1
|
Reynolds SD, Hill CL, Alsudayri A, Stack JT, Shontz KM, Carraro G, Stripp BR, Chiang T. Factor 3 regulates airway engraftment by human bronchial basal cells. Stem Cells Transl Med 2024:szae084. [PMID: 39485996 DOI: 10.1093/stcltm/szae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/01/2024] [Indexed: 11/03/2024] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) gene editing and transplantation of CFTR-gene corrected airway basal cells has the potential to cure CF lung disease. Although mouse studies established that cell transplantation was feasible, the engraftment rate was typically low and frequently less than the estimated therapeutic threshold. The purpose of this study was to identify genes and culture conditions that regulate the therapeutic potential of human bronchial basal cells. Factor 3 (F3, Tissue Factor 1) is a component of the extrinsic coagulation pathway and activates a cascade of proteases that convert fibrinogen to fibrin. Based on reports that F3 was necessary for human basal cell survival and adhesion in vitro, the present study evaluated F3 as a potential determinant of therapeutic fitness. The gene expression profile of F3 mRNA-positive human bronchial basal cells was evaluated by scRNAseq and the impact of the lung environment on F3 expression was modeled by varying in vitro culture conditions. F3 necessity for adhesion, proliferation, and differentiation was determined by CRISPR/Cas9 knockout (KO) of the F3 gene. Finally, the impact of F3 manipulation on engraftment was determined by orthotropic co-transplantation of wild-type and F3-KO cells into the airways of immunocompromised mice. In contrast with the hypothesis that F3 increases the therapeutic fitness of basal cells, F3 expression decreased engraftment. These studies guide the ongoing development of cellular therapies by showing that in vitro assessments may not predict therapeutic potential and that the lung milieu influences the functional properties of transplanted bronchial basal cells.
Collapse
Affiliation(s)
- Susan D Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH 43215, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Cynthia L Hill
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH 43215, United States
| | - Alfahdah Alsudayri
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH 43215, United States
| | - Jacob T Stack
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH 43215, United States
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH 43215, United States
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Barry R Stripp
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Tendy Chiang
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH 43215, United States
- Department of Otolaryngology, Nationwide Children's Hospital, Columbus, OH 43215, United States
| |
Collapse
|
2
|
Wu T, Dong Y, Yang X, Mo L, You Y. Crosstalk between lncRNAs and Wnt/β-catenin signaling pathways in lung cancers: From cancer progression to therapeutic response. Noncoding RNA Res 2024; 9:667-677. [PMID: 38577016 PMCID: PMC10987302 DOI: 10.1016/j.ncrna.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Lung cancer (LC) is considered to have the highest mortality rate around the world. Because there are no early diagnostic signs or efficient clinical alternatives, distal metastasis and increasing numbers of recurrences are a challenge in the clinical management of LC. Long non-coding RNAs (lncRNAs) have recently been recognized as a critical regulator involved in the progression and treatment response to LC. The Wnt/β-catenin pathway has been shown to influence LC occurrence and progress. Therefore, discovering connections between Wnt signaling pathway and lncRNAs may offer new therapeutic targets for improving LC treatment and management. In this review, the purpose of this article is to present possible therapeutic approaches by reviewing particular relationships, key processes, and molecules associated to the beginning and development of LC.
Collapse
Affiliation(s)
- Ting Wu
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - YiRan Dong
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - XinZhi Yang
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang Mo
- Department of Thoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong You
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
3
|
Redman E, Fierville M, Cavard A, Plaisant M, Arguel MJ, Ruiz Garcia S, McAndrew EM, Girard-Riboulleau C, Lebrigand K, Magnone V, Ponzio G, Gras D, Chanez P, Abelanet S, Barbry P, Marcet B, Zaragosi LE. Cell Culture Differentiation and Proliferation Conditions Influence the In Vitro Regeneration of the Human Airway Epithelium. Am J Respir Cell Mol Biol 2024; 71:267-281. [PMID: 38843491 PMCID: PMC11376247 DOI: 10.1165/rcmb.2023-0356ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The human airway mucociliary epithelium can be recapitulated in vitro using primary cells cultured in an air-liquid interface (ALI), a reliable surrogate to perform pathophysiological studies. As tremendous variations exist among media used for ALI-cultured human airway epithelial cells, the aim of our study was to evaluate the impact of several media (BEGM, PneumaCult, Half & Half, and Clancy) on cell type distribution using single-cell RNA sequencing and imaging. Our work revealed the impact of these media on cell composition, gene expression profile, cell signaling, and epithelial morphology. We found higher proportions of multiciliated cells in PneumaCult-ALI and Half & Half, stronger EGF signaling from basal cells in BEGM-ALI, differential expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry factor ACE2, and distinct secretome transcripts depending on the media used. We also established that proliferation in PneumaCult-Ex Plus favored secretory cell fate, showing the key influence of proliferation media on late differentiation epithelial characteristics. Altogether, our data offer a comprehensive repertoire for evaluating the effects of culture conditions on airway epithelial differentiation and will aid in choosing the most relevant medium according to the processes to be investigated, such as cilia, mucus biology, or viral infection. We detail useful parameters that should be explored to document airway epithelial cell fate and morphology.
