receptor tyrosine kinase 4 (ERBB4), and G Protein-Coupled Receptor Kinase 5 (GRK5), as well as genes associated with the proliferation and growth of cardiac muscle. CM1 cardiomyocytes also highly expressed genes for glycolysis while lowly expressed genes for adrenergic signaling, which suggested that CM1 were immature cardiomyocytes. Thus, we have identified a cluster of cardiomyocytes, CM1, in neonatal pig hearts that appeared to be generated in response to AR injury on P1 and may have been primed for activation of CM cell-cycle activation and proliferation by the upregulation of TBX5, TBX20, ERBB4, and GRK5.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuji Nakada
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Jianyi Zhang,
| |
Collapse
|
7
|
Kim KT, Oh JY, Park S, Kim SM, Benjamin P, Park IH, Chun KH, Chang YT, Cha HJ. Live isolation of naïve ESCs via distinct glucose metabolism and stored glycogen. Metab Eng 2022; 72:97-106. [DOI: 10.1016/j.ymben.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
8
|
Zheng K, Zhang Y, Zhang C, Ye W, Ye C, Tan X, Xiong Y. PRMT8 Attenuates Cerebral Ischemia/Reperfusion Injury via Modulating Microglia Activation and Polarization to Suppress Neuroinflammation by Upregulating Lin28a. ACS Chem Neurosci 2022; 13:1096-1104. [PMID: 35275616 DOI: 10.1021/acschemneuro.2c00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation and polarization of microglia are involved in neuroinflammation and regulate ischemic stroke-associated brain injury. Protein arginine methyltransferase 8 functions as a regulatory component of hypoxic stress-induced neuroinflammation. The protective effect of protein arginine methyltransferase 8 (PRMT8) against ischemic stroke-associated brain injury through regulation of microglia activation and polarization was investigated. First, PRMT8 was downregulated in middle cerebral artery occlusion (MCAO)-induced mice and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced SH-SY5Y. Injection with AAV-PRMT8 reduced infarct volumes in MCAO-induced mice. Moreover, injection with AAV-PRMT8 promoted neuronal survival and ameliorated histopathological changes in the brains of MCAO-induced mice. The neuronal apoptosis and neuroinflammation in MCAO-induced mice were suppressed by AAV-PRMT8 injection. Second, PRMT8 overexpression increased cell viability and suppressed the cell apoptosis and inflammation of OGD/R-induced SH-SY5Y. Third, injection with AAV-PRMT8 reduced almost 50% of CD86 + M1 microglia and enhanced about 20% of CD206 + M2 microglia. Furthermore, PRMT8 overexpression attenuated OGD/R-induced M1 phenotype polarization of BV2. Lastly, PRMT8 upregulated Lin28a and loss of Lin28a attenuated PRMT8 overexpression-induced increase in cell viability and decrease in cell apoptosis and inflammation of OGD/R-induced SH-SY5Y. In conclusion, PRMT8 promoted M2 phenotype polarization of microglia and suppressed neuronal apoptosis to ameliorate cerebral ischemia/reperfusion injury through upregulation of Lin28a.
