1
|
Ji Y, McLean JL, Xu R. Emerging Human Pluripotent Stem Cell-Based Human-Animal Brain Chimeras for Advancing Disease Modeling and Cell Therapy for Neurological Disorders. Neurosci Bull 2024; 40:1315-1332. [PMID: 38466557 PMCID: PMC11365908 DOI: 10.1007/s12264-024-01189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024] Open
Abstract
Human pluripotent stem cell (hPSC) models provide unprecedented opportunities to study human neurological disorders by recapitulating human-specific disease mechanisms. In particular, hPSC-based human-animal brain chimeras enable the study of human cell pathophysiology in vivo. In chimeric brains, human neural and immune cells can maintain human-specific features, undergo maturation, and functionally integrate into host brains, allowing scientists to study how human cells impact neural circuits and animal behaviors. The emerging human-animal brain chimeras hold promise for modeling human brain cells and their interactions in health and disease, elucidating the disease mechanism from molecular and cellular to circuit and behavioral levels, and testing the efficacy of cell therapy interventions. Here, we discuss recent advances in the generation and applications of using human-animal chimeric brain models for the study of neurological disorders, including disease modeling and cell therapy.
Collapse
Affiliation(s)
- Yanru Ji
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jenna Lillie McLean
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjie Xu
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Ahmadzada B, Felgendreff P, Minshew AM, Amiot BP, Nyberg SL. Producing Human Livers From Human Stem Cells Via Blastocyst Complementation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100537. [PMID: 38854436 PMCID: PMC11160964 DOI: 10.1016/j.cobme.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The need for organ transplants exceeds donor organ availability. In the quest to solve this shortage, the most remarkable area of advancement is organ production through the use of chimeric embryos, commonly known as blastocyst complementation. This technique involves the combination of different species to generate chimeras, where the extent of donor cell contribution to the desired tissue or organ can be regulated. However, ethical concerns arise with the use of brain tissue in such chimeras. Furthermore, the ratio of contributed cells to host animal cells in the chimeric system is low in the production of chimeras associated with cell apoptosis. This review discusses the latest innovations in blastocyst complementation and highlights the progress made in creating organs for transplant.
Collapse
Affiliation(s)
- Boyukkhanim Ahmadzada
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Philipp Felgendreff
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Anna M Minshew
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bruce P Amiot
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Scott L Nyberg
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Yang Y, Ma B, Chen J, Liu D, Ma J, Li B, Hao J, Zhou X. Epigenetic regulation and factors that influence the effect of iPSCs-derived neural stem/progenitor cells (NS/PCs) in the treatment of spinal cord injury. Clin Epigenetics 2024; 16:30. [PMID: 38383473 PMCID: PMC10880347 DOI: 10.1186/s13148-024-01639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder that causes neurological impairment and disability. Neural stem/progenitor cells (NS/PCs) derived from induced pluripotent stem cells (iPSCs) represent a promising cell therapy strategy for spinal cord regeneration and repair. However, iPSC-derived NS/PCs face many challenges and issues in SCI therapy; one of the most significant challenges is epigenetic regulation and that factors that influence this mechanism. Epigenetics refers to the regulation of gene expression and function by DNA methylation, histone modification, and chromatin structure without changing the DNA sequence. Previous research has shown that epigenetics plays a crucial role in the generation, differentiation, and transplantation of iPSCs, and can influence the quality, safety, and outcome of transplanted cells. In this study, we review the effects of epigenetic regulation and various influencing factors on the role of iPSC-derived NS/PCs in SCI therapy at multiple levels, including epigenetic reprogramming, regulation, and the adaptation of iPSCs during generation, differentiation, and transplantation, as well as the impact of other therapeutic tools (e.g., drugs, electrical stimulation, and scaffolds) on the epigenetic status of transplanted cells. We summarize our main findings and insights in this field and identify future challenges and directions that need to be addressed and explored.