Collapse
Affiliation(s)
- Elisa Redman
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Morgane Fierville
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
- Interdisciplinary Institute for Artificial Intelligence (3IA Côte d'Azur), Université Côte d'Azur, Sophia Antipolis, France; and
| | - Amélie Cavard
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Magali Plaisant
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Marie-Jeanne Arguel
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Sandra Ruiz Garcia
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Eamon M McAndrew
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Cédric Girard-Riboulleau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Virginie Magnone
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Gilles Ponzio
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Delphine Gras
- Centre de Recherche en Cardiovasculaire et Nutrition, Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement (INRAE), Université Aix-Marseille, Marseille, France
| | - Pascal Chanez
- Centre de Recherche en Cardiovasculaire et Nutrition, Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement (INRAE), Université Aix-Marseille, Marseille, France
| | - Sophie Abelanet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
- Interdisciplinary Institute for Artificial Intelligence (3IA Côte d'Azur), Université Côte d'Azur, Sophia Antipolis, France; and
| | - Brice Marcet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Laure-Emmanuelle Zaragosi
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| |
Collapse
|
4
|
McCauley KB, Kukreja K, Tovar Walker AE, Jaffe AB, Klein AM. A map of signaling responses in the human airway epithelium. Cell Syst 2024; 15:307-321.e10. [PMID: 38508187 PMCID: PMC11031335 DOI: 10.1016/j.cels.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Receptor-mediated signaling plays a central role in tissue regeneration, and it is dysregulated in disease. Here, we build a signaling-response map for a model regenerative human tissue: the airway epithelium. We analyzed the effect of 17 receptor-mediated signaling pathways on organotypic cultures to determine changes in abundance and phenotype of epithelial cell types. This map recapitulates the gamut of known airway epithelial signaling responses to these pathways. It defines convergent states induced by multiple ligands and diverse, ligand-specific responses in basal cell and secretory cell metaplasia. We show that loss of canonical differentiation induced by multiple pathways is associated with cell-cycle arrest, but that arrest is not sufficient to block differentiation. Using the signaling-response map, we show that a TGFB1-mediated response underlies specific aberrant cells found in multiple lung diseases and identify interferon responses in COVID-19 patient samples. Thus, we offer a framework enabling systematic evaluation of tissue signaling responses. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Katherine B McCauley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA; Disease Area X, Biomedical Research, Novartis, Cambridge, MA 02139, USA
| | - Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Aron B Jaffe
- Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Zhang L, Kelly N, Shontz KM, Hill CL, Stack JT, Calyeca J, Matrka L, Miller A, Reynolds SD, Chiang T. Airway disease decreases the therapeutic potential of epithelial stem cells. Respir Res 2024; 25:28. [PMID: 38217012 PMCID: PMC10787461 DOI: 10.1186/s12931-024-02667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGORUND Tissue-engineered tracheal grafts (TETG) can be recellularized by the host or pre-seeded with host-derived cells. However, the impact of airway disease on the recellularization process is unknown. METHODS In this study, we determined if airway disease alters the regenerative potential of the human tracheobronchial epithelium (hTBE) obtained by brushing the tracheal mucosa during clinically-indicated bronchoscopy from 48 pediatric and six adult patients. RESULTS Our findings revealed that basal cell recovery and frequency did not vary by age or region. At passage 1, all samples produced enough cells to cellularize a 3.5 by 0.5 cm2 graft scaffold at low cell density (~ 7000 cells/cm2), and 43.75% could cellularize a scaffold at high cell density (~ 100,000 cells/cm2). At passage 2, all samples produced the number of cells required for both recellularization models. Further evaluation revealed that six pediatric samples (11%) and three (50%) adult samples contained basal cells with a squamous basal phenotype. These cells did not form a polarized epithelium or produce differentiated secretory or ciliated cells. In the pediatric population, the squamous basal cell phenotype was associated with degree of prematurity (< 28 weeks, 64% vs. 13%, p = 0.02), significant pulmonary history (83% vs. 34%, p = 0.02), specifically with bronchopulmonary dysplasia (67% vs. 19%, p = 0.01), and patients who underwent previous tracheostomy (67% vs. 23%, p = 0.03). CONCLUSIONS In summary, screening high-risk pediatric or adult population based on clinical risk factors and laboratory findings could define appropriate candidates for airway reconstruction with tracheal scaffolds. LEVEL OF EVIDENCE Level III Cohort study.
Collapse
Affiliation(s)
- Lisa Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State Wexner Medical Center, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Natalie Kelly
- Department of Otolaryngology, Nationwide Children's Hospital, 555 S. 18th St, Suite 2A, Columbus, OH, 43205, USA
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cynthia L Hill
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jacob T Stack
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jazmin Calyeca
- Department of Otolaryngology, Nationwide Children's Hospital, 555 S. 18th St, Suite 2A, Columbus, OH, 43205, USA
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Matrka
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State Wexner Medical Center, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Audrey Miller
- Comprehensive Center for Bronchopulmonary Dysplasia, Department of Pediatrics, Division of Neonatology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tendy Chiang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State Wexner Medical Center, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Otolaryngology, Nationwide Children's Hospital, 555 S. 18th St, Suite 2A, Columbus, OH, 43205, USA.
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
6
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Protti G, Rubbi L, Gören T, Sabirli R, Civlan S, Kurt Ö, Türkçüer İ, Köseler A, Pellegrini M. The methylome of buccal epithelial cells is influenced by age, sex, and physiological properties. Physiol Genomics 2023; 55:618-633. [PMID: 37781740 DOI: 10.1152/physiolgenomics.00063.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Epigenetic modifications, particularly DNA methylation, have emerged as regulators of gene expression and are implicated in various biological processes and disease states. Understanding the factors influencing the epigenome is essential for unraveling its complexity. In this study, we aimed to identify how the methylome of buccal epithelial cells, a noninvasive and easily accessible tissue, is associated with demographic and health-related variables commonly used in clinical settings, such as age, sex, blood immune composition, hemoglobin levels, and others. We developed a model to assess the association of multiple factors with the human methylome and identify the genomic loci significantly impacted by each trait. We demonstrated that DNA methylation variation is accurately modeled by several factors. We confirmed the well-known impact of age and sex and unveiled novel clinical factors associated with DNA methylation, such as blood neutrophils, hemoglobin, red blood cell distribution width, high-density lipoprotein cholesterol, and urea. Genomic regions significantly associated with these traits were enriched in relevant transcription factors, drugs, and diseases. Among our findings, we showed that neutrophil-impacted loci were involved in neutrophil functionality and maturation. Similarly, hemoglobin-influenced sites were associated with several diseases, including aplastic anemia, and the genomic loci affected by urea were related to congenital anomalies of the kidney and urinary tract. Our findings contribute to a better understanding of the human methylome plasticity and provide insights into novel factors shaping DNA methylation patterns, highlighting their potential clinical implications as biomarkers and the importance of considering these physiological traits in future medical epigenomic investigations.NEW & NOTEWORTHY We have developed a quantitative model to assess how the human methylome is associated with several factors and to identify the genomic loci significantly impacted by each trait. We reported novel health-related factors driving DNA methylation patterns and new site-specific regulations that further elucidate methylome dynamics. Our study contributes to a better understanding of the plasticity of the human methylome and unveils novel physiological traits with a potential role in future medical epigenomic investigations.
