1
|
Zhu Q, Liao Y, Liao Z, Ye G, Shan C, Huang H. Compact bone mesenchymal stem cells-derived paracrine mediators for cell-free therapy in sepsis. Biochem Biophys Res Commun 2024; 727:150313. [PMID: 38954981 DOI: 10.1016/j.bbrc.2024.150313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Sepsis, a life-threatening condition resulting in multiple organ dysfunction, is characterized by a dysregulated immune response to infection. Current treatment options are limited, leading to unsatisfactory outcomes for septic patients. Here, we present a series of studies utilizing compact bone mesenchymal stem cells (CB-MSCs) and their derived paracrine mediators, especially exosome (CB-MSCs-Exo), to treat mice with cecal ligation and puncture-induced sepsis. Our results demonstrate that CB-MSCs treatment significantly improves the survival rate of septic mice by mitigating excessive inflammatory response and attenuating sepsis-induced organ injuries. Furthermore, CB-MSCs-conditioned medium, CB-MSCs secretome (CB-MSCs-Sec), and CB-MSCs-Exo exhibit potent anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage (RAW264.7). Intriguingly, intravenous administration of CB-MSCs-Exo confers superior protection against inflammation and organ damage in septic mice compared to CB-MSCs in certain aspects. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomic analysis, we identify a range of characterized proteins derived from the paracrine activity of CB-MSCs, involved in critical biological processes such as immunomodulation and apoptosis. Our findings highlight that the paracrine products of CB-MSCs could serve as a promising cell-free therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuansong Liao
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Guogen Ye
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ce Shan
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
2
|
Jang JH, Choi E, Kim T, Yeo HJ, Jeon D, Kim YS, Cho WH. Navigating the Modern Landscape of Sepsis: Advances in Diagnosis and Treatment. Int J Mol Sci 2024; 25:7396. [PMID: 39000503 PMCID: PMC11242529 DOI: 10.3390/ijms25137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis poses a significant threat to human health due to its high morbidity and mortality rates worldwide. Traditional diagnostic methods for identifying sepsis or its causative organisms are time-consuming and contribute to a high mortality rate. Biomarkers have been developed to overcome these limitations and are currently used for sepsis diagnosis, prognosis prediction, and treatment response assessment. Over the past few decades, more than 250 biomarkers have been identified, a few of which have been used in clinical decision-making. Consistent with the limitations of diagnosing sepsis, there is currently no specific treatment for sepsis. Currently, the general treatment for sepsis is conservative and includes timely antibiotic use and hemodynamic support. When planning sepsis-specific treatment, it is important to select the most suitable patient, considering the heterogeneous nature of sepsis. This comprehensive review summarizes current and evolving biomarkers and therapeutic approaches for sepsis.
Collapse
Affiliation(s)
- Jin Ho Jang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eunjeong Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Taehwa Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye Ju Yeo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Doosoo Jeon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun Seong Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo Hyun Cho
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
3
|
Zheng T, Li S, Zhang T, Fu W, Liu S, He Y, Wang X, Ma T. Exosome-shuttled miR-150-5p from LPS-preconditioned mesenchymal stem cells down-regulate PI3K/Akt/mTOR pathway via Irs1 to enhance M2 macrophage polarization and confer protection against sepsis. Front Immunol 2024; 15:1397722. [PMID: 38957471 PMCID: PMC11217356 DOI: 10.3389/fimmu.2024.1397722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Rationale Sepsis is a life-threatening organ dysfunction and lack of effective measures in the current. Exosomes from mesenchymal stem cells (MSCs) reported to alleviate inflammation during sepsis, and the preconditioning of MSCs could enhance their paracrine potential. Therefore, this study investigated whether exosomes secreted by lipopolysaccharide (LPS)-pretreated MSCs exert superior antiseptic effects, and explored the underlying molecular mechanisms. Methods Exosomes were isolated and characterized from the supernatants of MSCs. The therapeutic efficacy of normal exosomes (Exo) and LPS-pretreated exosomes (LPS-Exo) were evaluated in terms of survival rates, inflammatory response, and organ damage in an LPS-induced sepsis model. Macrophages were stimulated with LPS and treated with Exo or LPS-Exo to confirm the results of the in vivo studies, and to explain the potential mechanisms. Results LPS-Exo were shown to inhibit aberrant pro-inflammatory cytokines, prevent organ damages, and improve survival rates of the septic mice to a greater extent than Exo. In vitro, LPS-Exo significantly promoted the M2 polarization of macrophages exposed to inflammation. miRNA sequencing and qRT-PCR analysis identified the remarkable expression of miR-150-5p in LPS-Exo compared to that in Exo, and exosomal miR-150-5p was transferred into recipient macrophages and mediated macrophage polarization. Further investigation demonstrated that miR-150-5p targets Irs1 in recipient macrophages and subsequently modulates macrophage plasticity by down-regulating the PI3K/Akt/mTOR pathway. Conclusion The current findings highly suggest that exosomes derived from LPS pre-conditioned MSCs represent a promising cell-free therapeutic method and highlight miR-150-5p as a novel molecular target for regulating immune hyperactivation during sepsis.
Collapse
Affiliation(s)
- Ting Zheng
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Sipeng Li
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuchang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxin He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Lu W, Yan L, Tang X, Wang X, Du J, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cells therapy in COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. J Transl Med 2024; 22:550. [PMID: 38851730 PMCID: PMC11162060 DOI: 10.1186/s12967-024-05358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) has become a serious public health issue. In COVID-19 patients, the elevated levels of inflammatory cytokines lead to the manifestation of COVID-19 symptoms, such as lung tissue edema, lung diffusion dysfunction, acute respiratory distress syndrome (ARDS), secondary infection, and ultimately mortality. Mesenchymal stem cells (MSCs) exhibit anti-inflammatory and immunomodulatory properties, thus providing a potential treatment option for COVID-19. The number of clinical trials of MSCs for COVID-19 has been rising. However, the treatment protocols and therapeutic effects of MSCs for COVID-19 patients are inconsistent. This meta-analysis was performed to systematically determine the safety and efficacy of MSC infusion in COVID-19 patients. METHODS We conducted a comprehensive literature search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library up to 22 November 2023 to screen for eligible randomized controlled trials. Inclusion and exclusion criteria for searched literature were formulated according to the PICOS principle, followed by the use of literature quality assessment tools to assess the risk of bias. Finally, outcome measurements including therapeutic efficacy, clinical symptoms, and adverse events of each study were extracted for statistical analysis. RESULTS A total of 14 randomized controlled trials were collected. The results of enrolled studies demonstrated that patients with COVID-19 pneumonia who received MSC inoculation showed a decreased mortality compared with counterparts who received conventional treatment (RR: 0.76; 95% CI [0.60, 0.96]; p = 0.02). Reciprocally, MSC inoculation improved the clinical symptoms in patients (RR: 1.28; 95% CI [1.06, 1.55]; p = 0.009). In terms of immune biomarkers, MSC treatment inhibited inflammation responses in COVID-19 patients, as was indicated by the decreased levels of CRP and IL-6. Importantly, our results showed that no significant differences in the incidence of adverse reactions or serious adverse events were monitored in patients after MSC inoculation. CONCLUSION This meta-analysis demonstrated that MSC inoculation is effective and safe in the treatment of patients with COVID-19 pneumonia. Without increasing the incidence of adverse events or serious adverse events, MSC treatment decreased patient mortality and inflammatory levels and improved the clinical symptoms in COVID-19 patients. However, large-cohort randomized controlled trials with expanded numbers of patients are required to further confirm our results.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Longxiang Yan
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Jing Du
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
5
|
Zhuxiao R, Shuo Y, Jiangxue H, Jingjun P, Qi Z, Zhu W, Fang X, Jie Y. Antimicrobial peptide LL37 and regulatory T cell associated with late-onset sepsis in very preterm infants. iScience 2024; 27:109780. [PMID: 38736551 PMCID: PMC11088333 DOI: 10.1016/j.isci.2024.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Stem cell therapy may prevent late-onset sepsis (LOS) via antimicrobial peptide LL37 secretion and regulatory T cell (Treg) regulation. The early prediction of LOS is still a challenge. This study evaluated whether immunological state of LL37 or Tregs precedes LOS. We firstly analyzed the LL37 level, Treg proportion, and LOS incidence in very preterm infants treated with autologous cord blood mononuclear cells (ACBMNCs) in our previous trial. Then, we constructed a prediction model and built validation cohort. We found ACBMNC intervention reduced the incidence of LOS from 27.3% to 6.9% (p = 0.021). LL37 and Treg abundances were higher in the ACBMNCs group. The nomogram demonstrated that early-life Treg and LL37 characteristics were closely associated with LOS (area under the curve, AUC 0.936), with implications for early prediction and timely clinical management. This composite model was also helpful to evaluate the beneficial effect of ACBMNCs intervention on LOS, thus promoting translational research.
Collapse
Affiliation(s)
- Ren Zhuxiao
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangdong Neonatal ICU Medical Quality Control Center, National Key Clinical Specialty Construction Unit Guangzhou Medical University, Guangzhou 510000, Guangdong, China
| | - Yang Shuo
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Han Jiangxue
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangdong Neonatal ICU Medical Quality Control Center, National Key Clinical Specialty Construction Unit Guangzhou Medical University, Guangzhou 510000, Guangdong, China
| | - Pei Jingjun
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhang Qi
- Department of Clinical Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Zhu
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangdong Neonatal ICU Medical Quality Control Center, National Key Clinical Specialty Construction Unit Guangzhou Medical University, Guangzhou 510000, Guangdong, China
| | - Xu Fang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangdong Neonatal ICU Medical Quality Control Center, National Key Clinical Specialty Construction Unit Guangzhou Medical University, Guangzhou 510000, Guangdong, China
| | - Yang Jie
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Abdi A, Ranjbaran M, Amidi F, Akhondzadeh F, Seifi B. The effect of adipose-derived mesenchymal stem cell transplantation on ovarian mitochondrial dysfunction in letrozole-induced polycystic ovary syndrome in rats: the role of PI3K-AKT signaling pathway. J Ovarian Res 2024; 17:91. [PMID: 38678269 PMCID: PMC11056058 DOI: 10.1186/s13048-024-01422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE The present study aimed to elucidate how mesenchymal stem cells (MSCs) application could efficiently attenuate pathological changes of letrozole-induced poly cystic ovary syndrome (PCOS) by modulating mitochondrial dynamic via PI3K-AKT pathway. METHODS Thirty-two female rats were randomly divided into four experimental groups: Sham, PCOS, PCOS + MSCs, and PCOS + MSCs + LY294002. The Sham group received 0.5% w/v carboxymethyl cellulose (CMC); the PCOS group received letrozole (1 mg/kg, daily) in 0.5% CMC for 21 days. Animals in the PCOS + MSCs group received 1 × 106 MSCs/rat (i.p,) on the 22th day of the study. In the PCOS + MSCs + LY294002 group, rats received LY294002 (PI3K-AKT inhibitor) 40 min before MSC transplantation. Mitochondrial dynamic gene expression, mitochondrial membrane potential (MMP), citrate synthase (CS) activity, oxidative stress, inflammation, ovarian histological parameters, serum hormone levels, homeostatic model assessment for insulin resistance (HOMA-IR), insulin and glucose concentrations, p-PI3K and p-AKT protein levels were evaluated at the end of the experiment. RESULTS PCOS rats showed a significant disruption of mitochondrial dynamics and histological changes, lower MMP, CS, ovary super oxide dismutase (SOD) and estrogen level. They also had a notable rise in insulin and glucose concentrations, HOMA-IR, testosterone level, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels, ovarian malondialdehyde (MDA) content as well as a notable decrease in p-PI3K and p-AKT protein levels compared to the Sham group. In the PCOS + MSCs group, the transplantation of MSCs could improve the above parameters. Administration of LY294002 (PI3K-AKT pathway inhibitor) deteriorated mitochondrial dynamic markers, oxidative stress status, inflammation markers, hormonal levels, glucose, and insulin levels and follicular development compared to the PCOS + MSCs group. CONCLUSIONS This study demonstrated that the protective effects of MSC transplantation in regulating mitochondrial dynamics, promoting mitochondrial biogenesis, competing with redox status and inflammation response were mainly mediated through the PI3K-AKT pathway in the PCOS model.