Collapse
Affiliation(s)
- Kuang Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuliang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengwei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wangyang Ye
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chenxing Ye
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xianxi Tan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ye Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
9
|
Liu W, Sun Q, Huang L, Bhattacharya A, Wang GW, Tan X, Kuban KCK, Joseph RM, O'Shea TM, Fry RC, Li Y, Santos HP. Innovative computational approaches shed light on genetic mechanisms underlying cognitive impairment among children born extremely preterm. J Neurodev Disord 2022; 14:16. [PMID: 35240980 PMCID: PMC8903548 DOI: 10.1186/s11689-022-09429-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Although survival rates for infants born extremely preterm (gestation < 28 weeks) have improved significantly in recent decades, neurodevelopmental impairment remains a major concern. Children born extremely preterm remain at high risk for cognitive impairment from early childhood to adulthood. However, there is limited evidence on genetic factors associated with cognitive impairment in this population. METHODS First, we used a latent profile analysis (LPA) approach to characterize neurocognitive function at age 10 for children born extremely preterm. Children were classified into two groups: (1) no or low cognitive impairment, and (2) moderate-to-severe cognitive impairment. Second, we performed TOPMed-based genotype imputation on samples with genotype array data (n = 528). Third, we then conducted a genome-wide association study (GWAS) for LPA-inferred cognitive impairment. Finally, computational analysis was conducted to explore potential mechanisms underlying the variant x LPA association. RESULTS We identified two loci reaching genome-wide significance (p value < 5e-8): TEA domain transcription factor 4 (TEAD4 at rs11829294, p value = 2.40e-8) and syntaxin 18 (STX18 at rs79453226, p value = 1.91e-8). Integrative analysis with brain expression quantitative trait loci (eQTL), chromatin conformation, and epigenomic annotations suggests tetraspanin 9 (TSPAN9) and protein arginine methyltransferase 8 (PRMT8) as potential functional genes underlying the GWAS signal at the TEAD4 locus. CONCLUSIONS We conducted a novel computational analysis by utilizing an LPA-inferred phenotype with genetics data for the first time. This study suggests that rs11829294 and its LD buddies have potential regulatory roles on genes that could impact neurocognitive impairment for extreme preterm born children.
Collapse
Affiliation(s)
- Weifang Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Le Huang
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Geoffery W Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karl C K Kuban
- Department of Pediatrics, Boston University, Boston, MA, USA
| | - Robert M Joseph
- Department of Anatomy & Neurobiology, Boston University, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hudson P Santos
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Park JC, Kim J, Jang HK, Lee SY, Kim KT, Kwon EJ, Park S, Lee HS, Choi H, Park SY, Choi HJ, Park SJ, Moon SH, Bae S, Cha HJ. Multiple isogenic GNE-myopathy modeling with mutation specific phenotypes from human pluripotent stem cells by base editors. Biomaterials 2022; 282:121419. [DOI: 10.1016/j.biomaterials.2022.121419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022]
|
11
|
Terasaki K, Gen Y, Iwai N, Soda T, Kitaichi T, Dohi O, Taketani H, Seko Y, Umemura A, Nishikawa T, Yamaguchi K, Moriguchi M, Konishi H, Naito Y, Itoh Y, Yasui K. SOX2 enhances cell survival and induces resistance to apoptosis under serum starvation conditions through the AKT/GSK-3β signaling pathway in esophageal squamous cell carcinoma. Oncol Lett 2021; 21:269. [PMID: 33717266 DOI: 10.3892/ol.2021.12530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
The human SOX2 gene was recently identified as a novel major oncogene, recurrently amplified and overexpressed in esophageal squamous cell carcinoma (ESCC). However, the role and molecular mechanism of SOX2 in the carcinogenesis of ESCC remain to be elucidated. The present study investigated the effect of SOX2 on ESCC cell survival and resistance to apoptosis under serum starvation conditions. An adenoviral vector-mediated expression system and RNA interference were used to study the effect of SOX2. The present results revealed that SOX2 promoted ESCC cell survival and enhanced resistance to apoptosis under serum starvation conditions, but not in culture conditions with serum. Mechanistically, SOX2 increased the expression levels of phosphorylated AKT and glycogen synthase kinase-3β (GSK-3β), a downstream factor of AKT, under serum starvation conditions, leading to the promotion of ESCC cell survival. Additionally, SOX2 activated AKT through the PTEN/PI3K/phosphoinositide-dependent protein kinase 1 and mammalian target of rapamycin complex 2 signaling pathways. Therefore, SOX2 may facilitate the survival of ESCC cells under poor nutrient conditions by activating the AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Kei Terasaki