Collapse
Affiliation(s)
- Giulia Protti
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
| | - Tarik Gören
- Emergency Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Ramazan Sabirli
- Emergency Department, Bakircay University Faculty of Medicine Cigli Training and Research Hospital, Izmir, Turkey
| | - Serkan Civlan
- Department of Neurosurgery, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Özgür Kurt
- Department of Microbiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - İbrahim Türkçüer
- Emergency Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Aylin Köseler
- Department of Biophysics, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
| |
Collapse
|
8
|
Cooney RA, Saal ML, Geraci KP, Maynard C, Cleaver O, Hoang ON, Moore TT, Hwang RF, Axelrod JD, Vladar EK. A WNT4- and DKK3-driven canonical to noncanonical Wnt signaling switch controls multiciliogenesis. J Cell Sci 2023; 136:jcs260807. [PMID: 37505110 PMCID: PMC10482387 DOI: 10.1242/jcs.260807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Multiciliated cells contain hundreds of cilia whose directional movement powers the mucociliary clearance of the airways, a vital host defense mechanism. Multiciliated cell specification requires canonical Wnt signaling, which then must be turned off. Next, ciliogenesis and polarized ciliary orientation are regulated by noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling. The mechanistic relationship between the Wnt pathways is unknown. We show that DKK3, a secreted canonical Wnt regulator and WNT4, a noncanonical Wnt ligand act together to facilitate a canonical to noncanonical Wnt signaling switch during multiciliated cell formation. In primary human airway epithelial cells, DKK3 and WNT4 CRISPR knockout blocks, whereas ectopic expression promotes, multiciliated cell formation by inhibiting canonical Wnt signaling. Wnt4 and Dkk3 single-knockout mice also display defective ciliated cells. DKK3 and WNT4 are co-secreted from basal stem cells and act directly on multiciliated cells via KREMEN1 and FZD6, respectively. We provide a novel mechanism that links specification to cilium biogenesis and polarization for proper multiciliated cell formation.
Collapse
Affiliation(s)
- Riley A. Cooney
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maxwell L. Saal
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kara P. Geraci
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Caitlin Maynard
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Oanh N. Hoang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Todd T. Moore
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rosa F. Hwang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Yang W, Li Y, Shi F, Liu H. Human lung organoid: Models for respiratory biology and diseases. Dev Biol 2023; 494:26-34. [PMID: 36470449 DOI: 10.1016/j.ydbio.2022.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The human respiratory system, consisting of the airway and alveoli, is one of the most complex organs directly interfaced with the external environment. The diverse epithelial cells lining the surface are usually the first cell barrier that comes into contact with pathogens that could lead to deadly pulmonary disease. There is an urgent need to understand the mechanisms of self-renewal and protection of these epithelial cells against harmful pathogens, such as SARS-CoV-2. Traditional models, including cell lines and mouse models, have extremely limited native phenotypic features. Therefore, in recent years, to mimic the complexity of the lung, airway and alveoli organoid technology has been developed and widely applied. TGF-β/BMP/SMAD, FGF and Wnt/β-catenin signaling have been proven to play a key role in lung organoid expansion and differentiation. Thus, we summarize the current novel lung organoid culture strategies and discuss their application for understanding the lung biological features and pathophysiology of pulmonary diseases, especially COVID-19. Lung organoids provide an excellent in vitro model and research platform.
Collapse
Affiliation(s)
- Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingna Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Sun Y, He P, Li L, Ding X. The significance of the crosstalk between ubiquitination or deubiquitination and ncRNAs in non-small cell lung cancer. Front Oncol 2023; 12:969032. [PMID: 36727069 PMCID: PMC9884829 DOI: 10.3389/fonc.2022.969032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Lung cancer (LC) remains the leading cause of cancer-related deaths worldwide, with extremely high morbidity and mortality rates. Non-small cell lung cancer (NSCLC) is the most critical type of LC. It seriously threatens the life and health of patients because of its early metastasis, late clinical symptoms, limited early screening methods, and poor treatment outcomes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in cell proliferation, metastasis, and chemoresistance. Several previous studies have proven that ncRNAs are vital regulators of tumorigenesis. Ubiquitination plays the most crucial role in protein post-translational modification (PTM). Deubiquitination and ubiquitination form a homeostasis. In summary, ubiquitination and deubiquitination play essential roles in mediating the degradation or overexpression of a range of crucial proteins in various cancers. A growing number of researchers have found that interactions between ncRNAs and ubiquitination (or deubiquitination) play a crucial role in NSCLC. This review presents several typical examples of the important effects of ncRNAs and ubiquitination (or deubiquitination) in NSCLC, aiming to provide more creative ideas for exploring the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Yiyang Sun
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping He
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Ping He,
| | - Li Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Ding
- General Medicine Department, Dalian Friendship Hospital, Dalian, China
| |
Collapse
|
11
|
Mccauley KB, Kukreja K, Jaffe AB, Klein AM. A map of signaling responses in the human airway epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.21.521460. [PMID: 36597531 PMCID: PMC9810218 DOI: 10.1101/2022.12.21.521460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Receptor-mediated signaling plays a central role in tissue regeneration, and it is dysregulated in disease. Here, we build a signaling-response map for a model regenerative human tissue: the airway epithelium. We analyzed the effect of 17 receptor-mediated signaling pathways on organotypic cultures to determine changes in abundance and phenotype of all epithelial cell types. This map recapitulates the gamut of known airway epithelial signaling responses to these pathways. It defines convergent states induced by multiple ligands and diverse, ligand-specific responses in basal-cell and secretory-cell metaplasia. We show that loss of canonical differentiation induced by multiple pathways is associated with cell cycle arrest, but that arrest is not sufficient to block differentiation. Using the signaling-response map, we show that a TGFB1-mediated response underlies specific aberrant cells found in multiple lung diseases and identify interferon responses in COVID-19 patient samples. Thus, we offer a framework enabling systematic evaluation of tissue signaling responses.