Collapse
Affiliation(s)
- Arash Abdi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Akhondzadeh
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhao C, Luo Q, Huang J, Su S, Zhang L, Zheng D, Chen M, Lin X, Zhong J, Li L, Ling K, Zhang S. Extracellular Vesicles Derived from Human Adipose-Derived Mesenchymal Stem Cells Alleviate Sepsis-Induced Acute Lung Injury through a MicroRNA-150-5p-Dependent Mechanism. ACS Biomater Sci Eng 2024; 10:946-959. [PMID: 38154081 DOI: 10.1021/acsbiomaterials.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Extracellular vesicles (EVs) derived from human adipose mesenchymal stem cells (hADSCs) may exert a therapeutic benefit in alleviating sepsis-induced organ dysfunction by delivering cargos that include RNAs and proteins to target cells. The current study aims to explore the protective effect of miR-150-5p delivered by hADSC-EVs on sepsis-induced acute lung injury (ALI). We noted low expression of miR-150-5p in plasma and bronchoalveolar lavage fluid samples from patients with sepsis-induced ALI. The hADSC-EVs were isolated and subsequently cocultured with macrophages. It was established that hADSC-EVs transferred miR-150-5p to macrophages, where miR-150-5p targeted HMGA2 to inhibit its expression and, consequently, inactivated the MAPK pathway. This effect contributed to the promotion of M2 polarization of macrophages and the inhibition of proinflammatory cytokines. Further, mice were made septic by cecal ligation and puncture in vivo and treated with hADSC-EVs to elucidate the effect of hADSC-EVs on sepsis-induced ALI. The in vivo experimental results confirmed a suppressive role of hADSC-EVs in sepsis-induced ALI. Our findings suggest that hADSC-EV-mediated transfer of miR-150-5p may be a novel mechanism underlying the paracrine effects of hADSC-EVs on the M2 polarization of macrophages in sepsis-induced ALI.
Collapse
Affiliation(s)
- Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Qianhua Luo
- Department of Pharmacology, Guangdong Second Provincial General Hospital, Guangzhou 510317, P.R. China
- Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510168, P.R. China
| | - Jianxiang Huang
- College of Pharmacy, Jinan University, Guangzhou 510220, P.R. China
| | - Siman Su
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Lijuan Zhang
- Department of Pharmacy, YueBei People's Hospital (YueBei People's Hospital affiliated to Shantou University Medical College), ShaoGuan 512000, P.R. China
| | - Danling Zheng
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Meini Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Xinyue Lin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Jialin Zhong
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Li Li
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Kai Ling
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| |
Collapse
|
8
|
Tao X, Wang J, Liu B, Cheng P, Mu D, Du H, Niu B. Plasticity and crosstalk of mesenchymal stem cells and macrophages in immunomodulation in sepsis. Front Immunol 2024; 15:1338744. [PMID: 38352879 PMCID: PMC10861706 DOI: 10.3389/fimmu.2024.1338744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Sepsis is a multisystem disease characterized by dysregulation of the host immune response to infection. Immune response kinetics play a crucial role in the pathogenesis and progression of sepsis. Macrophages, which are known for their heterogeneity and plasticity, actively participate in the immune response during sepsis. These cells are influenced by the ever-changing immune microenvironment and exhibit two-sided immune regulation. Recently, the immunomodulatory function of mesenchymal stem cells (MSCs) in sepsis has garnered significant attention. The immune microenvironment can profoundly impact MSCs, prompting them to exhibit dual immunomodulatory functions akin to a double-edged sword. This discovery holds great importance for understanding sepsis progression and devising effective treatment strategies. Importantly, there is a close interrelationship between macrophages and MSCs, characterized by the fact that during sepsis, these two cell types interact and cooperate to regulate inflammatory processes. This review summarizes the plasticity of macrophages and MSCs within the immune microenvironment during sepsis, as well as the intricate crosstalk between them. This remains an important concern for the future use of these cells for immunomodulatory treatments in the clinic.
Collapse
Affiliation(s)
- Xingyu Tao
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Jialian Wang
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bin Liu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Peifeng Cheng
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Dan Mu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin Niu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Zendedel E, Tayebi L, Nikbakht M, Hasanzadeh E, Asadpour S. Clinical Trials of Mesenchymal Stem Cells for the Treatment of COVID 19. Curr Stem Cell Res Ther 2024; 19:1055-1071. [PMID: 37815188 DOI: 10.2174/011574888x260032230925052240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 10/11/2023]
Abstract
Mesenchymal Stem Cells (MSCs) are being investigated as a treatment for a novel viral disease owing to their immunomodulatory, anti-inflammatory, tissue repair and regeneration characteristics, however, the exact processes are unknown. MSC therapy was found to be effective in lowering immune system overactivation and increasing endogenous healing after SARS-CoV-2 infection by improving the pulmonary microenvironment. Many studies on mesenchymal stem cells have been undertaken concurrently, and we may help speed up the effectiveness of these studies by collecting and statistically analyzing data from them. Based on clinical trial information found on clinicaltrials. gov and on 16 November 2020, which includes 63 clinical trials in the field of patient treatment with COVID-19 using MSCs, according to the trend of increasing studies in this field, and with the help of meta-analysis studies, it is possible to hope that the promise of MSCs will one day be realized. The potential therapeutic applications of MSCs for COVID-19 are investigated in this study.
Collapse
Affiliation(s)
- Elham Zendedel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Lobat Tayebi
- Marquett University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Mohammad Nikbakht
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
10
|
Yang Z, Li H, Wu P, Li Q, Yu C, Wang D, Li W. Multi-biological functions of intermedin in diseases. Front Physiol 2023; 14:1233073. [PMID: 37745233 PMCID: PMC10511904 DOI: 10.3389/fphys.2023.1233073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP)/calcitonin (CT) superfamily, and it is expressed extensively throughout the body. The typical receptors for IMD are complexes composed of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP), which leads to a biased activation towards Gαs. As a diagnostic and prognostic biomarker, IMD regulates the initiation and metastasis of multiple tumors. Additionally, IMD functions as a proangiogenic factor that can restrain excessive vascular budding and facilitate the expansion of blood vessel lumen, ultimately resulting in the fusion of blood vessels. IMD has protective roles in various diseases, including ischemia-reperfusion injury, metabolic disease, cardiovascular diseases and inflammatory diseases. This review systematically elucidates IMD's expression, structure, related receptors and signal pathway, as well as its comprehensive functions in the context of acute kidney injury, obesity, diabetes, heart failure and sepsis. However, the precise formation process of IMD short peptides in vivo and their downstream signaling pathway have not been fully elucidated yet. Further in-depth studies are need to translate IMD research into clinical applications.
Collapse
Affiliation(s)
- Zhi Yang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyan Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - ChunYan Yu
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Denian Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Pochon C, Laroye C, Kimmoun A, Reppel L, Dhuyser A, Rousseau H, Gauthier M, Petitpain N, Chabot JF, Valentin S, de Carvalho Bittencourt M, Peres M, Aarnink A, Decot V, Bensoussan D, Gibot S. Efficacy of Wharton Jelly Mesenchymal Stromal Cells infusions in moderate to severe SARS-Cov-2 related acute respiratory distress syndrome: a phase 2a double-blind randomized controlled trial. Front Med (Lausanne) 2023; 10:1224865. [PMID: 37706025 PMCID: PMC10495568 DOI: 10.3389/fmed.2023.1224865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Background The COVID-19 pandemic caused a wave of acute respiratory distress syndrome (ARDS) with a high in-hospital mortality, especially in patients requiring invasive mechanical ventilation. Wharton Jelly-derived Mesenchymal Stromal Cells (WJ-MSCs) may counteract the pulmonary damage induced by the SARS-CoV-2 infection through pro-angiogenic effects, lung epithelial cell protection, and immunomodulation. Methods In this randomized, double-blind, placebo-controlled phase 2a trial, adult patients receiving invasive mechanical ventilation for SARS-CoV-2 induced moderate or severe ARDS were assigned to receive 1 intravenous infusion of 1 × 106 WJ-MSCs/kg or placebo within 48 h of invasive ventilation followed by 2 infusions of 0.5 × 106 WJ-MSCs/kg or placebo over 5 days. The primary endpoint was the percentage of patients with a PaO2/FiO2 > 200 on day 10. Results Thirty patients were included from November 2020 to May 2021, 15 in the WJ-MSC group and 15 in the placebo group. We did not find any significant difference in the PaO2/FiO2 ratio at day 10, with 18 and 15% of WJ-MSCs and placebo-treated patients reaching a ratio >200, respectively. Survival did not differ in the 2 groups with a 20% mortality rate at day 90. While we observed a higher number of ventilation-free days at 28 days in the WJ-MSC arm, this difference was not statistically significant (median of 11 (0-22) vs. 0 (0-18), p = 0.2). The infusions were well tolerated, with a low incidence of anti-HLA alloimmunization after 90 days. Conclusion While treatment with WJ-MSCs appeared safe and feasible in patients with SARS-CoV2 moderate or severe ARDS in this phase 2a trial, the treatment was not associated with an increased percentage of patients with P/F > 200 at 10d, nor did 90 day mortality improve in the treated group. Clinical trial registration https://beta.clinicaltrials.gov/study/NCT04625738, identifier NCT04625738.
Collapse
Affiliation(s)
- Cécile Pochon
- CHRU-Nancy, Pediatric Onco-Hematology Department, Nancy, France
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
| | - Caroline Laroye
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Antoine Kimmoun
- CHRU-Nancy, Service de Médecine Intensive et Réanimation, Hôpitaux de Brabois, Nancy, France
- Université de Lorraine, Nancy, France
| | - Loic Reppel
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Adéle Dhuyser
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Hélène Rousseau
- CHRU-Nancy, Département Méthodologie, Promotion, Investigation, Hôpitaux de Brabois, Nancy, France
| | - Mélanie Gauthier
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Nadine Petitpain
- CHRU-Nancy, Département de Pharmacovigilance, Hôpitaux de Brabois, Nancy, France
| | - Jean-François Chabot
- CHRU-Nancy, Pôle des Spécialités Médicales/Département de Pneumologie, Hôpitaux de Brabois, Nancy, France
| | - Simon Valentin
- CHRU-Nancy, Pôle des Spécialités Médicales/Département de Pneumologie, Hôpitaux de Brabois, Nancy, France
| | | | - Michael Peres
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Alice Aarnink
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Véronique Decot
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Danièle Bensoussan
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Sébastien Gibot
- CHRU-Nancy, Service de Médecine Intensive et Réanimation, Hôpital Central, Nancy, France
| |
Collapse
|
12
|
Li Z, Xu Y, Lu S, Gao Y, Deng Y. Bone mesenchymal stem cell extracellular vesicles delivered miR let-7-5p alleviate endothelial glycocalyx degradation and leakage via targeting ABL2. Cell Commun Signal 2023; 21:205. [PMID: 37587494 PMCID: PMC10428537 DOI: 10.1186/s12964-023-01229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/15/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Endothelial glycocalyx (EG) is an active player and treatment target in inflammatory-related vascular leakage. The bone marrow mesenchymal stem cells (bMSCs) are promising potential treatments for leakage; however, the therapeutic effect and mechanism of bMSC on EG degradation needs to be elucidated. METHODS EG degradation and leakage were evaluated in both lipopolysaccharide (LPS)-induced mice ear vascular leakage model and LPS-stimulated human umbilical vein endothelial cells (HUVECs) model treated with bMSCs. Extracellular vesicles (EVs) were extracted from bMSCs and the containing microRNA profile was analyzed. EV and miR let-7-5p were inhibited to determine their function in the therapeutic process. The ABL2 gene was knockdown in HUVECs to verify its role as a therapeutic target in EG degradation. RESULTS bMSCs treatment could alleviate LPS-induced EG degradation and leakage in vivo and in vitro, whereas EVs/let-7-5p-deficient bMSCs were insufficient to reduce EG degradation. LPS down-regulated the expression of let-7-5p while upregulated endothelial expression of ABL2 in HUVECs and induced EG degradation and leakage. bMSC-EVs uptaken by HUVECs could deliver let-7-5p targeting endothelial ABL2, which suppressed the activation of downstream p38MAPK and IL-6, IL-1β levels, and thus reversed LPS-induced EG degradation and leakage. CONCLUSION bMCSs alleviate LPS-induced EG degradation and leakage through EV delivery of miR let-7-5p targeting endothelial ABL2.
