1
|
Norfleet DA, Melendez AJ, Alting C, Kannan S, Nikitina AA, Caldeira Botelho R, Yang B, Kemp ML. Identification of Distinct, Quantitative Pattern Classes from Emergent Tissue-Scale hiPSC Bioelectric Properties. Cells 2024; 13:1136. [PMID: 38994988 PMCID: PMC11240333 DOI: 10.3390/cells13131136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Bioelectric signals possess the ability to robustly control and manipulate patterning during embryogenesis and tissue-level regeneration. Endogenous local and global electric fields function as a spatial 'pre-pattern', controlling cell fates and tissue-scale anatomical boundaries; however, the mechanisms facilitating these robust multiscale outcomes are poorly characterized. Computational modeling addresses the need to predict in vitro patterning behavior and further elucidate the roles of cellular bioelectric signaling components in patterning outcomes. Here, we modified a previously designed image pattern recognition algorithm to distinguish unique spatial features of simulated non-excitable bioelectric patterns under distinct cell culture conditions. This algorithm was applied to comparisons between simulated patterns and experimental microscopy images of membrane potential (Vmem) across cultured human iPSC colonies. Furthermore, we extended the prediction to a novel co-culture condition in which cell sub-populations possessing different ionic fluxes were simulated; the defining spatial features were recapitulated in vitro with genetically modified colonies. These results collectively inform strategies for modeling multiscale spatial characteristics that emerge in multicellular systems, characterizing the molecular contributions to heterogeneity of membrane potential in non-excitable cells, and enabling downstream engineered bioelectrical tissue design.
Collapse
Affiliation(s)
- Dennis Andre Norfleet
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Anja J Melendez
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Caroline Alting
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Siya Kannan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Arina A Nikitina
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 931016, USA
| | - Raquel Caldeira Botelho
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Bo Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Sun YH, Kao HKJ, Thai PN, Smithers R, Chang CW, Pretto D, Yechikov S, Oppenheimer S, Bedolla A, Chalker BA, Ghobashy R, Nolta JA, Chan JW, Chiamvimonvat N, Lieu DK. The sinoatrial node extracellular matrix promotes pacemaker phenotype and protects automaticity in engineered heart tissues from cyclic strain. Cell Rep 2023; 42:113505. [PMID: 38041810 PMCID: PMC10790625 DOI: 10.1016/j.celrep.2023.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
The composite material-like extracellular matrix (ECM) in the sinoatrial node (SAN) supports the native pacemaking cardiomyocytes (PCMs). To test the roles of SAN ECM in the PCM phenotype and function, we engineered reconstructed-SAN heart tissues (rSANHTs) by recellularizing porcine SAN ECMs with hiPSC-derived PCMs. The hiPSC-PCMs in rSANHTs self-organized into clusters resembling the native SAN and displayed higher expression of pacemaker-specific genes and a faster automaticity compared with PCMs in reconstructed-left ventricular heart tissues (rLVHTs). To test the protective nature of SAN ECMs under strain, rSANHTs and rLVHTs were transplanted onto the murine thoracic diaphragm to undergo constant cyclic strain. All strained-rSANHTs preserved automaticity, whereas 66% of strained-rLVHTs lost their automaticity. In contrast to the strained-rLVHTs, PCMs in strained-rSANHTs maintained high expression of key pacemaker genes (HCN4, TBX3, and TBX18). These findings highlight the promotive and protective roles of the composite SAN ECM and provide valuable insights for pacemaking tissue engineering.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Hillary K J Kao
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Regan Smithers
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Che-Wei Chang
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Dalyir Pretto
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Sergey Yechikov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Sarah Oppenheimer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA; Bridges to Stem Cell Research Program, California State University, Sacramento, Sacramento, CA 95817, USA