Collapse
Affiliation(s)
- Katherine B Mccauley
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Disease Area X, Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Aron B Jaffe
- Disease Area X, Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
- Current address: Chroma Medicine, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Reynolds SD, Hill CL, Alsudayri A, Lallier SW, Wijeratne S, Tan ZH, Chiang T, Cormet-Boyaka E. Assemblies of JAG1 and JAG2 determine tracheobronchial cell fate in mucosecretory lung disease. JCI Insight 2022; 7:e157380. [PMID: 35819850 PMCID: PMC9462471 DOI: 10.1172/jci.insight.157380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mucosecretory lung disease compromises airway epithelial function and is characterized by goblet cell hyperplasia and ciliated cell hypoplasia. Goblet and ciliated cell types are derived from tracheobronchial stem/progenitor cells via a Notch-dependent mechanism. Although specific arrays of Notch receptors regulate cell fate determination, the function of the ligands Jagged1 (JAG1) and JAG2 is unclear. This study examined JAG1 and JAG2 function using human air-liquid-interface cultures that were treated with γ-secretase complex (GSC) inhibitors, neutralizing peptides/antibodies, or WNT/β-catenin pathway antagonists/agonists. These experiments revealed that JAG1 and JAG2 regulated cell fate determination in the tracheobronchial epithelium; however, their roles did not adhere to simple necessity and sufficiency rules. Biochemical studies indicated that JAG1 and JAG2 underwent posttranslational modifications that resulted in generation of a JAG1 C-terminal peptide and regulated the abundance of full-length JAG2 on the cell surface. GSC and glycogen synthase kinase 3 were implicated in these posttranslational events, but WNT agonist/antagonist studies and RNA-Seq indicated a WNT-independent mechanism. Collectively, these data suggest that posttranslational modifications create distinct assemblies of JAG1 and JAG2, which regulate Notch signal strength and determine the fate of tracheobronchial stem/progenitor cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Hong Tan
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | |
Collapse
|
13
|
Cheng Q, Zhang S, Zhong B, Chen Z, Peng F. Asiatic acid re-sensitizes multidrug-resistant A549/DDP cells to cisplatin by down regulating long non-coding RNA metastasis associated lung adenocarcinoma transcript 1/β-catenin signaling. Bioengineered 2022; 13:12972-12984. [PMID: 35609308 PMCID: PMC9275950 DOI: 10.1080/21655979.2022.2079302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Drug resistance becomes a challenge in the therapeutic management of non-small cell lung cancer (NSCLC). According to our former research, asiatic acid (AA) re-sensitized A549/DDP cells to cisplatin (DDP) through decreasing multidrug resistance protein 1 (MDR1) expression level. However, the relevant underlying mechanisms are still unclear. Long non-coding RNA (lncRNA) MALAT1 shows close association with chemo-resistance. As reported in this research, AA increased apoptosis rate, down regulated the expression of MALAT1, p300, β-catenin, and MDR1, up regulated the expression of miR-1297, and decreased β-catenin nuclear translocation in A549/DDP cells. MALAT1 knockdown expression abolished the drug resistance of A549/DDP cells and increased cell apoptosis. MALAT1 could potentially produce interactions with miR-1297, which targeted to degradation of p300. In addition, p300 overexpression effectively rescued the effects of MALAT1 knockdown expression on A549/DDP cells and activate the expression of β-catenin/MDR1 signaling, and these could be effectively blocked by AA treatment. Conclusively, AA could re-sensitize A549/DDP cells to DDP through down-regulating MALAT1/miR-1297/p300/β-catenin signaling.
Collapse
Affiliation(s)
- Qilai Cheng
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shanshan Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bing Zhong
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fang Peng
- Department of Pathology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
14
|
Naeimi Kararoudi M, Alsudayri A, Hill CL, Elmas E, Sezgin Y, Thakkar A, Hester ME, Malleske DT, Lee DA, Neal ML, Perry MR, Harvilchuck JA, Reynolds SD. Assessment of Beta-2 Microglobulin Gene Edited Airway Epithelial Stem Cells as a treatment for Sulfur Mustard Inhalation. Front Genome Ed 2022; 4:781531. [PMID: 35199100 PMCID: PMC8859869 DOI: 10.3389/fgeed.2022.781531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
Respiratory system damage is the primary cause of mortality in individuals who are exposed to vesicating agents including sulfur mustard (SM). Despite these devastating health complications, there are no fielded therapeutics that are specific for such injuries. Previous studies reported that SM inhalation depleted the tracheobronchial airway epithelial stem cell (TSC) pool and supported the hypothesis, TSC replacement will restore airway epithelial integrity and improve health outcomes for SM-exposed individuals. TSC express Major Histocompatibility Complex (MHC-I) transplantation antigens which increases the chance that allogeneic TSC will be rejected by the patient’s immune system. However, previous studies reported that Beta-2 microglobulin (B2M) knockout cells lacked cell surface MHC-I and suggested that B2M knockout TSC would be tolerated as an allogeneic graft. This study used a Cas9 ribonucleoprotein (RNP) to generate B2M-knockout TSC, which are termed Universal Donor Stem Cells (UDSC). Whole genome sequencing identified few off-target modifications and demonstrated the specificity of the RNP approach. Functional assays demonstrated that UDSC retained their ability to self-renew and undergo multilineage differentiation. A preclinical model of SM inhalation was used to test UDSC efficacy and identify any treatment-associated adverse events. Adult male Sprague-Dawley rats were administered an inhaled dose of 0.8 mg/kg SM vapor which is the inhaled LD50 on day 28 post-challenge. On recovery day 2, vehicle or allogeneic Fisher rat UDSC were delivered intravenously (n = 30/group). Clinical parameters were recorded daily, and planned euthanasia occurred on post-challenge days 7, 14, and 28. The vehicle and UDSC treatment groups exhibited similar outcomes including survival and a lack of adverse events. These studies establish a baseline which can be used to further develop UDSC as a treatment for SM-induced airway disease.