Collapse
Affiliation(s)
- Yubiao Yang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Derong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
4
|
Roman A, Huntemer-Silveira A, Waldron MA, Khalid Z, Blake J, Parr AM, Low WC. Cell Transplantation for Repair of the Spinal Cord and Prospects for Generating Region-Specific Exogenic Neuronal Cells. Cell Transplant 2024; 33:9636897241241998. [PMID: 38590295 PMCID: PMC11005494 DOI: 10.1177/09636897241241998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Spinal cord injury (SCI) is associated with currently irreversible consequences in several functional components of the central nervous system. Despite the severity of injury, there remains no approved treatment to restore function. However, with a growing number of preclinical studies and clinical trials, cell transplantation has gained significant potential as a treatment for SCI. Researchers have identified several cell types as potential candidates for transplantation. To optimize successful functional outcomes after transplantation, one key factor concerns generating neuronal cells with regional and subtype specificity, thus calling on the developmental transcriptome patterning of spinal cord cells. A potential source of spinal cord cells for transplantation is the generation of exogenic neuronal progenitor cells via the emerging technologies of gene editing and blastocyst complementation. This review highlights the use of cell transplantation to treat SCI in the context of relevant developmental gene expression patterns useful for producing regionally specific exogenic spinal cells via in vitro differentiation and blastocyst complementation.
Collapse
Affiliation(s)
- Alex Roman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Anne Huntemer-Silveira
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Madison A. Waldron
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Zainab Khalid
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey Blake
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ann M. Parr
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Human-Animal Chimeras: New Solution for Organ Xenotransplantation or Ethical and Metaphysical Dilemma? J Craniofac Surg 2023; 34:3-8. [PMID: 35949027 DOI: 10.1097/scs.0000000000008885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
6
|
Krzisch MA, Wu H, Yuan B, Whitfield TW, Liu XS, Fu D, Garrett-Engele CM, Khalil AS, Lungjangwa T, Shih J, Chang AN, Warren S, Cacace A, Andrykovich KR, Rietjens RGJ, Wallace O, Sur M, Jain B, Jaenisch R. Fragile X Syndrome Patient-Derived Neurons Developing in the Mouse Brain Show FMR1-Dependent Phenotypes. Biol Psychiatry 2023; 93:71-81. [PMID: 36372569 DOI: 10.1016/j.biopsych.2022.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Fragile X syndrome (FXS) is characterized by physical abnormalities, anxiety, intellectual disability, hyperactivity, autistic behaviors, and seizures. Abnormal neuronal development in FXS is poorly understood. Data on patients with FXS remain scarce, and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. METHODS To mimic human neuron development in vivo, we coinjected neural precursor cells derived from FXS patient-derived induced pluripotent stem cells and neural precursor cells derived from corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. RESULTS The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Immunofluorescence and single and bulk RNA sequencing analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, we found increased percentages of Arc- and Egr-1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons. CONCLUSIONS This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3-dimensional context.
Collapse
Affiliation(s)
- Marine A Krzisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.
| | - Hao Wu
- Full Circles Therapeutics, Inc., Cambridge, Massachusetts
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Troy W Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - X Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York
| | - Dongdong Fu
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | | | - Andrew S Khalil
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Tenzin Lungjangwa
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Jennifer Shih
- Picower Institute for Learning and Memory, Cambridge, Massachusetts
| | | | - Stephen Warren
- Departments of Human Genetics, Biochemistry, and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | | - Mriganka Sur
- Picower Institute for Learning and Memory, Cambridge, Massachusetts
| | - Bhav Jain
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
7
|
Brown JL, Voth JP, Person K, Low WC. A Technological and Regulatory Review on Human-Animal Chimera Research: The Current Landscape of Biology, Law, and Public Opinion. Cell Transplant 2023; 32:9636897231183112. [PMID: 37599386 PMCID: PMC10467371 DOI: 10.1177/09636897231183112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 08/22/2023] Open
Abstract
Organ transplantation is a highly utilized treatment for many medical conditions, yet the number of patients waiting for organs far exceeds the number available. The challenges and limitations currently associated with organ transplantation and technological advances in gene editing techniques have led scientists to pursue alternate solutions to the donor organ shortage. Growing human organs in animals and harvesting those organs for transplantation into humans is one such solution. These chimeric animals usually have certain genes necessary for a specific organ's development inhibited at an early developmental stage, followed by the addition of cultured pluripotent human cells to fill that developmental niche. The result is a chimeric animal that contains human organs which are available for transplant into a patient, circumventing some of the limitations currently involved in donor organ transplantation. In this review, we will discuss both the current scientific and legal landscape of human-animal chimera (HAC) research. We present an overview of the technological advances that allow for the creation of HACs, the patents that currently exist on these methods, as well as current public attitude and understanding that can influence HAC research policy. We complement our scientific and public attitude discussion with a regulatory overview of chimera research at both the national and state level, while also contrasting current U.S. legislation with regulations in other countries. Overall, we provide a comprehensive analysis of the legal and scientific barriers to conducting research on HACs for the generation of transplantable human organs, as well as provide recommendations for the future.