Collapse
Affiliation(s)
- Zhe Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China
| | - Yuqing Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China
| | - Shiyue Lu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China.
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China.
| |
Collapse
|
13
|
Laroye C, Gauthier M, Morello J, Charif N, Cannard VL, Bonnet C, Lozniewski A, Tchirkov A, De Isla N, Decot V, Reppel L, Bensoussan D. Scale-Up of Academic Mesenchymal Stromal Cell Production. J Clin Med 2023; 12:4414. [PMID: 37445448 DOI: 10.3390/jcm12134414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Many clinical trials have reported the use of mesenchymal stromal cells (MSCs) following the indication of severe SARS-CoV-2 infection. However, in the COVID19 pandemic context, academic laboratories had to adapt a production process to obtain MSCs in a very short time. Production processes, especially freezing/thawing cycles, or culture medium have impacts on MSC properties. We evaluated the impact of an intermediate cryopreservation state during MSC culture to increase production yields. METHODS Seven Wharton's jelly (WJ)-MSC batches generated from seven different umbilical cords with only one cryopreservation step and 13 WJ-MSC batches produced with intermediate freezing were formed according to good manufacturing practices. The identity (phenotype and clonogenic capacities), safety (karyotype, telomerase activity, sterility, and donor qualification), and functionality (viability, mixed lymphocyte reaction) were analyzed. RESULTS No significant differences between MSC production processes were observed, except for the clonogenic capacity, which was decreased, although it always remained above our specifications. CONCLUSIONS Intermediate cryopreservation allows an increase in the production yield and has little impact on the basic characteristics of MSCs.
Collapse
Affiliation(s)
- Caroline Laroye
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| | - Mélanie Gauthier
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| | - Jessica Morello
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
| | - Naceur Charif
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| | | | - Céline Bonnet
- CHRU Nancy, Genetics Laboratory, F-54000 Nancy, France
| | | | - Andrei Tchirkov
- CHRU Clermont-Ferrand, Medical Cytogenetics Laboratory, F-63003 Clermont-Ferrand, France
| | | | - Véronique Decot
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| | - Loïc Reppel
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| | - Danièle Bensoussan
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| |
Collapse
|
14
|
Kahrizi MS, Mousavi E, Khosravi A, Rahnama S, Salehi A, Nasrabadi N, Ebrahimzadeh F, Jamali S. Recent advances in pre-conditioned mesenchymal stem/stromal cell (MSCs) therapy in organ failure; a comprehensive review of preclinical studies. Stem Cell Res Ther 2023; 14:155. [PMID: 37287066 DOI: 10.1186/s13287-023-03374-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs)-based therapy brings the reassuring capability to regenerative medicine through their self-renewal and multilineage potency. Also, they secret a diversity of mediators, which are complicated in moderation of deregulated immune responses, and yielding angiogenesis in vivo. Nonetheless, MSCs may lose biological performance after procurement and prolonged expansion in vitro. Also, following transplantation and migration to target tissue, they encounter a harsh milieu accompanied by death signals because of the lack of proper tensegrity structure between the cells and matrix. Accordingly, pre-conditioning of MSCs is strongly suggested to upgrade their performances in vivo, leading to more favored transplantation efficacy in regenerative medicine. Indeed, MSCs ex vivo pre-conditioning by hypoxia, inflammatory stimulus, or other factors/conditions may stimulate their survival, proliferation, migration, exosome secretion, and pro-angiogenic and anti-inflammatory characteristics in vivo. In this review, we deliver an overview of the pre-conditioning methods that are considered a strategy for improving the therapeutic efficacy of MSCs in organ failures, in particular, renal, heart, lung, and liver.
Collapse
Affiliation(s)
| | - Elnaz Mousavi
- Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Armin Khosravi
- Department of Periodontics, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Sara Rahnama
- Department of Pediatric Dentistry, School of Dentistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Samira Jamali
- Department of Endodontics, Stomatological Hospital, College of Stomatology, Xi'an Jiaotong University, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Blanco NG, Machado NM, Castro LL, Antunes MA, Takiya CM, Trugilho MRO, Silva LR, Paes Leme AF, Domingues RR, Pauletti BA, Miranda BT, Silva JD, Dos Santos CC, Silva PL, Rocco PRM, Cruz FF. Extracellular Vesicles from Different Sources of Mesenchymal Stromal Cells Have Distinct Effects on Lung and Distal Organs in Experimental Sepsis. Int J Mol Sci 2023; 24:ijms24098234. [PMID: 37175936 PMCID: PMC10179270 DOI: 10.3390/ijms24098234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The effects of the administration of mesenchymal stromal cells (MSC) may vary according to the source. We hypothesized that MSC-derived extracellular vesicles (EVs) obtained from bone marrow (BM), adipose (AD), or lung (L) tissues may also lead to different effects in sepsis. We profiled the proteome from EVs as a first step toward understanding their mechanisms of action. Polymicrobial sepsis was induced in C57BL/6 mice by cecal ligation and puncture (SEPSIS) and SHAM (control) animals only underwent laparotomy. Twenty-four hours after surgery, animals in the SEPSIS group were randomized to receive saline or 3 × 106 MSC-derived EVs from BM, AD, or L. The diffuse alveolar damage was decreased with EVs from all three sources. In kidneys, BM-, AD-, and L-EVs reduced edema and expression of interleukin-18. Kidney injury molecule-1 expression decreased only in BM- and L-EVs groups. In the liver, only BM-EVs reduced congestion and cell infiltration. The size and number of EVs from different sources were not different, but the proteome of the EVs differed. BM-EVs were enriched for anti-inflammatory proteins compared with AD-EVs and L-EVs. In conclusion, BM-EVs were associated with less organ damage compared with the other sources of EVs, which may be related to differences detected in their proteome.
Collapse
Affiliation(s)
- Natália G Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Natália M Machado
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ligia L Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Christina M Takiya
- Laboratory of Immunopathology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Monique R O Trugilho
- Toxinology Laboratory, Center for Technological Development Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Luana R Silva
- Toxinology Laboratory, Center for Technological Development Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Adriana F Paes Leme
- Mass Spectrometry Laboratory, Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials, Campinas 13083-970, SP, Brazil
| | - Romênia R Domingues
- Mass Spectrometry Laboratory, Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials, Campinas 13083-970, SP, Brazil
| | - Bianca A Pauletti
- Mass Spectrometry Laboratory, Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials, Campinas 13083-970, SP, Brazil
| | - Beatriz T Miranda
- Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
16
|
Gao J, Ding L, Xin Y, Li Y, He K, Su M, Hu R. Pax6-induced proliferation and differentiation of bone marrow mesenchymal stem cells into limbal epithelial stem cells. Stem Cells Dev 2023. [PMID: 37097204 DOI: 10.1089/scd.2022.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Corneal integrity, transparency, and visual acuity are maintained by corneal epithelial cells (CECs), which are continuously renewed by limbal epithelial stem cells (LESCs). The limbal stem cell deficiency (LSCD) is associated with ocular diseases. This study aimed to develop a novel method to differentiate bone marrow mesenchymal stem cells (BM-MSCs) into LESC-like cells using a culture medium and paired box 6 (Pax6) transfection. The LESC-like cells were confirmed using the LESC markers CK14 and p63 and CEC marker CK12. Pax6 induces BM-MSCs to differentiate into LESC-like cells in vitro. Mouse models of chemical corneal burn were obtained and treated with the LESC-like cells. The transplantation experiment indicated that Pax6-reprogramed BM-MSCs attached to and replenished the damaged cornea via the formation of stratified corneal epithelium. The proliferation and colony formation abilities of Pax6-overexpressing BM-MSCs were significantly enhanced. These findings provide evidence that BM-MSCs might serve as an excellent candidate for generating bioengineered corneal epithelium and provide a new strategy for the treatment of clinical corneal damage.
Collapse
Affiliation(s)
- Jie Gao
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| | - Ling Ding
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| | - Ying Xin
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| | - Yuandi Li
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| | - Keke He
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| | - Min Su
- Guizhou Medical University, 74628, Guiyang, China, 550004;
| | - Rong Hu
- Guizhou Medical University, 74628, Guiyang, Guizhou, China;
| |
Collapse
|
17
|
Marques A, Torre C, Pinto R, Sepodes B, Rocha J. Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms. J Clin Med 2023; 12:2892. [PMID: 37109229 PMCID: PMC10142733 DOI: 10.3390/jcm12082892] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Sepsis is currently defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, and it affects over 25 million people every year. Even more severe, septic shock is a subset of sepsis defined by persistent hypotension, and hospital mortality rates are higher than 40%. Although early sepsis mortality has greatly improved in the past few years, sepsis patients who survive the hyperinflammation and subsequent organ damage often die from long-term complications, such as secondary infection, and despite decades of clinical trials targeting this stage of the disease, currently, no sepsis-specific therapies exist. As new pathophysiological mechanisms have been uncovered, immunostimulatory therapy has emerged as a promising path forward. Highly investigated treatment strategies include cytokines and growth factors, immune checkpoint inhibitors, and even cellular therapies. There is much to be learned from related illnesses, and immunotherapy trials in oncology, as well as the recent COVID-19 pandemic, have greatly informed sepsis research. Although the journey ahead is a long one, the stratification of patients according to their immune status and the employment of combination therapies represent a hopeful way forward.
Collapse
Affiliation(s)
- Adriana Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - Carla Torre
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - Rui Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
- Joaquim Chaves Saúde, Joaquim Chaves Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| |
Collapse
|
18
|
Martí‐Chillón G, Muntión S, Preciado S, Osugui L, Navarro‐Bailón A, González‐Robledo J, Sagredo V, Blanco JF, Sánchez‐Guijo F. Therapeutic potential of mesenchymal stromal/stem cells in critical-care patients with systemic inflammatory response syndrome. Clin Transl Med 2023; 13:e1163. [PMID: 36588089 PMCID: PMC9806020 DOI: 10.1002/ctm2.1163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Despite notable advances in the support and treatment of patients admitted to the intensive care unit (ICU), the management of those who develop a systemic inflammatory response syndrome (SIRS) still constitutes an unmet medical need. MAIN BODY Both the initial injury (trauma, pancreatitis, infections) and the derived uncontrolled response promote a hyperinflammatory status that leads to systemic hypotension, tissue hypoperfusion and multiple organ failure. Mesenchymal stromal/stem cells (MSCs) are emerging as a potential therapy for severe ICU patients due to their potent immunomodulatory, anti-inflammatory, regenerative and systemic homeostasis-regulating properties. MSCs have demonstrated clinical benefits in several inflammatory-based diseases, but their role in SIRS needs to be further explored. CONCLUSION In the current review, after briefly overviewing SIRS physiopathology, we explore the potential mechanisms why MSC therapy could aid in the recovery of this condition and the pre-clinical and early clinical evidence generated to date.