Collapse
Affiliation(s)
| | | | | | - Ezgi Elmas
- Nationwide Children’s Hospital, Columbus, OH, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Yasemin Sezgin
- Nationwide Children’s Hospital, Columbus, OH, United States
| | - Aarohi Thakkar
- Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mark E. Hester
- Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Dean A. Lee
- Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Mark R. Perry
- Battelle Memorial Institute, Columbus, OH, United States
| | | | - Susan D. Reynolds
- Nationwide Children’s Hospital, Columbus, OH, United States
- *Correspondence: Susan D. Reynolds,
| |
Collapse
|
15
|
Telias M, Ben-Yosef D. Pharmacological Manipulation of Wnt/β-Catenin Signaling Pathway in Human Neural Precursor Cells Alters Their Differentiation Potential and Neuronal Yield. Front Mol Neurosci 2021; 14:680018. [PMID: 34421534 PMCID: PMC8371257 DOI: 10.3389/fnmol.2021.680018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
The canonical Wnt/β-catenin pathway is a master-regulator of cell fate during embryonic and adult neurogenesis and is therefore a major pharmacological target in basic and clinical research. Chemical manipulation of Wnt signaling during in vitro neuronal differentiation of stem cells can alter both the quantity and the quality of the derived neurons. Accordingly, the use of Wnt activators and blockers has become an integral part of differentiation protocols applied to stem cells in recent years. Here, we investigated the effects of the glycogen synthase kinase-3β inhibitor CHIR99021, which upregulates β-catenin agonizing Wnt; and the tankyrase-1/2 inhibitor XAV939, which downregulates β-catenin antagonizing Wnt. Both drugs and their potential neurogenic and anti-neurogenic effects were studied using stable lines human neural precursor cells (hNPCs), derived from embryonic stem cells, which can be induced to generate mature neurons by chemically-defined conditions. We found that Wnt-agonism by CHIR99021 promotes induction of neural differentiation, while also reducing cell proliferation and survival. This effect was not synergistic with those of pro-neural growth factors during long-term neuronal differentiation. Conversely, antagonism of Wnt by XAV939 consistently prevented neuronal progression of hNPCs. We show here how these two drugs can be used to manipulate cell fate and how self-renewing hNPCs can be used as reliable human in vitro drug-screening platforms.
Collapse
Affiliation(s)
- Michael Telias
- Wolfe PGD-SC Lab, Racine IVF Unit, Department of Cell and Developmental Biology, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Tel Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-SC Lab, Racine IVF Unit, Department of Cell and Developmental Biology, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Kuchibhotla VNS, Starkey MR, Reid AT, Heijink IH, Nawijn MC, Hansbro PM, Knight DA. Inhibition of β-Catenin/CREB Binding Protein Signaling Attenuates House Dust Mite-Induced Goblet Cell Metaplasia in Mice. Front Physiol 2021; 12:690531. [PMID: 34385933 PMCID: PMC8353457 DOI: 10.3389/fphys.2021.690531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
Excessive mucus production is a major feature of allergic asthma. Disruption of epithelial junctions by allergens such as house dust mite (HDM) results in the activation of β-catenin signaling, which has been reported to stimulate goblet cell differentiation. β-catenin interacts with various co-activators including CREB binding protein (CBP) and p300, thereby regulating the expression of genes involved in cell proliferation and differentiation, respectively. We specifically investigated the role of the β-catenin/CBP signaling pathway in goblet cell metaplasia in a HDM-induced allergic airway disease model in mice using ICG-001, a small molecule inhibitor that blocks the binding of CBP to β-catenin. Female 6- 8-week-old BALB/c mice were sensitized to HDM/saline on days 0, 1, and 2, followed by intranasal challenge with HDM/saline with or without subcutaneous ICG-001/vehicle treatment from days 14 to 17, and samples harvested 24 h after the last challenge/treatment. Differential inflammatory cells in bronchoalveolar lavage (BAL) fluid were enumerated. Alcian blue (AB)/Periodic acid–Schiff (PAS) staining was used to identify goblet cells/mucus production, and airway hyperresponsiveness (AHR) was assessed using invasive plethysmography. Exposure to HDM induced airway inflammation, goblet cell metaplasia and increased AHR, with increased airway resistance in response to the non-specific spasmogen methacholine. Inhibition of the β-catenin/CBP pathway using treatment with ICG-001 significantly attenuated the HDM-induced goblet cell metaplasia and infiltration of macrophages, but had no effect on eosinophils, neutrophils, lymphocytes or AHR. Increased β-catenin/CBP signaling may promote HDM-induced goblet cell metaplasia in mice.