Collapse
Affiliation(s)
- Jennifer L. Brown
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Law School, University of Minnesota, Minneapolis, MN, USA
| | - Joseph P. Voth
- Department of Neuroscience, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Kennedy Person
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Johnston J, Hyun I, Neuhaus CP, Maschke KJ, Marshall P, Craig KP, Matthews MM, Drolet K, Greely HT, Hill LR, Hinterberger A, Hurley EA, Kesterson R, Kimmelman J, King NMP, Lopes MJ, O’Rourke PP, Parent B, Peckman S, Piotrowska M, Schwarz M, Sebo J, Stodgell C, Streiffer R, Wilkerson A. Clarifying the Ethics and Oversight of Chimeric Research. Hastings Cent Rep 2022; 52 Suppl 2:S2-S23. [PMID: 36484509 PMCID: PMC9911087 DOI: 10.1002/hast.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article is the lead piece in a special report that presents the results of a bioethical investigation into chimeric research, which involves the insertion of human cells into nonhuman animals and nonhuman animal embryos, including into their brains. Rapid scientific developments in this field may advance knowledge and could lead to new therapies for humans. They also reveal the conceptual, ethical, and procedural limitations of existing ethics guidance for human-nonhuman chimeric research. Led by bioethics researchers working closely with an interdisciplinary work group, the investigation focused on generating conceptual clarity and identifying improvements to governance approaches, with the goal of helping scholars, funders, scientists, institutional leaders, and oversight bodies (embryonic stem cell research oversight [ESCRO] committees and institutional animal care and use committees [IACUCs]) deliver principled and trustworthy oversight of this area of science. The article, which focuses on human-nonhuman animal chimeric research that is stem cell based, identifies key ethical issues in and offers ten recommendations regarding the ethics and oversight of this research. Turning from bioethics' previous focus on human-centered questions about the ethics of "humanization" and this research's potential impact on concepts like human dignity, this article emphasizes the importance of nonhuman animal welfare concerns in chimeric research and argues for less-siloed governance and oversight and more-comprehensive public communication.
Collapse
|
9
|
From genome editing to blastocyst complementation: a new horizon in heart transplantation? JTCVS Tech 2022; 12:177-184. [PMID: 35403039 PMCID: PMC8987386 DOI: 10.1016/j.xjtc.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
|
10
|
Strell P, Shetty A, Steer CJ, Low WC. Interspecies Chimeric Barriers for Generating Exogenic Organs and Cells for Transplantation. Cell Transplant 2022; 31:9636897221110525. [PMID: 36173102 PMCID: PMC9527994 DOI: 10.1177/09636897221110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A growing need for organs and novel cell-based therapies has provided a niche for approaches like interspecies chimeras. To generate organs from one donor species in another host species requires techniques such as blastocyst complementation and gene editing to successfully create an embryo that has cells from both the donor and the host. However, the task of developing highly efficacious and competent interspecies chimeras is met by many challenges. These interspecies chimeric barriers impede the formation of chimeras, often leading to lower levels of chimeric competency. The barriers that need to be addressed include the evolutionary distance between species, stage-matching, temporal and spatial synchronization of developmental timing, interspecies cell competition and the survival of pluripotent stem cells and embryos, compatibility of ligand–receptor signaling between species, and the ethical concerns of forming such models. By overcoming the interspecies chimera barriers and creating highly competent chimeras, the technology of organ and cellular generation can be honed and refined to develop fully functioning exogenic organs, tissues, and cells for transplantation.
Collapse
Affiliation(s)
- Phoebe Strell
- Comparative and Molecular Bioscience Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Anala Shetty
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Clifford J Steer
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Department of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Department of Genetics, Cell Biology and Genetics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Walter C Low
- Comparative and Molecular Bioscience Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Department of Neurosurgery, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
11
|
Savatier P, Aksoy I. [Interspecies systemic chimeras]. Med Sci (Paris) 2021; 37:863-872. [PMID: 34647874 DOI: 10.1051/medsci/2021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inter-species chimeras are both fantastic and monstrous creatures from Greek or Egyptian mythology, and a long-established research tool. Recent advances in the field of pluripotent stem cells have made it possible to extend the repertoire of inter-species chimeras to "systemic" chimeras, in which the mixing of cells from both species involves all organs including the germline. These chimeric embryos and fetuses open up new research avenues and potential medical applications. We will review the latest advances in the field. We will discuss the concepts of developmental complementation and developmental equivalence. We will discuss the methodological hurdles to be unlocked, as well as the biological and ethical limits of these new technologies.