Collapse
Affiliation(s)
| | - Sandra Muntión
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Silvia Preciado
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Lika Osugui
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Almudena Navarro‐Bailón
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Javier González‐Robledo
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Department of MedicineUniversity of SalamancaSalamancaSpain
| | | | - Juan F. Blanco
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
- Department of SurgeryUniversity of SalamancaSalamancaSpain
| | - Fermín Sánchez‐Guijo
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Department of MedicineUniversity of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| |
Collapse
|
19
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2022; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Effects of Albumin Supplements on In-Hospital Mortality in Patients with Sepsis or Septic Shock: A Systemic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2384730. [PMID: 36262167 PMCID: PMC9576387 DOI: 10.1155/2022/2384730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Objective To explore the clinical effects of albumin supplements on the basis of crystalloid solution in patients with sepsis or septic shock. Methods The online databases including PubMed, Web of Science, Cochrane Library, and EMBASE were comprehensively searched from inception to June 28, 2021, with the keywords including “albumin,” “sepsis,” or “septic shock.” Retrospective cohort (RC) and randomized controlled trials (RCT) were included for analysis. Two authors independently searched and analyzed the literature. The in-hospital mortality at 7 days and 28 days, duration of mechanical ventilation, renal replacement therapy, length of ICU stay, and length of hospital stay were compared between patients with albumin supplements and crystalloid solution and those with crystalloid alone. Results A total of 10 studies with 6463 patients were eventually included for meta-analysis. The in-hospital mortality of patients at 7 days (OR = 1.00, 95% CI: 0.81–1.23) and 28 days (OR = 1.02, 95% CI: 0.91–1.13) did not show a significant difference between the two groups of patients. Also, the pooled results demonstrated no significant differences in duration of mechanical ventilation (OR = 0.29, 95% CI: −0.05–0.63), renal replacement therapy (WMD = 1.15, 95% CI: 0.98–1.35), length of ICU stay (WMD = −0.07, 95% CI: −0.62–0.48), and length of hospital stay (WMD = −0.09, 95% CI: −0.70–0.52) between patients receiving albumin plus crystalloid solution and those with crystalloid solution alone. Conclusion Albumin supplements on the basis of crystalloid solution did not improve the 7-day and 28-dayin-hospital mortality in patients with sepsis or septic shock compared with those with crystalloid solution alone.
Collapse
|
21
|
Liu D, Huang SY, Sun JH, Zhang HC, Cai QL, Gao C, Li L, Cao J, Xu F, Zhou Y, Guan CX, Jin SW, Deng J, Fang XM, Jiang JX, Zeng L. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res 2022; 9:56. [PMID: 36209190 PMCID: PMC9547753 DOI: 10.1186/s40779-022-00422-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Sepsis is a common complication of combat injuries and trauma, and is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is also one of the significant causes of death and increased health care costs in modern intensive care units. The use of antibiotics, fluid resuscitation, and organ support therapy have limited prognostic impact in patients with sepsis. Although its pathophysiology remains elusive, immunosuppression is now recognized as one of the major causes of septic death. Sepsis-induced immunosuppression is resulted from disruption of immune homeostasis. It is characterized by the release of anti-inflammatory cytokines, abnormal death of immune effector cells, hyperproliferation of immune suppressor cells, and expression of immune checkpoints. By targeting immunosuppression, especially with immune checkpoint inhibitors, preclinical studies have demonstrated the reversal of immunocyte dysfunctions and established host resistance. Here, we comprehensively discuss recent findings on the mechanisms, regulation and biomarkers of sepsis-induced immunosuppression and highlight their implications for developing effective strategies to treat patients with septic shock.
Collapse
Affiliation(s)
- Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Si-Yuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Jian-Hui Sun
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Hua-Cai Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Qing-Li Cai
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Chu Gao
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ju Cao
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fang Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, Wenzhou, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, 550001, Guiyang, China
| | - Xiang-Ming Fang
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Jian-Xin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
22
|
Ghanbari MA, Lashkar Bolouki T, Norouzi P, Bitaraf FS, Bakhshi H, Atashi A. Down-Regulation of CXCR4 in Mesenchymal Stem Cells by Septic Serum. Indian J Hematol Blood Transfus 2022; 38:718-725. [PMID: 36258736 PMCID: PMC9569406 DOI: 10.1007/s12288-022-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background Sepsis is one of the main concerns of health and one of the leading causes of death in hospitals. It is essential to manage sepsis in hospitalized patients. In recent years, cell therapy has been considered as a new approach to treat sepsis. This study evaluated the effect of CXCR4 as one of the main proteins involved in the homing of mesenchymal stem cells in the sepsis serum in mice model. Methods Mouse sepsis model was induced by injection of E.coli and biochemical analyses was done to confirm the organ failure. Mesenchymal stem cells (MSCs) derived from bone marrow were separated into sepsis and control groups. In the sepsis serum group, MSCs were treated with sepsis serum at two time points: 24 and 48 h. Quantitative RT-PCR and flow cytometry were performed to determine the mRNA expression of CXCR4 in sepsis serum group compared to control group. Also, a migration assay was done to assess the migration capacity of bone marrow MSCs during inflammation and treatment in sepsis. Results Our result showed that treatment with sepsis serum can control migration by decrease in CXCR4 level (P ≤ 0.05) compared to control group. Moreover it was also reported that sepsis serum decreased mRNA expression of CXCR4 in MScs. Conclusions In our study, MSCs treated with septic serum were no longer able to migrate . Probably many variables such as source, dose, injection time, and injection route of MSCs after sepsis induction in the animal models are key factors for successful cell therapy.
Collapse
Affiliation(s)
| | | | - Pirasteh Norouzi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Haniye Bakhshi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
23
|
Pathophysiology of Sepsis and Genesis of Septic Shock: The Critical Role of Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2022; 23:ijms23169274. [PMID: 36012544 PMCID: PMC9409099 DOI: 10.3390/ijms23169274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of sepsis and septic shock remains a major public health issue due to the associated morbidity and mortality. Despite an improvement in the understanding of the physiological and pathological mechanisms underlying its genesis and a growing number of studies exploring an even higher range of targeted therapies, no significant clinical progress has emerged in the past decade. In this context, mesenchymal stem cells (MSCs) appear more and more as an attractive approach for cell therapy both in experimental and clinical models. Pre-clinical data suggest a cornerstone role of these cells and their secretome in the control of the host immune response. Host-derived factors released from infected cells (i.e., alarmins, HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (e.g., LPS, peptidoglycans) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of cytokines/chemokines and growth factors that influence, respectively, immune cell recruitment and stem cell mobilization. However, the way in which MSCs exert their beneficial effects in terms of survival and control of inflammation in septic states remains unclear. This review presents the interactions identified between MSCs and mediators of immunity and tissue repair in sepsis. We also propose paradigms related to the plausible roles of MSCs in the process of sepsis and septic shock. Finally, we offer a presentation of experimental and clinical studies and open the way to innovative avenues of research involving MSCs from a prognostic, diagnostic, and therapeutic point of view in sepsis.
Collapse
|
24
|
Wang H, Xuan P, Tian H, Hao X, Yang J, Xu X, Qiao L. Adipose‑derived mesenchymal stem cell‑derived HCAR1 regulates immune response in the attenuation of sepsis. Mol Med Rep 2022; 26:279. [PMID: 35856408 PMCID: PMC9364135 DOI: 10.3892/mmr.2022.12795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis serves as a leading cause of admission to and death of patients in the intensive care unit (ICU) and is described as a systemic inflammatory response syndrome caused by abnormal host response to infection. Adipose‑derived mesenchymal stem cells (ADSCs) have exhibited reliable and promising clinical application potential in multiple disorders. However, the function and the mechanism of ADSCs in sepsis remain elusive. In the present study, the crucial inhibitory effect of ADSC‑derived hydroxy‑carboxylic acid receptor 1 (HCAR1) on sepsis was identified. Reverse transcription quantitative‑PCR determined that the mRNA expression of HCAR1 was reduced while the mRNA expression of Toll‑like receptor 4 (TLR4), major histocompatibility complex class II (MHC II), NOD‑like receptor family pyrin domain containing 3 (NLRP3), and the levels of interleukin‑1β (IL‑1β), tumor necrosis factor‑α (TNF‑α), interleukin‑10 (IL‑10), and interleukin‑18 (IL‑18) were enhanced in the peripheral blood of patients with sepsis. The expression of HCAR1 was negatively correlated with TLR4 (r=‑0.666), MHC II (r=‑0.587), and NLRP3 (r=‑0.621) expression and the expression of TLR4 was positively correlated with NLRP3 (r=0.641), IL‑1β (r=0.666), TNF‑α (r=0.606), and IL‑18 (r=0.624) levels in the samples. Receiver operating characteristic (ROC) curve analysis revealed that the area under the ROC curve (AUC) of HCAR1, TLR4, MHC II and NLRP3 mRNA expression was 0.830, 0.853, 0.735 and 0.945, respectively, in which NLRP3 exhibited the highest diagnostic value, and the AUC values of IL‑1β, IL‑18, TNF‑α, and IL‑10 were 0.751, 0.841, 0.924 and 0.729, respectively, in which TNF‑α exhibited the highest diagnostic value. A sepsis rat model was established by injecting lipopolysaccharide (LPS) and the rats were randomly divided into 5 groups, including a normal control group (NC group; n=6), a sepsis model group (LPS group; n=6), an ADSC transplantation group (L + M group; n=6), a combined HCAR1 receptor agonist group [L + HCAR1 inducer (Gi) + M group; n=6], and a combined HCAR1 receptor inhibitor group [L + HCAR1 blocker (Gk) + M group; n=6]. Hematoxylin and eosin staining determined that ADSCs attenuated the lung injury of septic rats and ADSC‑derived HCAR1 enhanced the effect of ADSCs. The expression of HCAR1, TLR4, MHC II, NLRP3, IL‑1β, IL‑18 and TNF‑α levels were suppressed by ADSCs and the effect was further induced by ADSC‑derived HCAR1. However, ADSC‑derived HCAR1 induced the levels of anti‑inflammatory factor IL‑10. The negative correlation of HCAR1 expression with TLR4, MHC II, and NLRP3 expression in the peripheral blood and lung tissues of the rats was then identified. It is thus concluded that ADSC‑derived HCAR1 regulates immune response in the attenuation of sepsis. ADSC‑derived HCAR1 may be a promising therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Pengfei Xuan
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Hongjun Tian
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Xinyu Hao
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Jingping Yang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Xiyuan Xu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China,Correspondence to: Dr Xiyuan Xu or Dr Lixia Qiao, Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, 20 Shaoxian Road, Kundulun, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China, E-mail: , E-mail:
| | - Lixia Qiao
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China,Correspondence to: Dr Xiyuan Xu or Dr Lixia Qiao, Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, 20 Shaoxian Road, Kundulun, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China, E-mail: , E-mail:
| |
Collapse
|
25
|
Johnson V, Chow L, Harrison J, Soontararak S, Dow S. Activated Mesenchymal Stromal Cell Therapy for Treatment of Multi-Drug Resistant Bacterial Infections in Dogs. Front Vet Sci 2022; 9:925701. [PMID: 35812842 PMCID: PMC9260693 DOI: 10.3389/fvets.2022.925701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023] Open
Abstract
New and creative approaches are required to treat chronic infections caused by increasingly drug-resistant strains of bacteria. One strategy is the use of cellular therapy employing mesenchymal stromal cells (MSC) to kill bacteria directly and to also activate effective host immunity to infection. We demonstrated previously that activated MSC delivered systemically could be used effectively together with antibiotic therapy to clear chronic biofilm infections in rodent models. Therefore, we sought in the current studies to gain new insights into the antimicrobial properties of activated canine MSC and to evaluate their effectiveness as a novel cellular therapy for treatment of naturally-occurring drug resistant infections in dogs. These studies revealed that canine MSC produce and secrete antimicrobial peptides that synergize with most classes of common antibiotics to trigger rapid bactericidal activity. In addition, activated canine MSC migrated more efficiently to inflammatory stimuli, and secreted factors associated with wound healing and fibroblast proliferation and recruitment of activated neutrophils. Macrophages incubated with conditioned medium from activated MSC developed significantly enhanced bactericidal activity. Clinical studies in dogs with chronic multidrug resistant infections treated by repeated i.v. delivery of activated, allogeneic MSC demonstrated significant clinical benefit, including infection clearance and healing of infected tissues. Taken together, the results of these studies provide new insights into antimicrobial activity of canine MSC, and their potential clinical utility for management of chronic, drug-resistant infections.