Collapse
Affiliation(s)
- Virinchi N S Kuchibhotla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research, University of Groningen, Groningen, Netherlands
| | - Malcolm R Starkey
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre GrowUpWell and Hunter Medical Research Institute, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Andrew T Reid
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Irene H Heijink
- GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research, University of Groningen, Groningen, Netherlands.,Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martijn C Nawijn
- GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research, University of Groningen, Groningen, Netherlands
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Providence Health Care Research Institute, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
18
|
Aros CJ, Pantoja CJ, Gomperts BN. Wnt signaling in lung development, regeneration, and disease progression. Commun Biol 2021; 4:601. [PMID: 34017045 PMCID: PMC8138018 DOI: 10.1038/s42003-021-02118-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a vital, intricate system for several important biological processes including mucociliary clearance, airway conductance, and gas exchange. The Wnt signaling pathway plays several crucial and indispensable roles across lung biology in multiple contexts. This review highlights the progress made in characterizing the role of Wnt signaling across several disciplines in lung biology, including development, homeostasis, regeneration following injury, in vitro directed differentiation efforts, and disease progression. We further note uncharted directions in the field that may illuminate important biology. The discoveries made collectively advance our understanding of Wnt signaling in lung biology and have the potential to inform therapeutic advancements for lung diseases. Cody Aros, Carla Pantoja, and Brigitte Gomperts review the key role of Wnt signaling in all aspects of lung development, repair, and disease progression. They provide an overview of recent research findings and highlight where research is needed to further elucidate mechanisms of action, with the aim of improving disease treatments.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, USA.,UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Division of Pulmonary and Critical Care MedicineDavid Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA. .,Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Feng D, Lin J, Wang W, Yan K, Liang H, Liang J, Yu H, Ling B. Wnt3a/β-Catenin/CBP Activation in the Progression of Cervical Intraepithelial Neoplasia. Pathol Oncol Res 2021; 27:609620. [PMID: 34257574 PMCID: PMC8262210 DOI: 10.3389/pore.2021.609620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022]
Abstract
Piwil2 reprograms HPV-infected reserve cells in the cervix into tumor-initiated cells (TICs) and upregulates Wnt3a expression sequentially, which leads to cervical intraepithelial neoplasia (CIN) and ultimately squamous cell carcinoma (SCC). However, little is known regarding Wnt signaling in the maintenance of TIC stemness during the progression of cervical lesions. We herein investigated the expression of canonical Wnt3a signaling and related genes by microarray data set analysis and immunohistochemical (IHC) staining of samples obtained by biopsy of normal cervix, low- and high-grade CIN, and invasive SCC tissue. Array data analyzed by GEO2R showed higher expression levels of Wnt signaling and their target genes, significant upregulation of stemness-associated markers, and notably downregulated cell differentiation markers in CIN and SCC tissues compared with those in the normal cervix tissue. Further, Gene Set Enrichment Analysis (GSEA) revealed that Wnt pathway-related genes significantly enriched in SCC. IHC staining showed gradually increased immunoreactivity score of Wnt3a and CBP and notable translocation of β-catenin from the membrane to the cytoplasm and nucleus during the lesion progression. The intensity and proportion of P16, Ki67 and CK17 staining also increased with the progression of cervical lesions, whereas minimal to negative Involucrin expression was observed in CIN2/3 and SCC. Therefore, canonical Wnt signaling may contribute to the progression of CIN to SCC and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Jie Lin
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Wenhui Wang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keqin Yan
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Huan Yu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease. EBioMedicine 2020; 61:103034. [PMID: 33045470 PMCID: PMC7559244 DOI: 10.1016/j.ebiom.2020.103034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a devastating lung disease, mainly due to cigarette smoking, which represents the third cause of mortality worldwide. The mechanisms driving its epithelial salient features remain largely elusive. We aimed to evaluate the activation and the role of the canonical, β-catenin-dependant WNT pathway in the airway epithelium from COPD patients. METHODS The WNT/β-catenin pathway was first assessed by WNT-targeted RNA sequencing of the air/liquid interface-reconstituted bronchial epithelium from COPD and control patients. Airway expression of total and active β-catenin was assessed in lung sections, as well as WNT components in laser-microdissected airway epithelium. Finally, we evaluated the role of WNT at the bronchial epithelial level by modulating the pathway in the reconstituted COPD epithelium. FINDINGS We show that the WNT/β-catenin pathway is upregulated in the COPD airway epithelium as compared with that of non-smokers and control smokers, in targeted RNA-sequencing of in vitro reconstituted airway epithelium, and in situ in lung tissue and laser-microdissected epithelium. Extrinsic activation of this pathway in COPD-derived airway epithelium inhibited epithelial differentiation, polarity and barrier function, and induced TGF-β-related epithelial-to-mesenchymal transition (EMT). Conversely, canonical WNT inhibition increased ciliated cell numbers, epithelial polarity and barrier function, whilst inhibiting EMT, thus reversing COPD features. INTERPRETATION In conclusion, the aberrant reactivation of the canonical WNT pathway in the adult airway epithelium recapitulates the diseased phenotype observed in COPD patients, suggesting that this pathway or its downstream effectors could represent a future therapeutic target. FUNDING This study was supported by the Fondation Mont-Godinne, the FNRS and the WELBIO.
Collapse
|
21
|
Aros CJ, Vijayaraj P, Pantoja CJ, Bisht B, Meneses LK, Sandlin JM, Tse JA, Chen MW, Purkayastha A, Shia DW, Sucre JMS, Rickabaugh TM, Vladar EK, Paul MK, Gomperts BN. Distinct Spatiotemporally Dynamic Wnt-Secreting Niches Regulate Proximal Airway Regeneration and Aging. Cell Stem Cell 2020; 27:413-429.e4. [PMID: 32721381 PMCID: PMC7484054 DOI: 10.1016/j.stem.2020.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/17/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Our understanding of dynamic interactions between airway basal stem cells (ABSCs) and their signaling niches in homeostasis, injury, and aging remains elusive. Using transgenic mice and pharmacologic studies, we found that Wnt/β-catenin within ABSCs was essential for proliferation post-injury in vivo. ABSC-derived Wnt ligand production was dispensable for epithelial proliferation. Instead, the PDGFRα+ lineage in the intercartilaginous zone (ICZ) niche transiently secreted Wnt ligand necessary for ABSC proliferation. Strikingly, ABSC-derived Wnt ligand later drove early progenitor differentiation to ciliated cells. We discovered additional changes in aging, as glandular-like epithelial invaginations (GLEIs) derived from ABSCs emerged exclusively in the ICZ of aged mice and contributed to airway homeostasis and repair. Further, ABSC Wnt ligand secretion was necessary for GLEI formation, and constitutive activation of β-catenin in young mice induced their formation in vivo. Collectively, these data underscore multiple spatiotemporally dynamic Wnt-secreting niches that regulate functionally distinct phases of airway regeneration and aging.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Preethi Vijayaraj
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Bharti Bisht
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Luisa K Meneses
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jenna M Sandlin
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jonathan A Tse
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Michelle W Chen
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Arunima Purkayastha
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - David W Shia
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jennifer M S Sucre
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
| | - Tammy M Rickabaugh
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Eszter K Vladar
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine and Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Manash K Paul
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020; 9:725-727. [PMID: 32573117 PMCID: PMC7308636 DOI: 10.1002/sctm.20-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 11/20/2022] Open
|
23
|
Noncanonical Wnt planar cell polarity signaling in lung development and disease. Biochem Soc Trans 2020; 48:231-243. [PMID: 32096543 DOI: 10.1042/bst20190597] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
The planar cell polarity (PCP) signaling pathway is a potent developmental regulator of directional cell behaviors such as migration, asymmetric division and morphological polarization that are critical for shaping the body axis and the complex three-dimensional architecture of tissues and organs. PCP is considered a noncanonical Wnt pathway due to the involvement of Wnt ligands and Frizzled family receptors in the absence of the beta-catenin driven gene expression observed in the canonical Wnt cascade. At the heart of the PCP mechanism are protein complexes capable of generating molecular asymmetries within cells along a tissue-wide axis that are translated into polarized actin and microtubule cytoskeletal dynamics. PCP has emerged as an important regulator of developmental, homeostatic and disease processes in the respiratory system. It acts along other signaling pathways to create the elaborately branched structure of the lung by controlling the directional protrusive movements of cells during branching morphogenesis. PCP operates in the airway epithelium to establish and maintain the orientation of respiratory cilia along the airway axis for anatomically directed mucociliary clearance. It also regulates the establishment of the pulmonary vasculature. In adult tissues, PCP dysfunction has been linked to a variety of chronic lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary arterial hypertension, stemming chiefly from the breakdown of proper tissue structure and function and aberrant cell migration during regenerative wound healing. A better understanding of these (impaired) PCP mechanisms is needed to fully harness the therapeutic opportunities of targeting PCP in chronic lung diseases.