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Tomohiro Soda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Hiroyoshi Taketani
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Atsushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Kohichiroh Yasui
- School of Health Sciences, Bukkyo University, Nakagyo, Kyoto 604-8418, Japan
| |
Collapse
|
12
|
Wang D, Liu C, Liu H, Meng Y, Lin F, Gu Y, Wang H, Shang M, Tong C, Sachinidis A, Ying Q, Li L, Peng L. ERG1 plays an essential role in rat cardiomyocyte fate decision by mediating AKT signaling. Stem Cells 2021; 39:443-457. [PMID: 33426760 DOI: 10.1002/stem.3328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
ERG1, a potassium ion channel, is essential for cardiac action potential repolarization phase. However, the role of ERG1 for normal development of the heart is poorly understood. Using the rat embryonic stem cells (rESCs) model, we show that ERG1 is crucial in cardiomyocyte lineage commitment via interactions with Integrin β1. In the mesoderm phase of rESCs, the interaction of ERG1 with Integrin β1 can activate the AKT pathway by recruiting and phosphorylating PI3K p85 and focal adhesion kinase (FAK) to further phosphorylate AKT. Activation of AKT pathway promotes cardiomyocyte differentiation through two different mechanisms, (a) through phosphorylation of GSK3β to upregulate the expression levels of β-catenin and Gata4; (b) through promotion of nuclear translocation of nuclear factor-κB by phosphorylating IKKβ to inhibit cell apoptosis, which occurs due to increased Bcl2 expression. Our study provides solid evidence for a novel role of ERG1 on differentiation of rESCs into cardiomyocytes.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Chang Liu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Yilei Meng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Fang Lin
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yanqiong Gu
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hanrui Wang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Mengyue Shang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Chang Tong
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Agapios Sachinidis
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine, Cologne (CMMC), Cologne, Germany
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China.,Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China.,Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
13
|
Kim KT, Park JC, Jang HK, Lee H, Park S, Kim J, Kwon OS, Go YH, Jin Y, Kim W, Lee J, Bae S, Cha HJ. Safe scarless cassette-free selection of genome-edited human pluripotent stem cells using temporary drug resistance. Biomaterials 2020; 262:120295. [PMID: 32916603 DOI: 10.1016/j.biomaterials.2020.120295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
An efficient gene-editing technique for use in human pluripotent stem cells (hPSCs) has great potential value in regenerative medicine, as well as in drug discovery based on isogenic human disease models. However, the extremely low efficiency of gene editing in hPSCs remains as a major technical hurdle. Previously, we demonstrated that YM155, a survivin inhibitor developed as an anti-cancer drug, induces highly selective cell death in undifferentiated hPSCs. In this study, we demonstrated that the high cytotoxicity of YM155 in hPSCs, which is mediated by selective cellular uptake of the drug, is due to the high expression of SLC35F2 in these cells. Knockout of SLC35F2 with CRISPR-Cas9, or depletion with siRNAs, made the hPSCs highly resistant to YM155. Simultaneous editing of a gene of interest and transient knockdown of SLC35F2 following YM155 treatment enabled the survival of genome-edited hPSCs as a result of temporary YM155 resistance, thereby achieving an enriched selection of clonal populations with gene knockout or knock-in. This precise and efficient genome editing approach took as little as 3 weeks and required no cell sorting or the introduction of additional genes, to be a more feasible approach for gene editing in hPSCs due to its simplicity.
Collapse
Affiliation(s)
- Keun-Tae Kim
- Department of Life Sciences, Sogang University, Seoul, South Korea
| | - Ju-Chan Park
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyeon-Ki Jang
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, South Korea; Department of Chemistry, Hanyang University, Seoul, South Korea
| | - Haeseung Lee
- Ewha Research Center for Systems Biology, Division of Molecular & Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Seokwoo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jumee Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ok-Seon Kwon
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Hyun Go
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yan Jin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Wankyu Kim
- Ewha Research Center for Systems Biology, Division of Molecular & Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Sangsu Bae
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, South Korea; Department of Chemistry, Hanyang University, Seoul, South Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, South Korea.