Collapse
Affiliation(s)
- Valerie Johnson
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
- Department of Small Animal Clinical Sciences, College of Vetinerary Medicine, Michigan State Univeristy, East Lansing, MI, United States
| | - Lyndah Chow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Jacqueline Harrison
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Sirikul Soontararak
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Steven Dow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
- *Correspondence: Steven Dow
| |
Collapse
|
26
|
Shi Y, Zhang X, Wan Z, Liu X, Chen F, Zhang J, Leng Y. Mesenchymal stem cells against intestinal ischemia-reperfusion injury: a systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther 2022; 13:216. [PMID: 35619154 PMCID: PMC9137086 DOI: 10.1186/s13287-022-02896-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
Background Intestinal ischemia–reperfusion injury (IRI) causes localized and distant tissue lesions. Multiple organ failure is a common complication of severe intestinal IRI, leading to its high rates of morbidity and mortality. Thus far, this is poorly treated, and there is an urgent need for new more efficacious treatments. This study evaluated the beneficial effects of mesenchymal stem cells (MSCs) therapy on intestinal IRI using many animal experiments. Methods We conducted a comprehensive literature search from 4 databases: Pubmed, Embase, Cochrane library, and Web of science. Primary outcomes included the survival rate, Chiu’s score, intestinal levels of IL-6, TNF-α and MDA, as well as serum levels of DAO, D-Lactate, and TNF-α. Statistical analysis was carried out using Review Manager 5.3. Results It included Eighteen eligible researches in the final analysis. We demonstrated that survival rates in animals following intestinal IRI were higher with MSCs treatment compared to vehicle treatment. Besides, MSCs treatment attenuated intestinal injury caused by IRI, characterized by lower Chiu’s score (− 1.96, 95% CI − 2.72 to − 1.19, P < 0.00001), less intestinal inflammation (IL-6 (− 2.73, 95% CI − 4.19 to − 1.27, P = 0.0002), TNF-α (− 3.00, 95% CI − 4.74 to − 1.26, P = 0.0007)) and oxidative stress (MDA (− 2.18, 95% CI − 3.17 to − 1.19, P < 0.0001)), and decreased serum levels of DAO (− 1.39, 95% CI − 2.07 to − 0.72, P < 0.0001), D-Lactate (− 1.54, 95% CI − 2.18 to − 0.90, P < 0.00001) and TNF-α (− 2.42, 95% CI − 3.45 to − 1.40, P < 0.00001). The possible mechanism for MSCs to treat intestinal IRI might be through reducing inflammation, alleviating oxidative stress, as well as inhibiting the apoptosis and pyroptosis of the intestinal epithelial cells. Conclusions Taken together, these studies revealed that MSCs as a promising new treatment for intestinal IRI, and the mechanism of which may be associated with inflammation, oxidative stress, apoptosis, and pyroptosis. However, further studies will be required to confirm these findings. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02896-y.
Collapse
Affiliation(s)
- Yajing Shi
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China
| | - Xiaolan Zhang
- The Department of Anesthesiology, Gansu Provincial Maternity and Child-Care Hospital, No. 143, Qilihe North Street, Qilihe District, Lanzhou, Gansu, China
| | - Zhanhai Wan
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China. .,The Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang Road West, Chengguan District, Lanzhou, Gansu, China.
| | - Xin Liu
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China.,The Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang Road West, Chengguan District, Lanzhou, Gansu, China
| | - Feng Chen
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China
| | - Jianmin Zhang
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China
| | - Yufang Leng
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China. .,The Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang Road West, Chengguan District, Lanzhou, Gansu, China.
| |
Collapse
|
27
|
Wang C, Zhao D, Zheng L, Bao X, Yang Q, Jiang S, Zhou X, Tang L, Liu Z. Safety and efficacy of human umbilical cord mesenchymal stem cells for the treatment of sepsis induced by pneumonia: study protocol for a single-centre, randomised single-blind parallel group trial. BMJ Open 2022; 12:e058444. [PMID: 35379638 PMCID: PMC8981327 DOI: 10.1136/bmjopen-2021-058444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Sepsis is a life-threatening organ disorder caused by a dysregulated inflammatory response to infection with no effective treatment options exist thus far. Therefore, novel therapeutic methods are urgently advocated for decreasing the high mortality rate. Recently, preclinical studies supported the efficacy of mesenchymal stem cells (MSCs) in the treatment of sepsis. In this study, we aim to test the safety, tolerability and efficacy of human umbilical cord MSCs (HUC-MSCs) for the treatment of pneumonia induced sepsis. METHODS AND ANALYSIS This study is a single-centre, randomised single-blind parallel group, placebo-controlled trial. Forty eligible participants with pneumonia-induced sepsis will be randomly assigned to the observational cohort and the interventional cohort in a 1:1 ratio. In addition to the standard treatments recommended by the Sepsis 3.0 guidelines, HUC-MSCs will be administered intravenously as adjunctive therapy on day 0 at a dose of 1×106 cells/kg with a total volume of 100 mL diluted with normal saline through 120 mL/hour intravenous central line infusion in the interventional cohort. Placebo (normal saline) will also be administered through 120 mL/hour intravenous central line infusion at the same quantity (total volume of 100 mL) in the observational cohort. The study is approved by Research Ethics Board of East Hospital/Tongji University, which has been registered on Chinese clinical trial registry (chictr.org.cn) and initiated from October 2021. All the participants will be followed at regular intervals for 1 year. Funding is from the 'National Natural Science Foundation, China and top-level clinical discipline project of Shanghai Pudong'. This study is the first trial to assess the safety and efficacy of HUC-MSCs for the treatment of sepsis induced by pneumonia. The results will advance our understanding of the mode of action of HUC-MSCs and will also be critical for the design of future investigation in larger randomised controlled trials in multicentre. These data will offer insight into defining endpoints, key biomarkers and sample size determination. ETHICS AND DISSEMINATION This study has been approved by the Research Ethics Board of East Hospital, Tongji University (Shanghai, China), which has accepted responsibility for supervising all aspects of the study (DFSC-2021(CR-04). The results of this study will be presented at both national and international conferences and be considered for publication in a peer-reviewed scientific journal. All the results presented in this study will be of group data, therefore, individual participants will not be identifiable. TRIAL REGISTRATION NUMBER ChiCTR2100050544, the trial is now at the stage of pre-results.
Collapse
Affiliation(s)
- Chunxue Wang
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Dongyang Zhao
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Liang Zheng
- Tongji University School of Medicine, Shanghai, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaowei Bao
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qian Yang
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sen Jiang
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lunxian Tang
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhongmin Liu
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
28
|
Fazekas B, Alagesan S, Watson L, Ng O, Conroy CM, Català C, Andres MV, Negi N, Gerlach JQ, Hynes SO, Lozano F, Elliman SJ, Griffin MD. Comparison of Single and Repeated Dosing of Anti-Inflammatory Human Umbilical Cord Mesenchymal Stromal Cells in a Mouse Model of Polymicrobial Sepsis. Stem Cell Rev Rep 2022; 18:1444-1460. [PMID: 35013938 PMCID: PMC8747454 DOI: 10.1007/s12015-021-10323-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) ameliorate pre-clinical sepsis and sepsis-associated acute kidney injury (SA-AKI) but clinical trials of single-dose MSCs have not indicated robust efficacy. This study investigated immunomodulatory effects of a novel MSC product (CD362-selected human umbilical cord-derived MSCs [hUC-MSCs]) in mouse endotoxemia and polymicrobial sepsis models. Initially, mice received intra-peritoneal (i.p.) lipopolysaccharide (LPS) followed by single i.p. doses of hUC-MSCs or vehicle. Next, mice underwent cecal ligation and puncture (CLP) followed by intravenous (i.v.) doses of hUC-MSCs at 4 h or 4 and 28 h. Analyses included serum/plasma assays of biochemical indices, inflammatory mediators and the AKI biomarker NGAL; multi-color flow cytometry of peritoneal macrophages (LPS) and intra-renal immune cell subpopulations (CLP) and histology/immunohistochemistry of kidney (CLP). At 72 h post-LPS injections, hUC-MSCs reduced serum inflammatory mediators and peritoneal macrophage M1/M2 ratio. Repeated, but not single, hUC-MSC doses administered at 48 h post-CLP resulted in lower serum concentrations of inflammatory mediators, lower plasma NGAL and reversal of sepsis-associated depletion of intra-renal T cell and myeloid cell subpopulations. Hierarchical clustering analysis of all 48-h serum/plasma analytes demonstrated partial co-clustering of repeated-dose hUC-MSC CLP animals with a Sham group but did not reveal a distinct signature of response to therapy. It was concluded that repeated doses of CD362-selected hUC-MSCs are required to modulate systemic and local immune/inflammatory events in polymicrobial sepsis and SA-AKI. Inter-individual variability and lack of effect of single dose MSC administration in the CLP model are consistent with observations to date from early-phase clinical trials.
Collapse
Affiliation(s)
- Barbara Fazekas
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Olivia Ng
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Orbsen Therapeutics Ltd., Galway, Ireland
| | - Callum M Conroy
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Orbsen Therapeutics Ltd., Galway, Ireland
| | - Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Neema Negi
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Sean O Hynes
- Discipline of Pathology, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Histopathology, Galway University Hospitals, Galway, Ireland
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Department de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | - Matthew D Griffin
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland.
- Department of Nephrology, Saolta University Health Care Group, Galway University Hospitals, Galway, Ireland.
- National University of Ireland Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland.
| |
Collapse
|
29
|
TLR4 activation inhibits the proliferation and osteogenic differentiation of skeletal muscle stem cells by downregulating LGI1. J Physiol Biochem 2022; 78:667-678. [PMID: 35294724 DOI: 10.1007/s13105-022-00888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Skeletal muscle stem cells (SMSCs) are vital to the growth, maintenance, and repair of the muscles; emerging evidence has indicated that Toll-like receptor 4 (TLR4) can potentially regulate muscle regeneration. In present study, in vitro and in vivo experiments were performed to explore the correlation of TLR4 with leucine-rich glioma-inactivated 1 (LGI1) as well as their effects on the proliferation and osteogenesis potential of SMSCs. In order to examine the regulatory mechanisms of TLR4 and LGI1 in SMSCs, the obtained cells were treated with lipopolysaccharide (LPS, used as an activator of TLR4) of different concentration at different time points as well as the siRNA against LGI1. Subsequently, a series of detection was undertaken in order to measure the proliferation and differentiation potential of SMSCs, which involved detection of the related factors, cell activity, and the sphere-forming capability. Following LPS treatment, the increased TLR4 expression and reduced LGI1 expression were observed. Consequently, we also discovered that Erk signaling pathway was inactivated and cell proliferation and osteogenesis capabilities declined, presented by the downregulation of related factors such as cyclin B1 and runt-related transcription factor 2. Moreover, the cell activity and sphere-formation performance of SMSCs were also declined. These results were also validated in rats with cecal ligation and perforation-induced rat models with sepsis. In conclusion, the present study reveals a regulatory mechanism in SMSCs whereby LGI1 expression is reduced by TLR4, thus impeding cell proliferation and osteogenesis, highlighting TLR4 as a potential therapeutic target against many diseases related to SMSCs.
Collapse
|
30
|
Ge L, Zhao J, Deng H, Chen C, Hu Z, Zeng L. Effect of Bone Marrow Mesenchymal Stromal Cell Therapies in Rodent Models of Sepsis: A Meta-Analysis. Front Immunol 2022; 12:792098. [PMID: 35046951 PMCID: PMC8761857 DOI: 10.3389/fimmu.2021.792098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 12/09/2022] Open
Abstract
Background Multiple preclinical studies have demonstrated that bone‐marrow derived mesenchymal stromal (stem) cells [MSC(M)] positively influence the severity of sepsis symptoms and mortality in rodent models. However, this remains an inconclusive finding. Objective To review the effect of naïve MSC(M) in rodent models of sepsis. Methods The PubMed, EMBASE, and Web of Science databases were searched up to August 31, 2021. Inclusion criteria according to PICOS criteria were as follows: (1) population: rodents; (2) intervention: unmodified MSC(M); (3) comparison: not specified; (4) primary outcome: the effects of MSC(M) cell therapy on the mortality of rodent models of sepsis and endotoxemia; (5) study: experimental studies. Multiple prespecified subgroup and meta-regression analysis were conducted. Following quality assessment, random effects models were used for this meta-analysis.The inverse variance method of the fixed effects model was used to calculate the pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Results twenty-four animal studies met the inclusion criteria. Our results revealed an overall OR difference between animals treated with naïve MSC(M) and controls for mortality rate was 0.34(95% confidence interval: 0.27-0.44; P < 0.0001). Significant heterogeneity among studies was observed. Conclusions The findings of this meta-analysis suggest that naïve MSC(M) therapy decreased mortality in rodent models of sepsis. Additionally, we identified several key knowledge gaps, including the lack of large animal studies and uncertainty regarding the optimal dose of MSC(M) transplantation in sepsis. Before MSC(M) treatment can advance to clinical trials, these knowledge gaps must be addressed.