Collapse
Affiliation(s)
- Pierre Savatier
- Université Lyon 1, unité Inserm 1208, Cellules souches et cerveau (Stem Cell and Brain Research Institute, SBRI), 18 avenue Doyen Lépine, 69500 Bron, France
| | - Irène Aksoy
- Université Lyon 1, unité Inserm 1208, Cellules souches et cerveau (Stem Cell and Brain Research Institute, SBRI), 18 avenue Doyen Lépine, 69500 Bron, France
| |
Collapse
|
12
|
Savatier P, David L, De Vos J, Yates F, Tajbakhsh S, Martinat C. [Chimeric embryos and pseudo-embryos: An alternative to human embryos for research]. Med Sci (Paris) 2021; 37:799-801. [PMID: 34491191 DOI: 10.1051/medsci/2021124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study of human development is essential to further our knowledge and to improve our therapeutic strategies in the fields of reproductive and regenerative medicine. Given the limited access to supernumerary embryos and the prohibition on creating new ones for research, two alternative strategies can be proposed to study human embryonic development. The first is to create pseudo-embryos or blastoids. The second is to create human/animal chimeric embryos by injecting pluripotent stem cells, ES or iPS, into animal embryos. We explain herein the importance of these new experimental paradigms for studying human development and their complementarity.
Collapse
Affiliation(s)
- Pierre Savatier
- Univ Lyon, Université Lyon 1, Inserm, Institut Cellule Souche et Cerveau (Stem-Cell and Brain Research Institute), U1208, 18 avenue Doyen Lépine, F-69500 Bron, France - Membres actifs élus au conseil d'administration de la société française de recherche sur les cellules souches (FSSCR)
| | - Laurent David
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, CRTI, Inserm UMR1064, F-44000 Nantes, France - Membres actifs élus au conseil d'administration de la société française de recherche sur les cellules souches (FSSCR)
| | - John De Vos
- IRMB (Institute for Regenerative Medicine and Biotherapy), Univ Montpellier, Inserm, CHU de Montpellier, 191 avenue du Doyen Gaston Giraud, 34295 Montpellier, France - Membres actifs élus au conseil d'administration de la société française de recherche sur les cellules souches (FSSCR)
| | - Frank Yates
- CellTechs Laboratory, Sup'Biotech, 94800 Villejuif, France - Membres actifs élus au conseil d'administration de la société française de recherche sur les cellules souches (FSSCR)
| | - Shahragim Tajbakhsh
- Laboratoire Cellules souches et développement, CNRS UM33728, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France - Membres actifs élus au conseil d'administration de la société française de recherche sur les cellules souches (FSSCR)
| | - Cécile Martinat
- Inserm, UEVE (Université Évry Val d'Essonne), UMR 861, I-STEM (Institut des cellules souches pour le traitement et l'étude des maladies monogéniques), 91100 Corbeil-Essonnes, France - Membres actifs élus au conseil d'administration de la société française de recherche sur les cellules souches (FSSCR)
| |
Collapse
|
13
|
Nolta JA. The age of immunotherapy-Celebrating STEM CELLS' contribution to understanding mechanisms of immune system development and modulation. Stem Cells 2020; 38:4-5. [PMID: 31851396 DOI: 10.1002/stem.3137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Jan A Nolta
- Stem Cell Program, Sacramento, University of California Davis Health System, Sacramento, CA, 95820
| |
Collapse
|
14
|
Crane AT, Shen FX, Brown JL, Cormack W, Ruiz-Estevez M, Voth JP, Sawai T, Hatta T, Fujita M, Low WC. The American Public Is Ready to Accept Human-Animal Chimera Research. Stem Cell Reports 2020; 15:804-810. [PMID: 33007202 PMCID: PMC7562947 DOI: 10.1016/j.stemcr.2020.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/02/2023] Open
Abstract
We report findings from a new survey of US public attitudes toward human-animal chimeric embryo (HACE) research, designed to compare with recently reported Japanese survey data. We find that 59% of the US public can personally accept the process of injecting human induced pluripotent stem cells into genetically modified swine embryos and having human tissues produced in a pig's body transplanted into a human. This is greater acceptance than in Japan, and there is even strong acceptance among those with strong religious affiliations and who self-identify as conservatives. We argue that strong public support for HACE research, as well as the emerging literature suggesting that humanization of research animals is very unlikely, should compel the NIH to lift its current moratorium on HACE research.