| |
Collapse
|
14
|
Wang YC, Chang CP, Tsai YJ, Lee YJ, Li C. Alternative 3' splice site selection of intron 5 within the prmt8 gene results in a novel variant widely distributed in vertebrates and specifically abundant in Aves. Gene 2020; 747:144684. [PMID: 32311412 DOI: 10.1016/j.gene.2020.144684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/18/2022]
Abstract
PRMT8 is a neuron-specific protein arginine methyltransferase in vertebrates. From data mining, we found a novel prmt8e6+43 splicing variant with a 43-nucleotide (nt) extension at the 5' of exon 6 in chicken. RT-PCR analyses confirmed the existence of two splicing variants but also detected a third upper signal. The triplet pattern detected in chicken suggests that one strand from the prmt8e6+43 transcript and one strand from the regular splicing products form a heteroduplex with a bulb conformation and the two transcripts are of similar abundance. One short plus one faint upper heteroduplex signal detected in mouse and human indicate that the level of the variant is much less than the normal one in mammals. The relative expression of the normal and prmt8e6+43 variants in different species can be inferred from the reads of intron 5 that contains the 43-nt extension or not in the RNA-seq data of NCBI Gene database. The results of the analyses showed that the prmt8e6+43 variant is relatively abundant in birds but much less or even not detected in mammalian species. As conserved intron 5 sequences and evidences of alternative splicing (AS) are detected in elephant shark, a cartilaginous fish with the slowest-evolving genome, we propose that the prmt8e6+43 variant is present in the common ancestor of jawed vertebrates. The prmt8e6+43 variant includes a premature termination codon and thus should encode a truncated PRMT8 with deletion from the dimerization arm. Western blot analyses showed very weak low-molecular-weight signals in chicken, which might be the C-terminal truncated PRMT8. Why avian species maintain high RNA but not protein levels of the prmt8e6+43 variant and whether the evolutionary conserved sequence and AS might regulate PRMT8 expression require further investigation.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ping Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yun-Jung Tsai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Jen Lee
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chuan Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
15
|
Park SW, Jun YW, Choi HE, Lee JA, Jang DJ. Deciphering the molecular mechanisms underlying the plasma membrane targeting of PRMT8. BMB Rep 2020. [PMID: 30670150 PMCID: PMC6827574 DOI: 10.5483/bmbrep.2019.52.10.272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arginine methylation plays crucial roles in many cellular functions including signal transduction, RNA transcription, and regulation of gene expression. Protein arginine methyltransferase 8 (PRMT8), a unique brain-specific protein, is localized to the plasma membrane. However, the detailed molecular mechanisms underlying PRMT8 plasma membrane targeting remain unclear. Here, we demonstrate that the N-terminal 20 amino acids of PRMT8 are sufficient for plasma membrane localization and that oligomerization enhances membrane localization. The basic amino acids, combined with myristoylation within the N-terminal 20 amino acids of PRMT8, are critical for plasma membrane targeting. We also found that substituting Gly-2 with Ala [PRMT8(G2A)] or Cys-9 with Ser [PRMT8(C9S)] induces the formation of punctate structures in the cytosol or patch-like plasma membrane localization, respectively. Impairment of PRMT8 oligomerization/dimerization by Cterminal deletion induces PRMT8 mis-localization to the mitochondria, prevents the formation of punctate structures by PRMT8(G2A), and inhibits PRMT8(C9S) patch-like plasma membrane localization. Overall, these results suggest that oligomerization/dimerization plays several roles in inducing the efficient and specific plasma membrane localization of PRMT8. [BMB Reports 2019; 52(10): 601-606].
Collapse
Affiliation(s)
- Sang-Won Park
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Ha-Eun Choi
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Korea
| | - Jin-A Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
16
|
Mossahebi-Mohammadi M, Quan M, Zhang JS, Li X. FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency. Front Cell Dev Biol 2020; 8:79. [PMID: 32133359 PMCID: PMC7040165 DOI: 10.3389/fcell.2020.00079] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) isolated in vitro from embryonic stem cells (ESCs), induced PSC (iPSC) and also post-implantation epiblast-derived stem cells (EpiSCs) are known for their two unique characteristics: the ability to give rise to all somatic lineages and the self-renewal capacity. Numerous intrinsic signaling pathways contribute to the maintenance of the pluripotency state of stem cells by tightly controlling key transcriptional regulators of stemness including sex determining region Y box 2 (Sox-2), octamer-binding transcription factor (Oct)3/4, krueppel-like factor 4 (Klf-4), Nanog, and c-Myc. Signaling by fibroblast growth factor (FGF) is of critical importance in regulating stem cells pluripotency. The FGF family is comprised of 22 ligands that interact with four FGF receptors (FGFRs). FGF/FGFR signaling governs fundamental cellular processes such as cell survival, proliferation, migration, differentiation, embryonic development, organogenesis, tissue repair/regeneration, and metabolism. FGF signaling is mediated by the activation of RAS - mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT, Phospholipase C Gamma (PLCγ), and signal transducers and activators of transcription (STAT), which intersects and synergizes with other signaling pathways such as Wnt, retinoic acid (RA) and transforming growth factor (TGF)-β signaling. In the current review, we summarize the role of FGF signaling in the maintenance of pluripotency state of stem cells through regulation of key transcriptional factors.