Collapse
Affiliation(s)
- Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Wang L, Deng Z, Sun Y, Zhao Y, Li Y, Yang M, Yuan R, Liu Y, Qian Z, Zhou F, Kang H. The Study on the Regulation of Th Cells by Mesenchymal Stem Cells Through the JAK-STAT Signaling Pathway to Protect Naturally Aged Sepsis Model Rats. Front Immunol 2022; 13:820685. [PMID: 35197984 PMCID: PMC8858840 DOI: 10.3389/fimmu.2022.820685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Sepsis is the leading cause of death among patients, especially elderly patients, in intensive care units worldwide. In this study, we established a sepsis model using naturally aged rats and injected 5×106 umbilical cord-derived MSCs via the tail vein. Each group of rats was analyzed for survival, examined for biochemical parameters, stained for organ histology, and analyzed for the Th cell subpopulation ratio and inflammatory cytokine levels by flow cytometry. Western blotting was performed to detect the activity of the JAK-STAT signaling pathway. We designed the vitro experiments to confirm the regulatory role of MSCs, and verified the possible mechanism using JAK/STAT inhibitors. It was revealed from the experiments that the 72 h survival rate of sepsis rats treated with MSCs was significantly increased, organ damage and inflammatory infiltration were reduced, the levels of organ damage indicators were decreased, the ratios of Th1/Th2 and Th17/Treg in peripheral blood and spleen were significantly decreased, the levels of pro-inflammatory cytokines such as IL-6 were decreased, the levels of anti-inflammatory cytokines such as IL-10 were increased, and the levels of STAT1 and STAT3 phosphorylation were reduced. These results were validated in in vitro experiments. Therefore, this study confirms that MSCs can control the inflammatory response induced by sepsis by regulating Th cells and inflammatory factors, and that this leads to the reduction of tissue damage, protection of organ functions and ultimately the improvement of survival in aged sepsis model rats. Inhibition of the JAK-STAT signaling pathway was surmised that it may be an important mechanism for their action.
Collapse
Affiliation(s)
- Lu Wang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yan Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Yan Zhao
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Mengmeng Yang
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Rui Yuan
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuyan Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhirong Qian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Feihu Zhou
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongjun Kang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Hongjun Kang,
| |
Collapse
|
32
|
Chen R, Qin S, Zhu H, Chang G, Li M, Lu H, Shen M, Gao Q, Lin X. Dynamic monitoring of circulating CD8+ T and NK cell function in patients with septic shock. Immunol Lett 2022; 243:61-68. [DOI: 10.1016/j.imlet.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022]
|
33
|
Knowledge gaps in late-onset neonatal sepsis in preterm neonates: a roadmap for future research. Pediatr Res 2022; 91:368-379. [PMID: 34497356 DOI: 10.1038/s41390-021-01721-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Late-onset neonatal sepsis (LONS) remains an important threat to the health of preterm neonates in the neonatal intensive care unit. Strategies to optimize care for preterm neonates with LONS are likely to improve survival and long-term neurocognitive outcomes. However, many important questions on how to improve the prevention, early detection, and therapy for LONS in preterm neonates remain unanswered. This review identifies important knowledge gaps in the management of LONS and describe possible methods and technologies that can be used to resolve these knowledge gaps. The availability of computational medicine and hypothesis-free-omics approaches give way to building bedside feedback tools to guide clinicians in personalized management of LONS. Despite advances in technology, implementation in clinical practice is largely lacking although such tools would help clinicians to optimize many aspects of the management of LONS. We outline which steps are needed to get possible research findings implemented on the neonatal intensive care unit and provide a roadmap for future research initiatives. IMPACT: This review identifies knowledge gaps in prevention, early detection, antibiotic, and additional therapy of late-onset neonatal sepsis in preterm neonates and provides a roadmap for future research efforts. Research opportunities are addressed, which could provide the means to fill knowledge gaps and the steps that need to be made before possible clinical use. Methods to personalize medicine and technologies feasible for bedside clinical use are described.
Collapse
|
34
|
Adverse Mechanical Ventilation and Pneumococcal Pneumonia Induce Immune and Mitochondrial Dysfunctions Mitigated by Mesenchymal Stem Cells in Rabbits. Anesthesiology 2021; 136:293-313. [PMID: 34965287 DOI: 10.1097/aln.0000000000004083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mechanical ventilation for pneumonia may contribute to lung injury due to factors that include mitochondrial dysfunction, and mesenchymal stem cells may attenuate injury. This study hypothesized that mechanical ventilation induces immune and mitochondrial dysfunction, with or without pneumococcal pneumonia, that could be mitigated by mesenchymal stem cells alone or combined with antibiotics. METHODS Male rabbits underwent protective mechanical ventilation (8 ml/kg tidal volume, 5 cm H2O end-expiratory pressure) or adverse mechanical ventilation (20 ml/kg tidal-volume, zero end-expiratory pressure) or were allowed to breathe spontaneously. The same settings were then repeated during pneumococcal pneumonia. Finally, infected animals during adverse mechanical ventilation received human umbilical cord-derived mesenchymal stem cells (3 × 106/kg, intravenous) and/or ceftaroline (20 mg/kg, intramuscular) or sodium chloride, 4 h after pneumococcal challenge. Twenty-four-hour survival (primary outcome), lung injury, bacterial burden, immune and mitochondrial dysfunction, and lung transcriptomes (secondary outcomes) were assessed. RESULTS High-pressure adverse mechanical ventilation reduced the survival of infected animals (0%; 0 of 7) compared with spontaneous breathing (100%; 7 of 7) and protective mechanical ventilation (86%; 6 of 7; both P < 0.001), with higher lung pathology scores (median [interquartile ranges], 5.5 [4.5 to 7.0] vs. 12.6 [12.0 to 14.0]; P = 0.046), interleukin-8 lung concentrations (106 [54 to 316] vs. 804 [753 to 868] pg/g of lung; P = 0.012), and alveolar mitochondrial DNA release (0.33 [0.28 to 0.36] vs. 0.98 [0.76 to 1.21] ng/μl; P < 0.001) compared with infected spontaneously breathing animals. Survival (0%; 0 of 7; control group) was improved by mesenchymal stem cells (57%; 4 of 7; P = 0.001) or ceftaroline alone (57%; 4 of 7; P < 0.001) and improved even more with a combination treatment (86%; 6 of 7; P < 0.001). Mesenchymal stem cells reduced lung pathology score (8.5 [7.0 to 10.5] vs. 12.6 [12.0 to 14.0]; P = 0.043) and alveolar mitochondrial DNA release (0.39 (0.34 to 0.65) vs. 0.98 (0.76 to 1.21) ng/μl; P = 0.025). Mesenchymal stem cells combined with ceftaroline reduced interleukin-8 lung concentrations (665 [595 to 795] vs. 804 [753 to 868] pg/g of lung; P = 0.007) compared to ceftaroline alone. CONCLUSIONS In this preclinical study, mesenchymal stem cells improved the outcome of rabbits with pneumonia and high-pressure mechanical ventilation by correcting immune and mitochondrial dysfunction and when combined with the antibiotic ceftaroline was synergistic in mitigating lung inflammation. EDITOR’S PERSPECTIVE
Collapse
|
35
|
Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021; 233:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil
| | - Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gabriela Muller Reche Bogéa
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
36
|
Xu Y, Liu X, Li Y, Dou H, Liang H, Hou Y. SPION-MSCs enhance therapeutic efficacy in sepsis by regulating MSC-expressed TRAF1-dependent macrophage polarization. Stem Cell Res Ther 2021; 12:531. [PMID: 34627385 PMCID: PMC8501658 DOI: 10.1186/s13287-021-02593-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The liver has a crucial role in sepsis and is also a target for sepsis-related injury. Macrophage polarization between the M1 and M2 types is involved in the progression and resolution of both inflammation and liver injury. Iron oxide-based synthetic nanoparticles (SPIONs) can be used as antibacterial agents to regulate the inflammatory response. Mesenchymal stromal/stem cells (MSCs) have been widely used in the treatment of autoimmune diseases, sepsis, and other diseases. However, to date, both the effects of SPIONs on MSCs and the fate of SPION-labelled MSCs in sepsis and other diseases are still unclear. Methods Mice were subjected to caecal ligation and puncture (CLP) or lipopolysaccharide (LPS) induction to develop sepsis models. The CLP or LPS models were treated with MSCs or SPION-labelled/pretreated MSCs (SPION-MSCs). Bone marrow (BM)-derived macrophages and RAW 264.7 cells were cocultured with MSCs or SPION-MSCs under different conditions. Flow cytometry, transmission electron microscopy, western blotting, quantitative real-time PCR, and immunohistochemical analysis were performed. Results We found that SPIONs did not affect the basic characteristics of MSCs. SPIONs promoted the survival of MSCs by upregulating HO-1 expression under inflammatory conditions. SPION-MSCs enhanced the therapeutic efficacy of liver injury in both the CLP- and LPS-induced mouse models of sepsis. Moreover, the protective effect of SPION-MSCs against sepsis-induced liver injury was related to macrophages. Systemic depletion of macrophages reduced the efficacy of SPION-MSC therapy. Furthermore, SPION-MSCs promoted macrophages to polarize towards the M2 phenotype under sepsis-induced liver injury in mice. The enhanced polarization towards M2 macrophages was attributed to their phagocytosis of SPION-MSCs. SPION-MSC-expressed TRAF1 was critical for promotion of macrophage polarization and alleviation of sepsis in mice. Conclusion MSCs labelled/pretreated with SPIONs may be a novel therapeutic strategy to prevent or treat sepsis and sepsis-induced liver injury. Highlights SPIONs enhance the viability of MSCs by promoting HO-1 expression. SPION-labelled/pretreated MSCs effectively improve sepsis by regulating macrophage polarization to M2 macrophages. SPION-labelled/pretreated MSCs regulate macrophage polarization in a manner dependent on MSC-expressed TRAF1 protein.
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02593-2.
Collapse
Affiliation(s)
- Yujun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Xinghan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Yi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
37
|
Merimi M, El-Majzoub R, Lagneaux L, Moussa Agha D, Bouhtit F, Meuleman N, Fahmi H, Lewalle P, Fayyad-Kazan M, Najar M. The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Front Cell Dev Biol 2021; 9:661532. [PMID: 34490235 PMCID: PMC8416483 DOI: 10.3389/fcell.2021.661532] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
In recent decades, research on the therapeutic potential of progenitor cells has advanced considerably. Among progenitor cells, mesenchymal stromal cells (MSCs) have attracted significant interest and have proven to be a promising tool for regenerative medicine. MSCs are isolated from various anatomical sites, including bone marrow, adipose tissue, and umbilical cord. Advances in separation, culture, and expansion techniques for MSCs have enabled their large-scale therapeutic application. This progress accompanied by the rapid improvement of transplantation practices has enhanced the utilization of MSCs in regenerative medicine. During tissue healing, MSCs may exhibit several therapeutic functions to support the repair and regeneration of injured tissue. The process underlying these effects likely involves the migration and homing of MSCs, as well as their immunotropic functions. The direct differentiation of MSCs as a cell replacement therapeutic mechanism is discussed. The fate and behavior of MSCs are further regulated by their microenvironment, which may consequently influence their repair potential. A paracrine pathway based on the release of different messengers, including regulatory factors, chemokines, cytokines, growth factors, and nucleic acids that can be secreted or packaged into extracellular vesicles, is also implicated in the therapeutic properties of MSCs. In this review, we will discuss relevant outcomes regarding the properties and roles of MSCs during tissue repair and regeneration. We will critically examine the influence of the local microenvironment, especially immunological and inflammatory signals, as well as the mechanisms underlying these therapeutic effects. Importantly, we will describe the interactions of local progenitor and immune cells with MSCs and their modulation during tissue injury. We will also highlight the crucial role of paracrine pathways, including the role of extracellular vesicles, in this healing process. Moreover, we will discuss the therapeutic potential of MSCs and MSC-derived extracellular vesicles in the treatment of COVID-19 (coronavirus disease 2019) patients. Overall, this review will provide a better understanding of MSC-based therapies as a novel immunoregenerative strategy.