| | - Amanda Bedolla
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA; Bridges to Stem Cell Research Program, California State University, Sacramento, Sacramento, CA 95817, USA
| | - Brooke A Chalker
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA; Bridges to Stem Cell Research Program, Cal Poly Humboldt, Humboldt, CA 95521, USA
| | - Rana Ghobashy
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA; Bridges to Stem Cell Research Program, California State University, Sacramento, Sacramento, CA 95817, USA
| | - Jan A Nolta
- Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Deborah K Lieu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
3
|
Humphreys PEA, Woods S, Bates N, Rooney KM, Mancini FE, Barclay C, O'Flaherty J, Martial FP, Domingos MAN, Kimber SJ. Optogenetic manipulation of BMP signaling to drive chondrogenic differentiation of hPSCs. Cell Rep 2023; 42:113502. [PMID: 38032796 DOI: 10.1016/j.celrep.2023.113502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Optogenetics is a rapidly advancing technology combining photochemical, optical, and synthetic biology to control cellular behavior. Together, sensitive light-responsive optogenetic tools and human pluripotent stem cell differentiation models have the potential to fine-tune differentiation and unpick the processes by which cell specification and tissue patterning are controlled by morphogens. We used an optogenetic bone morphogenetic protein (BMP) signaling system (optoBMP) to drive chondrogenic differentiation of human embryonic stem cells (hESCs). We engineered light-sensitive hESCs through CRISPR-Cas9-mediated integration of the optoBMP system into the AAVS1 locus. The activation of optoBMP with blue light, in lieu of BMP growth factors, resulted in the activation of BMP signaling mechanisms and upregulation of a chondrogenic phenotype, with significant transcriptional differences compared to cells in the dark. Furthermore, cells differentiated with light could form chondrogenic pellets consisting of a hyaline-like cartilaginous matrix. Our findings indicate the applicability of optogenetics for understanding human development and tissue engineering.
Collapse
Affiliation(s)
- Paul E A Humphreys
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Steven Woods
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nicola Bates
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kirsty M Rooney
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK; Department of Mechanical, Aerospace, and Civil Engineering, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cerys Barclay
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Julieta O'Flaherty
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Franck P Martial
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Marco A N Domingos
- Department of Mechanical, Aerospace, and Civil Engineering, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Susan J Kimber
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
4
|
Mollashahi B, Latifi-Navid H, Owliaee I, Shamdani S, Uzan G, Jamehdor S, Naserian S. Research and Therapeutic Approaches in Stem Cell Genome Editing by CRISPR Toolkit. Molecules 2023; 28:1982. [PMID: 36838970 PMCID: PMC9961668 DOI: 10.3390/molecules28041982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
The most widely used genome editing toolkit is CRISPR (clustered regularly interspaced short palindromic repeats). It provides the possibility of replacing and modifying DNA and RNA nucleotides. Furthermore, with advancements in biological technology, inhibition and activation of the transcription of specific gene(s) has become possible. Bioinformatics tools that target the evolution of CRISPR-associated protein 9 (Cas9) turn this protein into a vehicle that is specific for a DNA or RNA region with single guide RNA (sgRNA). This toolkit could be used by researchers to investigate the function of stem cell gene(s). Here, in this review article, we cover recent developments and applications of this technique in stem cells for research and clinical purposes and discuss different CRISPR/Cas technologies for knock-out, knock-in, activation, or inhibition of gene expression. Additionally, a comparison of several deliveries and off-target detecting strategies is discussed.