Collapse
Affiliation(s)
- Majid Mossahebi-Mohammadi
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Meiyu Quan
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Al-Hamashi AA, Diaz K, Huang R. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases. Curr Protein Pept Sci 2020; 21:699-712. [PMID: 32379587 PMCID: PMC7529871 DOI: 10.2174/1389203721666200507091952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022]
Abstract
Protein arginine methyltransferase (PRMT) enzymes play a crucial role in RNA splicing, DNA damage repair, cell signaling, and differentiation. Arginine methylation is a prominent posttransitional modification of histones and various non-histone proteins that can either activate or repress gene expression. The aberrant expression of PRMTs has been linked to multiple abnormalities, notably cancer. Herein, we review a number of non-histone protein substrates for all nine members of human PRMTs and how PRMT-mediated non-histone arginine methylation modulates various diseases. Additionally, we highlight the most recent clinical studies for several PRMT inhibitors.
Collapse
Affiliation(s)
- Ayad A. Al-Hamashi
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-almoadham, Baghdad, Iraq
| | - Krystal Diaz
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
18
|
Schaefer T, Lengerke C. SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond. Oncogene 2020; 39:278-292. [PMID: 31477842 PMCID: PMC6949191 DOI: 10.1038/s41388-019-0997-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
Research of the past view years expanded our understanding of the various physiological functions the cell-fate determining transcription factor SOX2 exerts in ontogenesis, reprogramming, and cancer. However, while scientific reports featuring novel and exciting aspects of SOX2-driven biology are published in near weekly routine, investigations in the underlying protein-biochemical processes that transiently tailor SOX2 activity to situational demand are underrepresented and have not yet been comprehensively summarized. Largely unrecognizable to modern array or sequencing-based technology, various protein secondary modifications and concomitant function modulations have been reported for SOX2. The chemical modifications imposed onto SOX2 are inherently heterogeneous, comprising singular or clustered events of phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, PARPylation, and O-glycosylation that reciprocally affect each other and critically impact SOX2 functionality, often in a tissue and species-specific manner. One recurring regulatory principle though is the canonical PI3K/AKT signaling axis to which SOX2 relates in various entangled, albeit not exclusive ways. Here we provide a comprehensive review of the current knowledge on SOX2 protein modifications, their proposed relationship to the PI3K/AKT pathway, and regulatory influence on SOX2 with regards to stemness, reprogramming, and cancer.
Collapse
Affiliation(s)
- Thorsten Schaefer
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland.
| | - Claudia Lengerke
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland
- University Hospital Basel, Division of Hematology, Basel, Switzerland
| |
Collapse
|
19
|
Jarrold J, Davies CC. PRMTs and Arginine Methylation: Cancer's Best-Kept Secret? Trends Mol Med 2019; 25:993-1009. [PMID: 31230909 DOI: 10.1016/j.molmed.2019.05.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Post-translational modification (PTM) of proteins is vital for increasing proteome diversity and maintaining cellular homeostasis. If the writing, reading, and removal of modifications are not controlled, cancer can develop. Arginine methylation is an understudied modification that is increasingly associated with cancer progression. Consequently protein arginine methyltransferases (PRMTs), the writers of arginine methylation, have rapidly gained interest as novel drug targets. However, for clinical success a deep mechanistic understanding of the biology of PRMTs is required. In this review we focus on advances made regarding the role of PRMTs in stem cell biology, epigenetics, splicing, immune surveillance and the DNA damage response, and highlight the rapid rise of specific inhibitors that are now in clinical trials for cancer therapy.