Collapse
|
24
|
Aros CJ, Paul MK, Pantoja CJ, Bisht B, Meneses LK, Vijayaraj P, Sandlin JM, France B, Tse JA, Chen MW, Shia DW, Rickabaugh TM, Damoiseaux R, Gomperts BN. High-Throughput Drug Screening Identifies a Potent Wnt Inhibitor that Promotes Airway Basal Stem Cell Homeostasis. Cell Rep 2020; 30:2055-2064.e5. [PMID: 32075752 PMCID: PMC7050206 DOI: 10.1016/j.celrep.2020.01.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/14/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanisms underpinning airway epithelial homeostatic maintenance and ways to prevent its dysregulation remain elusive. Herein, we identify that β-catenin phosphorylated at Y489 (p-β-cateninY489) emerges during human squamous lung cancer progression. This led us to develop a model of airway basal stem cell (ABSC) hyperproliferation by driving Wnt/β-catenin signaling, resulting in a morphology that resembles premalignant lesions and loss of ciliated cell differentiation. To identify small molecules that could reverse this process, we performed a high-throughput drug screen for inhibitors of Wnt/β-catenin signaling. Our studies unveil Wnt inhibitor compound 1 (WIC1), which suppresses T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) activity, reduces ABSC proliferation, induces ciliated cell differentiation, and decreases nuclear p-β-cateninY489. Collectively, our work elucidates a dysregulated Wnt/p-β-cateninY489 axis in lung premalignancy that can be modeled in vitro and identifies a Wnt/β-catenin inhibitor that promotes airway homeostasis. WIC1 may therefore serve as a tool compound in regenerative medicine studies with implications for restoring normal airway homeostasis after injury.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Bharti Bisht
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Luisa K Meneses
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Preethi Vijayaraj
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Jenna M Sandlin
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Bryan France
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Jonathan A Tse
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Michelle W Chen
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - David W Shia
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Tammy M Rickabaugh
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Robert Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; UCLA Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Brigitte N Gomperts
- UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Ruiz García S, Deprez M, Lebrigand K, Cavard A, Paquet A, Arguel MJ, Magnone V, Truchi M, Caballero I, Leroy S, Marquette CH, Marcet B, Barbry P, Zaragosi LE. Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development 2019; 146:dev.177428. [PMID: 31558434 PMCID: PMC6826037 DOI: 10.1242/dev.177428] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
The upper airway epithelium, which is mainly composed of multiciliated, goblet, club and basal cells, ensures proper mucociliary function and can regenerate in response to assaults. In chronic airway diseases, defective repair leads to tissue remodeling. Delineating key drivers of differentiation dynamics can help understand how normal or pathological regeneration occurs. Using single-cell transcriptomics and lineage inference, we have unraveled trajectories from basal to luminal cells, providing novel markers for specific populations. We report that: (1) a precursor subgroup of multiciliated cells, which we have entitled deuterosomal cells, is defined by specific markers, such as DEUP1, FOXN4, YPEL1, HES6 and CDC20B; (2) goblet cells can be precursors of multiciliated cells, thus explaining the presence of hybrid cells that co-express markers of goblet and multiciliated cells; and (3) a repertoire of molecules involved in the regeneration process, such as keratins or components of the Notch, Wnt or BMP/TGFβ pathways, can be identified. Confirmation of our results on fresh human and pig airway samples, and on mouse tracheal cells, extend and confirm our conclusions regarding the molecular and cellular choreography at work during mucociliary epithelial differentiation.
Collapse
Affiliation(s)
| | - Marie Deprez
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Amélie Cavard
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Agnès Paquet
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | | | - Virginie Magnone
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Marin Truchi
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | | | - Sylvie Leroy
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France.,Université Côte d'Azur, CHU de Nice, Pulmonology Department, Nice 06000, France
| | | | - Brice Marcet
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | | |
Collapse
|
26
|
Haas M, Gómez Vázquez JL, Sun DI, Tran HT, Brislinger M, Tasca A, Shomroni O, Vleminckx K, Walentek P. ΔN-Tp63 Mediates Wnt/β-Catenin-Induced Inhibition of Differentiation in Basal Stem Cells of Mucociliary Epithelia. Cell Rep 2019; 28:3338-3352.e6. [PMID: 31553905 PMCID: PMC6935018 DOI: 10.1016/j.celrep.2019.08.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Mucociliary epithelia provide a first line of defense against pathogens. Impaired regeneration and remodeling of mucociliary epithelia are associated with dysregulated Wnt/β-catenin signaling in chronic airway diseases, but underlying mechanisms remain elusive, and studies yield seemingly contradicting results. Employing the Xenopus mucociliary epidermis, the mouse airway, and human airway Basal cells, we characterize the evolutionarily conserved roles of Wnt/β-catenin signaling in vertebrates. In multiciliated cells, Wnt is required for cilia formation during differentiation. In Basal cells, Wnt prevents specification of epithelial cell types by activating ΔN-TP63, a master transcription factor, which is necessary and sufficient to mediate the Wnt-induced inhibition of specification and is required to retain Basal cells during development. Chronic Wnt activation leads to remodeling and Basal cell hyperplasia, which are reversible in vivo and in vitro, suggesting Wnt inhibition as a treatment option in chronic lung diseases. Our work provides important insights into mucociliary signaling, development, and disease.