Collapse
Affiliation(s)
- Andrew T. Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA,Corresponding author
| | - Francis X. Shen
- University of Minnesota Law School, Minneapolis, MN, USA,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA,Massachusetts General Hospital, Center for Law, Brain, and Behavior, Boston, MA, USA,Corresponding author
| | - Jennifer L. Brown
- University of Minnesota Law School, Minneapolis, MN, USA,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Warren Cormack
- University of Minnesota Law School, Minneapolis, MN, USA
| | | | - Joseph P. Voth
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Tsutomu Sawai
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), KUIAS Kyoto University, Kyoto, Japan,Uehiro Research Division for iPS Cell Ethics, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Taichi Hatta
- Uehiro Research Division for iPS Cell Ethics, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Misao Fujita
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), KUIAS Kyoto University, Kyoto, Japan,Uehiro Research Division for iPS Cell Ethics, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Crane AT, Aravalli RN, Asakura A, Grande AW, Krishna VD, Carlson DF, Cheeran MCJ, Danczyk G, Dutton JR, Hackett PB, Hu WS, Li L, Lu WC, Miller ZD, O'Brien TD, Panoskaltsis-Mortari A, Parr AM, Pearce C, Ruiz-Estevez M, Shiao M, Sipe CJ, Toman NG, Voth J, Xie H, Steer CJ, Low WC. Interspecies Organogenesis for Human Transplantation. Cell Transplant 2019; 28:1091-1105. [PMID: 31426664 PMCID: PMC6767879 DOI: 10.1177/0963689719845351] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Blastocyst complementation combined with gene editing is an emerging approach in the
field of regenerative medicine that could potentially solve the worldwide problem of organ
shortages for transplantation. In theory, blastocyst complementation can generate fully
functional human organs or tissues, grown within genetically engineered livestock animals.
Targeted deletion of a specific gene(s) using gene editing to cause deficiencies in organ
development can open a niche for human stem cells to occupy, thus generating human
tissues. Within this review, we will focus on the pancreas, liver, heart, kidney, lung,
and skeletal muscle, as well as cells of the immune and nervous systems. Within each of
these organ systems, we identify and discuss (i) the common causes of organ failure; (ii)
the current state of regenerative therapies; and (iii) the candidate genes to knockout and
enable specific exogenous organ development via the use of blastocyst complementation. We
also highlight some of the current barriers limiting the success of blastocyst
complementation.
Collapse
Affiliation(s)
- Andrew T Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Andrew W Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | | | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, USA
| | - Georgette Danczyk
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Perry B Hackett
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, USA
| | - Wei-Cheng Lu
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Zachary D Miller
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Timothy D O'Brien
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, USA
| | | | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - Clairice Pearce
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | - Maple Shiao
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | - Nikolas G Toman
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Joseph Voth
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Hui Xie
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Clifford J Steer
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA.,Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
16
|
Koplin J, Wilkinson D. Moral uncertainty and the farming of human-pig chimeras. JOURNAL OF MEDICAL ETHICS 2019; 45:440-446. [PMID: 31256005 PMCID: PMC6691869 DOI: 10.1136/medethics-2018-105227] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
It may soon be possible to generate human organs inside of human-pig chimeras via a process called interspecies blastocyst complementation. This paper discusses what arguably the central ethical concern is raised by this potential source of transplantable organs: that farming human-pig chimeras for their organs risks perpetrating a serious moral wrong because the moral status of human-pig chimeras is uncertain, and potentially significant. Those who raise this concern usually take it to be unique to the creation of chimeric animals with 'humanised' brains. In this paper, we show how that the same style of argument can be used to critique current uses of non-chimeric pigs in agriculture. This reveals an important tension between two common moral views: that farming human-pig chimeras for their organs is ethically concerning, and that farming non-chimeric pigs for food or research is ethically benign. At least one of these views stands in need of revision.
Collapse
Affiliation(s)
- Julian Koplin
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- University of Melbourne Law School, Carlton, Victoria, Australia
| | - Dominic Wilkinson
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, UK
- John Radcliffe Hospital, Oxford, UK
| |
Collapse
|