Collapse
Affiliation(s)
- James Jarrold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Clare C Davies
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
20
|
Go YH, Lim C, Jeong HC, Kwon OS, Chung S, Lee H, Kim W, Suh YG, Son WS, Lee MO, Cha HJ, Kim SH. Structure-Activity Relationship Analysis of YM155 for Inducing Selective Cell Death of Human Pluripotent Stem Cells. Front Chem 2019; 7:298. [PMID: 31157201 PMCID: PMC6532689 DOI: 10.3389/fchem.2019.00298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
Despite great potential for regenerative medicine, the high tumorigenic potential of human pluripotent stem cells (hPSCs) to form undesirable teratoma is an important technical hurdle preventing safe cell therapy. Various small molecules that induce the complete elimination of undifferentiated hPSCs, referred to as "stemotoxics," have been developed to facilitate tumor-free cell therapy, including the Survivin inhibitor YM155. In the present work, based on the chemical structure of YM155, total 26 analogs were synthesized and tested for stemotoxic activity toward human embryonic stem cells (hESCs) and induced PSCs (iPSCs). We found that a hydrogen bond acceptor in the pyrazine ring of YM155 derivatives is critical for stemotoxic activity, which is completely lost in hESCs lacking SLC35F2, which encodes a solute carrier protein. These results suggest that hydrogen bonding interactions between the nitrogens of the pyrazine ring and the SLC35F2 protein are critical for entry of YM155 into hPSCs, and hence stemotoxic activity.
Collapse
Affiliation(s)
- Young-Hyun Go
- Department of Life Sciences, College of Natural Sciences, Sogang University, Seoul, South Korea
| | - Changjin Lim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pochen-si, South Korea
| | - Ho-Chang Jeong
- Department of Life Sciences, College of Natural Sciences, Sogang University, Seoul, South Korea
| | - Ok-Seon Kwon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Sungkyun Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pochen-si, South Korea
| | - Haeseung Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Wankyu Kim
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Young-Ger Suh
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pochen-si, South Korea
| | - Woo Sung Son
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pochen-si, South Korea
| | - Mi-Ok Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Seok-Ho Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pochen-si, South Korea
| |
Collapse
|
21
|
Hashemitabar M, Heidari E. Redefining the signaling pathways from pluripotency to pancreas development: In vitro β-cell differentiation. J Cell Physiol 2018; 234:7811-7827. [PMID: 30480819 DOI: 10.1002/jcp.27736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells are destroyed by the immune system, in type 1 diabetes (T1D) and are impaired by glucose insensitivity in type 2 diabetes (T2D). Islet-cells transplantation is a promising therapeutic approach based on in vitro differentiation of pluripotent stem cells (PSCs) to insulin-producing cells (IPCs). According to evolutionary stages in β-cell development, there are several distinct checkpoints; each one has a unique characteristic, including definitive endoderm (DE), primitive gut (PG), posterior foregut (PF), pancreatic epithelium (PE), endocrine precursor (EP), and immature β-cells up to functional β-cells. A better understanding of the gene regulatory networks (GRN) and associated transcription factors in each specific developmental stage, guarantees the achievement of the next successful checkpoints and ensures an efficient β-cell differentiation procedure. The new findings in signaling pathways, related to the development of the pancreas are discussed here, including Wnt, Activin/Nodal, FGF, BMP, retinoic acid (RA), sonic hedgehog (Shh), Notch, and downstream regulators, required for β-cell commitment. We also summarized different approaches in the IPCs protocol to conceptually define a standardized system, leading to the creation of a reproducible method for β-cell differentiation. To normalize blood glucose level in diabetic mice, the replacement therapy in the early differentiation stage, such as EP stages was associated with better outcome when compared with the fully differentiated β-cells' graft.