Collapse
Affiliation(s)
- Maximilian Haas
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - José Luis Gómez Vázquez
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Dingyuan Iris Sun
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, USA
| | - Hong Thi Tran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Magdalena Brislinger
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Alexia Tasca
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Orr Shomroni
- Transcriptome and Genome Core Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Peter Walentek
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany; Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, USA; CIBSS - Centre for Integrative Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
27
|
Schwartz CM, Stack J, Hill CL, Lallier SW, Chiang T, Johnson J, Reynolds SD. Electrospun scaffolds limit the regenerative potential of the airway epithelium. Laryngoscope Investig Otolaryngol 2019; 4:446-454. [PMID: 31453356 PMCID: PMC6703117 DOI: 10.1002/lio2.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 01/28/2023] Open
Abstract
Objective Significant morbidity and mortality are associated with clinical use of synthetic tissue‐engineered tracheal grafts (TETG). Our previous work focused on an electrospun polyethylene terephthalate and polyurethane (PET/PU) TETG that was tested in sheep using a long‐segment tracheal defect model. We reported that graft stenosis and limited epithelialization contributed to graft failure. The present study determined if the epithelialization defect could be attributed to: 1) postsurgical depletion of native airway basal stem/progenitor cells; 2) an inability of the PET/PU‐TETG to support epithelial migration; or 3) compromised basal stem/progenitor cell proliferation within the PET/PU environment. Study Design Experimental. Methods Basal stem/progenitor cell frequency in sheep that underwent TETG implantation was determined using the clone‐forming cell frequency (CFCF) method. A novel migration model that mimics epithelial migration toward an acellular scaffold was developed and used to compare epithelial migration toward a control polyester scaffold and the PET/PU scaffold. Basal stem/progenitor cell proliferation within the PET/PU scaffold was evaluated using the CFCF assay, doubling‐time analysis, and mitotic cell quantification. Results We report that TETG implantation did not decrease basal stem/progenitor cell frequency. In contrast, we find that epithelial migration toward the PET/PU scaffold was significantly less extensive than migration toward a polyester scaffold and that the PET/PU scaffold did not support basal stem/progenitor cell proliferation. Conclusions We conclude that epithelialization of a PET/PU scaffold is compromised by poor migration of native tissue‐derived epithelial cells and by a lack of basal stem/progenitor cell proliferation within the scaffold. Level of Evidence NA
Collapse
Affiliation(s)
| | - Jacob Stack
- Center for Perinatal Research Nationwide Children's Hospital Columbus Ohio U.S.A
| | - Cynthia L Hill
- Center for Perinatal Research Nationwide Children's Hospital Columbus Ohio U.S.A
| | - Scott W Lallier
- Center for Perinatal Research Nationwide Children's Hospital Columbus Ohio U.S.A
| | - Tendy Chiang
- College of Medicine The Ohio State University Columbus Ohio U.S.A.,Center for Regenerative Medicine Nationwide Children's Hospital Columbus Ohio U.S.A.,Department of Otolaryngology Nationwide Children's Hospital Columbus Ohio U.S.A
| | | | - Susan D Reynolds
- Center for Perinatal Research Nationwide Children's Hospital Columbus Ohio U.S.A
| |
Collapse
|
28
|
Hayes D, Kopp BT, Hill CL, Lallier SW, Schwartz CM, Tadesse M, Alsudayri A, Reynolds SD. Cell Therapy for Cystic Fibrosis Lung Disease: Regenerative Basal Cell Amplification. Stem Cells Transl Med 2018; 8:225-235. [PMID: 30506964 PMCID: PMC6392379 DOI: 10.1002/sctm.18-0098] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
The human airway epithelium is regenerated by basal cells. Thus, basal cell therapy has the potential to cure cystic fibrosis (CF) lung disease. We previously reported that the human basal cells repopulated the mouse airway epithelium after transplantation, and we estimated that 60 million cells would be needed to treat a human patient. To further develop cell therapy, we compared the proliferation potential of non‐CF and CF tissue‐derived bronchial basal cells. Three methods were used: regenerative cell frequency, burst size, and cell division frequency. Second, we used a serial passage strategy to determine if CF basal cells could be amplified to the estimated therapeutic dose. These studies evaluated that tissue‐derived bronchial basal cells and the basal cells that were recovered by brushing bronchial airways or the nasal respiratory epithelium. Finally, we used the limiting dilution method to isolate non‐CF and CF basal cell clones. The proliferation assays and the air‐liquid‐interface differentiation method were used to determine if cell amplification altered the proliferation and/or differentiation potential of clonal isolates. We demonstrate that: (a) non‐CF and CF basal cell proliferation is similar, (b) CF basal cells can be amplified to a therapeutic cell dose, and (c) amplified non‐CF and CF basal cell clones differentiate normally. Despite these encouraging findings, we also find that the cell amplification process depletes the regenerative basal cell pool. Analysis of basal cell clones indicates that serial passage selects for long‐lived basal cells and raise the possibility that prospective isolation of these stem‐like cells will improve the efficacy of cell replacement therapy. stem cells translational medicine2019;8:225&235
Collapse
Affiliation(s)
- Don Hayes
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.,Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin T Kopp
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cynthia L Hill
- Centers for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Scott W Lallier
- Centers for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | - Mahelet Tadesse
- Centers for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alfahdah Alsudayri
- Centers for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Susan D Reynolds
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Centers for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|