Collapse
Affiliation(s)
- Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,LBBES Laboratory, Genetics and Immune-Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Rania El-Majzoub
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Beirut, Lebanon.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,LBBES Laboratory, Genetics and Immune-Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
38
|
Abstract
BACKGROUND Circulating complement C3 fragments released during septic shock might contribute to the development of complications such as profound hypotension and disseminated intravascular coagulation. The role of C3 in the course of septic shock varies in the literature, possibly because circulating C3 exists in different forms indistinguishable via traditional ELISA-based methods. We sought to test the relationship between C3 forms, measured by Western blotting with its associated protein size differentiation feature, and clinical outcomes. METHODS Secondary analysis of two prospective cohorts of patients with septic shock: a discovery cohort of 24 patents and a validation cohort of 181 patients. C3 levels were measured by Western blotting in both cohorts using blood obtained at enrollment. Differences between survivors and non-survivors were compared, and the independent prognostic values of C3 forms were assessed. RESULTS In both cohorts there were significantly lower levels of the C3-alpha chain in non-survivors than in survivors, and persisted after controlling for sequential organ failure assessment score. Area under the receiver operating characteristics to predict survival was 0.65 (95% confidence interval: 0.56-0.75). At a best cutoff value (Youden) of 970.6 μg/mL, the test demonstrated a sensitivity of 68.5% and specificity of 61.5%. At this cutoff point, Kaplan-Meier survival analysis showed that patients with lower levels of C3-alpha chain had significantly lower survival than those with higher levels (P < 0.001). CONCLUSION Circulating C3-alpha chain levels is a significant independent predictor of survival in septic shock patients.
Collapse
|
39
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
40
|
Planat-Benard V, Varin A, Casteilla L. MSCs and Inflammatory Cells Crosstalk in Regenerative Medicine: Concerted Actions for Optimized Resolution Driven by Energy Metabolism. Front Immunol 2021; 12:626755. [PMID: 33995350 PMCID: PMC8120150 DOI: 10.3389/fimmu.2021.626755] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are currently widely used in cell based therapy regarding to their remarkable efficacy in controlling the inflammatory status in patients. Despite recent progress and encouraging results, inconstant therapeutic benefits are reported suggesting that significant breakthroughs in the understanding of MSCs immunomodulatory mechanisms of action remains to be investigated and certainly apprehended from original point of view. This review will focus on the recent findings regarding MSCs close relationship with the innate immune compartment, i.e. granulocytes and myeloid cells. The review will also consider the intercellular mechanism of communication involved, such as factor secretion, cell-cell contact, extracellular vesicles, mitochondria transfer and efferocytosis. Immune-like-properties of MSCs supporting part of their therapeutic effect in the clinical setting will be discussed, as well as their potentials (immunomodulatory, anti-bacterial, anti-inflammatory, anti-oxidant defenses and metabolic adaptation…) and effects mediated, such as cell polarization, differentiation, death and survival on various immune and tissue cell targets determinant in triggering tissue regeneration. Their metabolic properties in term of sensing, reacting and producing metabolites influencing tissue inflammation will be highlighted. The review will finally open to discussion how ongoing scientific advances on MSCs could be efficiently translated to clinic in chronic and age-related inflammatory diseases and the current limits and gaps that remain to be overcome to achieving tissue regeneration and rejuvenation.
Collapse
Affiliation(s)
- Valerie Planat-Benard
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| | - Audrey Varin
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| |
Collapse
|
41
|
Therapeutic Applications of Stem Cells and Extracellular Vesicles in Emergency Care: Futuristic Perspectives. Stem Cell Rev Rep 2021; 17:390-410. [PMID: 32839921 PMCID: PMC7444453 DOI: 10.1007/s12015-020-10029-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine (RM) is an interdisciplinary field that aims to repair, replace or regenerate damaged or missing tissue or organs to function as close as possible to its physiological architecture and functions. Stem cells, which are undifferentiated cells retaining self-renewal potential, excessive proliferation and differentiation capacity into offspring or daughter cells that form different lineage cells of an organism, are considered as an important part of the RM approaches. They have been widely investigated in preclinical and clinical studies for therapeutic purposes. Extracellular vesicles (EVs) are the vital mediators that regulate the therapeutic effects of stem cells. Besides, they carry various types of cargo between cells which make them a significant contributor of intercellular communication. Given their role in physiological and pathological conditions in living cells, EVs are considered as a new therapeutic alternative solution for a variety of diseases in which there is a high unmet clinical need. This review aims to summarize and identify therapeutic potential of stem cells and EVs in diseases requiring acute emergency care such as trauma, heart diseases, stroke, acute respiratory distress syndrome and burn injury. Diseases that affect militaries or societies including acute radiation syndrome, sepsis and viral pandemics such as novel coronavirus disease 2019 are also discussed. Additionally, featuring and problematic issues that hamper clinical translation of stem cells and EVs are debated in a comparative manner with a futuristic perspective. Graphical Abstract.
Collapse
|
42
|
Chen R, Xie Y, Zhong X, Chen F, Gong Y, Wang N, Wang D. MSCs derived from amniotic fluid and umbilical cord require different administration schemes and exert different curative effects on different tissues in rats with CLP-induced sepsis. Stem Cell Res Ther 2021; 12:164. [PMID: 33676566 PMCID: PMC7936453 DOI: 10.1186/s13287-021-02218-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are derived from multiple tissues, including amniotic fluid (AF-MSCs) and the umbilical cord (UC-MSCs). Although the therapeutic effect of MSCs on sepsis is already known, researchers have not determined whether the cells from different sources require different therapeutic schedules or exert different curative effects. We assessed the biofunction of the administration of AF-MSCs and UC-MSCs in rats with caecal ligation and puncture (CLP)-induced sepsis. METHODS CLP was used to establish a disease model of sepsis in rats, and intravenous tail vein administration of AF-MSCs and UC-MSCs was performed to treat sepsis at 6 h after CLP. Two phases of animal experiments were implemented using MSCs harvested in saline with or without filtration. The curative effect was measured by determining the survival rate. Further effects were assessed by measuring proinflammatory cytokine levels, the plasma coagulation index, tissue histology and the pathology of the lung, liver and kidney. RESULTS We generated rats with medium-grade sepsis with a 30-40% survival rate to study the curative effects of AF-MSCs and UC-MSCs. MSCs reversed CLP-induced changes in proinflammatory cytokine levels and coagulation activation. MSCs ameliorated CLP-induced histological and pathological changes in the lung, liver and kidney. AF-MSCs and UC-MSCs functioned differently in different tissues; UC-MSCs performed well in reducing the upregulation of inflammatory cytokine levels in the lungs and inhibiting the inflammatory cell infiltration into the liver capsule, while AF-MSCs performed well in inhibiting cell death in the kidneys and reducing the plasma blood urea nitrogen (BUN) level, an indicator of renal function. CONCLUSIONS Our studies suggest the safety and efficacy of AF-MSCs and UC-MSCs in the treatment of CLP-induced sepsis in rats and show that the cells potentially exert different curative effects on the main sepsis-affected tissues.
Collapse
Affiliation(s)
- Rui Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Xuan Zhong
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, 510150, Guangdong, China
| | - Fei Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yu Gong
- Central Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Na Wang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China. .,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
43
|
Sepsis and Septic Shock; Current Treatment Dilemma and Role of Stem Cell Therapy in Pediatrics. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2021. [DOI: 10.5812/pedinfect.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Sepsis’s primary therapy consists of antibiotics therapy, supportive therapies, and source control of infection. The failure rate of this approach is about 20 - 40%. The widespread use of antibiotics has caused multiple drug resistance in primary etiological agents of sepsis in community-acquired and healthcare-associated infections. In the absence of new antibiotic options, alternative treatment modalities seem necessary. Evidence Acquisition: Herein, we have reviewed and discussed current problems with sepsis management and stem cell therapy in sepsis, preclinical, experimental studies, and early-phase clinical trials using stem cells to treat sepsis. In the preparation of the paper, PubMed, Web of Science Core Collection (Clarivate), Scopus, and the web address (www.clinicaltrials.gov) were searched by the keywords (sepsis and cell therapy, septic shock, and cell therapy). Results: After the inclusion of criteria, we reviewed 301 original articles. Few articles were found for phase II and phase III clinical trials. Eighty-three articles were included in the current review article. Besides problems with infection source control, the host immune response to the infection enumerated for primary underlying pathophysiologic dysregulation of sepsis and complicated the treatment. Mesenchymal stem cells (MSCs) therapy offers a promising treatment option for sepsis. Indeed, immunomodulatory properties, antimicrobial activity, the capacity of protection against organ failure, enhance the resolution of tissue injury, tissue repair, and restoration after sepsis confer MSCs with a significant advantage to treat the immune and inflammatory dysfunctions associated with severe sepsis and septic shock. Conclusions: It seems that MSCs therapy exhibits an appropriate safety index. Future trials should focus on strengthening study quality, reporting MSCs’ therapeutic effects and adverse events. Although early clinical trials seem promising and have beneficial effects, we need more controlled clinical studies, especially in phases II and III.
Collapse
|
44
|
Abstract
Traumatic injuries are a leading cause of death and disability in both military and civilian populations. Given the complexity and diversity of traumatic injuries, novel and individualized treatment strategies are required to optimize outcomes. Cellular therapies have potential benefit for the treatment of acute or chronic injuries, and various cell-based pharmaceuticals are currently being tested in preclinical studies or in clinical trials. Cellular therapeutics may have the ability to complement existing therapies, especially in restoring organ function lost due to tissue disruption, prolonged hypoxia or inflammatory damage. In this article we highlight the current status and discuss future directions of cellular therapies for the treatment of traumatic injury. Both published research and ongoing clinical trials are discussed here.
Collapse
|
45
|
Laterre PF, Sánchez-García M, van der Poll T, de la Rosa O, Cadogan KA, Lombardo E, François B. A phase Ib/IIa, randomised, double-blind, multicentre trial to assess the safety and efficacy of expanded Cx611 allogeneic adipose-derived stem cells (eASCs) for the treatment of patients with community-acquired bacterial pneumonia admitted to the intensive care unit. BMC Pulm Med 2020; 20:309. [PMID: 33238991 PMCID: PMC7686829 DOI: 10.1186/s12890-020-01324-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Community-acquired bacterial pneumonia (CABP) can lead to sepsis and is associated with high mortality rates in patients presenting with shock and/or respiratory failure and who require mechanical ventilation and admission to intensive care units, thus reflecting the limited effectiveness of current therapy. Preclinical studies support the efficacy of expanded allogeneic adipose-derived mesenchymal stem cells (eASCs) in the treatment of sepsis. In this study, we aim to test the safety, tolerability and efficacy of eASCs as adjunctive therapy in patients with severe CABP (sCABP). Methods In addition to standard of care according to local guidelines, we will administer eASCs (Cx611) or placebo intravenously as adjunctive therapy to patients with sCABP. Enrolment is planned for approximately 180 patients who will be randomised to treatment groups in a 1:1 ratio according to a pre-defined randomization list. An equal number of patients is planned for allocation to each group. Cx611 will be administered on Day 1 and on Day 3 at a dose of 160 million cells (2 million cells / mL, total volume 80 mL) through a 20–30 min (240 mL/hr) intravenous (IV) central line infusion after dilution with Ringer Lactate solution. Placebo (Ringer Lactate) will also be administered through a 20–30 min (240 mL/hr) IV central line infusion at the same quantity (total volume of 80 mL) and following the same schedule as the active treatment. The study was initiated in January 2017 and approved by competent authorities and ethics committees in Belgium, Spain, Lithuania, Italy, Norway and France; monitoring will be performed at regular intervals. Funding is from the European Union’s Horizon 2020 Research and Innovation Program. Discussion SEPCELL is the first trial to assess the effects of eASCs in sCABP. The data generated will advance understanding of the mode of action of Cx611 and will provide evidence on the safety, tolerability and efficacy of Cx611 in patients with sCABP. These data will be critical for the design of future confirmatory clinical investigations and will assist in defining endpoints, key biomarkers of interest and sample size determination. Trial registration NCT03158727, retrospectively registered on 9 May 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-020-01324-2.