Collapse
Affiliation(s)
- Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomy and Embryology, Faculty of Medicine, Joundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Heidari
- Department of Anatomy and Embryology, Faculty of Medicine, Joundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Cho SJ, Kim KT, Kim JS, Kwon OS, Go YH, Kang NY, Heo H, Kim MR, Han DW, Moon SH, Chang YT, Cha HJ. A fluorescent chemical probe CDy9 selectively stains and enables the isolation of live naïve mouse embryonic stem cells. Biomaterials 2018; 180:12-23. [PMID: 30014963 DOI: 10.1016/j.biomaterials.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Human and mouse embryonic stem cells (ESCs) differ in terms of their pluripotency status, i.e., naïve vs. primed. This affects various biological properties and leads to several technical hurdles for future clinical applications, such as difficulties in chimera formation, single-cell passaging, and gene editing. In terms of generating functional human tissues and organs via mammalian interspecies chimerism, a fluorescent chemical probe that specifically labels naïve ESCs would help to isolate these cells and monitor their conversion. This study demonstrates that the fluorescent chemical probe compound of designation yellow 9 (CDy9) selectively stains naïve, but not primed, mouse ESCs (mESCs). CDy9 entered cells via Slc13a5, a highly expressed membrane transporter in naïve mESCs. Fluorescence-based cell sorting based on CDy9 staining successfully separated naïve mESCs from primed mESCs. Mice generated using CDy9+ cells isolated during the conversion of mouse epiblast stem cells into naïve mESCs exhibited coat color chimerism. Furthermore, CDy9 specifically stained cells in the inner cell mass of mouse embryos. These findings suggest that CDy9 is a useful tool to isolate functional naïve mESCs.
Collapse
Affiliation(s)
- Seung-Ju Cho
- Department of Life Sciences Sogang University, 35 Baeckbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Keun-Tae Kim
- Department of Life Sciences Sogang University, 35 Baeckbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jong-Soo Kim
- Department of Medicine, School of Medicine Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ok-Seon Kwon
- College of Pharmacy, Department of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-Hyun Go
- Department of Life Sciences Sogang University, 35 Baeckbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Nam-Young Kang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore 138667, Singapore
| | - Haejeong Heo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Mi-Rang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dong Wook Han
- Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul, South Korea
| | - Sung-Hwan Moon
- Department of Medicine, School of Medicine Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Department of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
23
|
Yang C, Li X, Gao W, Wang Q, Zhang L, Li Y, Li L, Zhang L. Cornel Iridoid Glycoside Inhibits Tau Hyperphosphorylation via Regulating Cross-Talk Between GSK-3β and PP2A Signaling. Front Pharmacol 2018; 9:682. [PMID: 29997510 PMCID: PMC6028923 DOI: 10.3389/fphar.2018.00682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Neurofibrillary pathology contributes to neuronal dysfunction and correlates with the clinical progression of Alzheimer's disease (AD). Tau phosphorylation is mainly regulated by a balance of glycogen synthase kinase-3β (GSK-3β) and protein phosphatase 2A (PP2A) activities. Cornel iridoid glycoside (CIG) is a main component extracted from Cornus officinalis. The purpose of this study was to investigate the effects of CIG on GSK-3β and PP2A, thus to explore the mechanisms of CIG to inhibit tau hyperphosphorylation. The rat model of tau hyperphosphorylation was established by intraventricular injection of wortmannin and GF-109203X (GFX) to activate GSK-3β. The results showed that intragastrical administration of CIG inhibited tau hyperphosphorylation in the brain of rats induced by wortmannin/GFX. The results in vivo and in vitro exhibited that CIG inhibited tau hyperphosphorylation and GSK-3β over-activation. In the mechanism of action, CIG's attenuating GSK-3β activity was found to be dependent on PI3K/AKT signaling pathway. PP2A catalytic C subunit (PP2Ac) siRNA abrogated the effect of CIG on PI3K/AKT/GSK-3β. Additionally and crucially, we also found that CIG inhibited the demethylation of PP2Ac at Leu309 in vivo and in vitro. It enhanced PP2A activity, decreased tau hyperphosphorylation, and protected cell morphology in okadaic acid (OA)-induced cell model in vitro. PP2Ac siRNA abated the inhibitory effect of CIG on tau hyperphosphorylation. Moreover, CIG inhibited protein phosphatase methylesterase-1 (PME-1) and demethylation of PP2Ac, enhanced PP2A activity, and decreased tau hyperphosphorylation in PME-1-transfectd cells. Taken together, CIG inhibited GSK-3β activity via promoting P13K/AKT and PP2A signaling pathways. In addition, CIG also elevated PP2A activity via inhibiting PME-1-induced PP2Ac demethylation to inhibit GSK-3β activity, thus regulated the cross-talk between GSK-3β and PP2A signaling and consequently inhibited tau hyperphosphorylation. These results suggest that CIG may be a promising agent for AD therapy.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xuelian Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Gao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
24
|
Reactive Oxygen Species, Superoxide Dimutases, and PTEN-p53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem/Stromal Cells Regulation. Cells 2018; 7:cells7050036. [PMID: 29723979 PMCID: PMC5981260 DOI: 10.3390/cells7050036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that can differentiate to various specialized cells, which have the potential capacity to differentiate properly and accelerate recovery in damaged sites of the body. This stem cell technology has become the fundamental element in regenerative medicine. As reactive oxygen species (ROS) have been reported to adversely influence stem cell properties, it is imperative to attenuate the extent of ROS to the promising protective approach with MSCs’ regenerative therapy. Oxidative stress also affects the culture expansion and longevity of MSCs. Therefore, there is great need to identify a method to prevent oxidative stress and replicative senescence in MSCs. Phosphatase and tensin homologue deleted on chromosome 10/Protein kinase B, PKB (PTEN/AKT) and the tumor suppressor p53 pathway have been proven to play a pivotal role in regulating cell apoptosis by regulating the oxidative stress and/or ROS quenching. In this review, we summarize the current research and our view of how PTEN/AKT and p53 with their partners transduce signals downstream, and what the implications are for MSCs’ biology.
Collapse
|
25
|
Lin H, Wang B, Yu J, Wang J, Li Q, Cao B. Protein arginine methyltransferase 8 gene enhances the colon cancer stem cell (CSC) function by upregulating the pluripotency transcription factor. J Cancer 2018; 9:1394-1402. [PMID: 29721049 PMCID: PMC5929084 DOI: 10.7150/jca.23835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: Cancer stem cells play a crucial role in tumor multidrug resistance and metastasis, which can produce heterogeneous tumor cells and have self-renewal ability. The related literature reported that PRMT8 was overexpressed in tumor stem cells and pluripotent stem cells. However, it's unclear how PRMT8 acts on the stemness of colon tumor cells. This study is designed to detect functions by transfecting with PRMT8 plasmid to colon cancer cells. Methods: In this study we investigated colon cancer cell sphere and its differential expression of PRMT8 compared with colon cancer cells grown by static adherence. RKO Sphere formation assay was used to identify CSCs and verified PRMT8 and pluripotent transcription factors SOX2, OCT4, Nanog expression level in colon cell sphere. Colon cancer cell HCT-8 and RKO up-regulated PRMT8 expression by being transfected with PRMT8 plasmid to evaluate its effect on the stemness of colon tumor cell. Results: In RKO cell sphere, stem cell surface marker CD133 and CD44 were highly expressed. And PRMT8, SOX2, OCT4 and Nanog were also highly expressed in RKO cell sphere. After PRMT8 was up-regulated in HCT-8 and RKO cells, flow cytometry proved that PRMT8 group cells have a significant increase of the side population (SP) cells with cancer stem cell surface markers CD133 and CD44. And overexpression of PRMT8 in HCT-8 and RKO cells facilitated their aggressive traits, which contained proliferation, invasion and migration, as well as leading to their drug resistance. PRMT8 may play a role in colon cancer stem cells (CSC) through its regulation of pluripotent transcription factors, such as Nanog Homeobox (Nanog), octamer-binding transcription factor-4 (Oct4) and SRY-related high-mobility-group(HMG)-box protein-2 (Sox2). Conclusion: PRMT8 may promote the formation of colon cancer stem cells and, thus, be considered a potential therapeutic target for the treatment of malignant colon tumor.
Collapse
Affiliation(s)
- Haishan Lin
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bin Wang
- Department of Medical Administration, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Yu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|