Collapse
Affiliation(s)
- Pierre-François Laterre
- Intensive Care Unit, St Luc University Hospital, Université Catholique de Louvain, 10 avenue, 1200, Brussels, Belgium.
| | | | - Tom van der Poll
- The Center of Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Olga de la Rosa
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | | | | - Bruno François
- Intensive Care Unit, and Inserm CIC1435 & UMR1092, Dupuytren University Hospital, Limoges, France
| |
Collapse
|
46
|
Ortiz-Virumbrales M, Menta R, Pérez LM, Lucchesi O, Mancheño-Corvo P, Avivar-Valderas Á, Palacios I, Herrero-Mendez A, Dalemans W, de la Rosa O, Lombardo E. Human adipose mesenchymal stem cells modulate myeloid cells toward an anti-inflammatory and reparative phenotype: role of IL-6 and PGE2. Stem Cell Res Ther 2020; 11:462. [PMID: 33138862 PMCID: PMC7607855 DOI: 10.1186/s13287-020-01975-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/13/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) activate the endogenous immune regulatory system, inducing a therapeutic effect in recipients. MSCs have demonstrated the ability to modulate the differentiation of myeloid cells toward a phagocytic and anti-inflammatory profile. Allogeneic, adipose-derived MSCs (ASCs) have been investigated for the management of complex perianal fistula, with darvadstrocel being the first ASC therapy approved in Europe in March 2018. Additionally, ASCs are being explored as a potential treatment in other indications. Yet, despite these clinical advances, their mechanism of action is only partially understood. METHODS Freshly isolated human monocytes from the peripheral blood were differentiated in vitro toward M0 non-polarized macrophages (Mphs), M1 pro-inflammatory Mphs, M2 anti-inflammatory Mphs, or mature dendritic cells (mDCs) in the presence or absence of ASCs, in non-contact conditions. The phenotype and function of the differentiated myeloid populations were determined by flow cytometry, and their secretome was analyzed by OLINK technology. We also investigated the capacity of ASCs to modulate the phenotype and function of terminally differentiated M1 Mphs. The role of soluble factors interleukin (IL)-6 and prostaglandin E2 (PGE2) on the ability of ASCs to modulate myeloid cells was assessed using neutralization assays, CRISPR/Cas9 knock-down of cyclooxygenase 2 (COX-2), and ASC-conditioned medium assays using pro-inflammatory stimulus. RESULTS Co-culture of monocytes in the presence of ASCs resulted in the polarization of Mphs and mDCs toward an anti-inflammatory and phagocytic phenotype. This was characterized by an increase in phagocytic receptors on the cell surface of Mphs (M0, M1, and M2) and mDCs, as well as modulation of chemokine receptors and reduced expression of pro-inflammatory, co-stimulatory molecules. ASCs also modulated the secretome of Mphs and mDCs, demonstrated by reduced expression of pro-inflammatory factors and increased expression of anti-inflammatory and reparative factors. Chemical inhibition of PGE2 with indomethacin abolished this modulatory effect, whereas treatment with a neutralizing anti-IL-6 antibody resulted in a partial abolishment. The knock-down of COX-2 in ASCs and the use of IL-1β-activated ASC-conditioned media confirmed the key role of PGE2 in ASC-mediated myeloid modulation. In our in vitro experimental settings, ASCs failed to modulate the phenotype and function of terminally polarized M1 Mphs. CONCLUSIONS The results demonstrate that ASCs are able to modulate the in vitro differentiation of myeloid cells toward an anti-inflammatory and reparative profile. This modulatory effect was mediated mainly by PGE2 and, to a lesser extent, IL-6.
Collapse
Affiliation(s)
| | - Ramón Menta
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | - Laura M Pérez
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | - Ornella Lucchesi
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | | | | - Itziar Palacios
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | | | | - Olga de la Rosa
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | |
Collapse
|
47
|
Kilcoyne I, Nieto JE, Watson JL, Galuppo LD, Borjesson DL. Do allogeneic bone marrow derived mesenchymal stem cells diminish the inflammatory response to lipopolysaccharide infusion in horses? A pilot study. Vet Immunol Immunopathol 2020; 231:110146. [PMID: 33221572 DOI: 10.1016/j.vetimm.2020.110146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Abstract
Endotoxemia is a leading cause of morbidity and mortality in the equine industry, with colic being the most common cause of endotoxemia in horses. The objective of this study was to evaluate the safety and potential efficacy of a single dose of allogeneic equine bone marrow derived mesenchymal stem cells (BM-MSCs) in horses after the IV administration of lipopolysaccharide (LPS). Six horses were administered an IV infusion of 30 ng/kg LPS (O55:B5 Escherichia coli) in 500 ml saline over 30 min. Immediately after infusion test horses (n = 3) were administered 100 × 106 allogeneic BM-MSCs diluted in saline IV and control horses (n = 3) were administered saline. Clinicopathological data, pro-inflammatory cytokine measurements and sCD14 concentrations were compared between groups. No adverse reactions were observed in horses administered BM-MSCs intravenously. There were no significant differences between test and control horses with regard to clinicopathological values or pro-inflammatory cytokine production. At no time point did concentrations of sCD14 exceed the reference range in any horse. Results suggest that administration of a single IV dose of freshly cultured MSCs is safe and well-tolerated in horses with induced endotoxemia. Further study to evaluate their efficacy as a potential therapeutic in a larger number of horses with clinical disease is required.
Collapse
Affiliation(s)
- Isabelle Kilcoyne
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis, CA, United States.
| | - Jorge E Nieto
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis, CA, United States
| | - Johanna L Watson
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California at Davis, CA, United States
| | - Larry D Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis, CA, United States
| | - Dori L Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California at Davis, CA, United States
| |
Collapse
|
48
|
Immunomodulatory and Therapeutic Effects of Mesenchymal Stem Cells on Organ Dysfunction in Sepsis. Shock 2020; 55:423-440. [PMID: 32826813 DOI: 10.1097/shk.0000000000001644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT Sepsis is a life-threatening disorder that is caused by a dysregulated inflammatory response during an infection. The disease mostly affects pregnant women, newborns, and patients in intensive care units. Sepsis treatment is a significant part of a country's health budgets. Delay in the therapy causes irreversible failure of various organs due to the lack of blood supply and reduction of oxygen in the tissues and eventually increased mortality. The involvement of four or five organs by sepsis has been attributed to an increased risk of death to over 90%. Although antibiotics are at the first line of sepsis treatment, they do not possess enough potency to control the disease and prevent subsequent organ failure. The immunomodulatory, anti-inflammatory, anti-apoptotic, and anti-microbial properties of mesenchymal stem cells (MSCs) have been reported in various studies. Therefore, the application of MSCs has been considered a potentially promising therapeutic strategy. In preclinical studies, the administration of MSCs has been associated with reduced bacterial load and decreased levels of pro-inflammatory factors as well as the improved function of the different vital organs, including heart, kidney, liver, and lungs. The current study provides a brief review of sepsis and its pathophysiology, and then highlights recent findings in the therapeutic effects of MSCs and MSC-derived secretome in improving sepsis-induced organ dysfunction. Besides, eligible sepsis candidates for MSC-therapy and the latest clinical findings in these areas have been reviewed.
Collapse
|
49
|
Laroye C, Gibot S, Huselstein C, Bensoussan D. Mesenchymal stromal cells for sepsis and septic shock: Lessons for treatment of COVID-19. Stem Cells Transl Med 2020; 9:1488-1494. [PMID: 32808462 PMCID: PMC7461462 DOI: 10.1002/sctm.20-0239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Sepsis is defined as life‐threatening organ dysfunction caused by a deregulated immune host response to infection. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has highlighted this multifactorial and complex syndrome. The absence of specific treatment neither against SARS‐CoV‐2 nor against acute respiratory distress syndrome (ARDS), the most serious stage of this infection, has emphasized the need to find alternative treatments. Several therapeutics are currently being tested, including mesenchymal stromal cells. These cells, already used in preclinical models of ARDS, sepsis, and septic shock and also in a few clinical trials, appear well‐tolerated and promising, but many questions remain unanswered.
Collapse
Affiliation(s)
- Caroline Laroye
- Unité de Thérapie Cellulaire et banque de Tissus, Université de Lorraine, CHRU de Nancy, Nancy, France.,CNRS, IMoPA, Université de Lorraine, Nancy, France
| | - Sébastien Gibot
- Inserm, DCAC, Université de Lorraine, Nancy, France.,CHRU de Nancy, Service de Réanimation Médicale, Université de Lorraine, Nancy, France
| | | | - Danièle Bensoussan
- Unité de Thérapie Cellulaire et banque de Tissus, Université de Lorraine, CHRU de Nancy, Nancy, France.,CNRS, IMoPA, Université de Lorraine, Nancy, France
| |
Collapse
|
50
|
Sato Y, Ochiai D, Abe Y, Masuda H, Fukutake M, Ikenoue S, Kasuga Y, Shimoda M, Kanai Y, Tanaka M. Prophylactic therapy with human amniotic fluid stem cells improved survival in a rat model of lipopolysaccharide-induced neonatal sepsis through immunomodulation via aggregates with peritoneal macrophages. Stem Cell Res Ther 2020; 11:300. [PMID: 32690106 PMCID: PMC7370504 DOI: 10.1186/s13287-020-01809-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/06/2020] [Accepted: 07/03/2020] [Indexed: 01/15/2023] Open
Abstract
Background Despite recent advances in neonatal care, sepsis remains a leading cause of mortality in neonates. Mesenchymal stem cells derived from various tissues, such as bone marrow, umbilical cord, and adipose tissue, have beneficial effects on adult sepsis. Although human amniotic fluid stem cells (hAFSCs) have mesenchymal stem cell properties, the efficacy of hAFSCs on neonatal sepsis is yet to be elucidated. This study aimed to investigate the therapeutic potential of hAFSCs on neonatal sepsis using a rat model of lipopolysaccharide (LPS)-induced sepsis. Methods hAFSCs were isolated as CD117-positive cells from human amniotic fluid. Three-day-old rat pups were intraperitoneally treated with LPS to mimic neonatal sepsis. hAFSCs were administered either 3 h before or at 0, 3, or 24 h after LPS exposure. Serum inflammatory cytokine levels, gene expression profiles from spleens, and multiple organ damage were analyzed. hAFSC localization was determined in vivo. In vitro LPS stimulation tests were performed using neonatal rat peritoneal macrophages co-cultured with hAFSCs in a cell-cell contact-dependent/independent manner. Immunoregulation in the spleen was determined using a DNA microarray analysis. Results Prophylactic therapy with hAFSCs improved survival in the LPS-treated rats while the hAFSCs transplantation after LPS exposure did not elicit a therapeutic response. Therefore, hAFSC pretreatment was used for all subsequent studies. Inflammatory cytokine levels were elevated after LPS injection, which was attenuated by hAFSC pretreatment. Subsequently, inflammation-induced damages in the brain, lungs, and liver were ameliorated. hAFSCs aggregated with peritoneal macrophages and/or transiently accumulated in the liver, mesentery, and peritoneum. Paracrine factors released by hAFSCs induced M1-M2 macrophage polarization in a cell-cell contact-independent manner. Direct contact between hAFSCs and peritoneal macrophages further enhanced the polarization. Microarray analysis of the spleen showed that hAFSC pretreatment reduced the expression of genes involved in apoptosis and inflammation and subsequently suppressed toll-like receptor 4 signaling pathways. Conclusions Prophylactic therapy with hAFSCs improved survival in a rat model of LPS-induced neonatal sepsis. These effects might be mediated by a phenotypic switch from M1 to M2 in peritoneal macrophages, triggered by hAFSCs in a cell-cell contact-dependent/independent manner and the subsequent immunomodulation of the spleen.
Collapse
Affiliation(s)
- Yu Sato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Daigo Ochiai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan.
| | - Yushi Abe
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Marie Fukutake
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Satoru Ikenoue
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Yoshifumi Kasuga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| |
Collapse
|