Collapse
Affiliation(s)
- Behrouz Mollashahi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Iman Owliaee
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamedan 6517838636, Iran
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamedan 6517838636, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
5
|
Stellon D, Talbot J, Hewitt AW, King AE, Cook AL. Seeing Neurodegeneration in a New Light Using Genetically Encoded Fluorescent Biosensors and iPSCs. Int J Mol Sci 2023; 24:1766. [PMID: 36675282 PMCID: PMC9861453 DOI: 10.3390/ijms24021766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
6
|
Blanch-Asensio A, Grandela C, Brandão KO, de Korte T, Mei H, Ariyurek Y, Yiangou L, Mol MP, van Meer BJ, Kloet SL, Mummery CL, Davis RP. STRAIGHT-IN enables high-throughput targeting of large DNA payloads in human pluripotent stem cells. CELL REPORTS METHODS 2022; 2:100300. [PMID: 36313798 PMCID: PMC9606106 DOI: 10.1016/j.crmeth.2022.100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 04/20/2023]
Abstract
Inserting large DNA payloads (>10 kb) into specific genomic sites of mammalian cells remains challenging. Applications ranging from synthetic biology to evaluating the pathogenicity of disease-associated variants for precision medicine initiatives would greatly benefit from tools that facilitate this process. Here, we merge the strengths of different classes of site-specific recombinases and combine these with CRISPR-Cas9-mediated homologous recombination to develop a strategy for stringent site-specific replacement of genomic fragments at least 50 kb in size in human induced pluripotent stem cells (hiPSCs). We demonstrate the versatility of STRAIGHT-IN (serine and tyrosine recombinase-assisted integration of genes for high-throughput investigation) by (1) inserting various combinations of fluorescent reporters into hiPSCs to assess the excitation-contraction coupling cascade in derivative cardiomyocytes and (2) simultaneously targeting multiple variants associated with inherited cardiac arrhythmic disorders into a pool of hiPSCs. STRAIGHT-IN offers a precise approach to generate genetically matched panels of hiPSC lines efficiently and cost effectively.
Collapse
Affiliation(s)
- Albert Blanch-Asensio
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Catarina Grandela
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Karina O. Brandão
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Tessa de Korte
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333RC Leiden, the Netherlands
| | - Yavuz Ariyurek
- Leiden Genome Technology Center, Leiden University Medical Center, 2333RC Leiden, the Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Mervyn P.H. Mol
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Berend J. van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Susan L. Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, 2333RC Leiden, the Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, 7500AE Enschede, the Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| |
Collapse
|
7
|
Zhang F, Meier AB, Poch CM, Tian Q, Engelhardt S, Sinnecker D, Lipp P, Laugwitz KL, Moretti A, Dorn T. High-throughput optical action potential recordings in hiPSC-derived cardiomyocytes with a genetically encoded voltage indicator in the AAVS1 locus. Front Cell Dev Biol 2022; 10:1038867. [PMID: 36274846 PMCID: PMC9585323 DOI: 10.3389/fcell.2022.1038867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) represent an excellent in vitro model in cardiovascular research. Changes in their action potential (AP) dynamics convey information that is essential for disease modeling, drug screening and toxicity evaluation. High-throughput optical AP recordings utilizing intramolecular Förster resonance energy transfer (FRET) of the voltage-sensitive fluorescent protein (VSFP) have emerged as a substitute or complement to the resource-intensive patch clamp technique. Here, we functionally validated our recently generated voltage indicator hiPSC lines stably expressing CAG-promoter-driven VSFP in the AAVS1 safe harbor locus. By combining subtype-specific cardiomyocyte differentiation protocols, we established optical AP recordings in ventricular, atrial, and nodal CMs in 2D monolayers using fluorescence microscopy. Moreover, we achieved high-throughput optical AP measurements in single hiPSC-derived CMs in a 3D context. Overall, this system greatly expands the spectrum of possibilities for high-throughput, non-invasive and long-term AP analyses in cardiovascular research and drug discovery.
Collapse
Affiliation(s)
- Fangfang Zhang
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Anna B. Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Christine M. Poch
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Qinghai Tian
- Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Daniel Sinnecker
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Peter Lipp
- Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- *Correspondence: Alessandra Moretti, ; Tatjana Dorn,
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- *Correspondence: Alessandra Moretti, ; Tatjana Dorn,
| |
Collapse
|
8
|
Ustyantseva E, Pavlova SV, Malakhova AA, Ustyantsev K, Zakian SM, Medvedev SP. Oxidative stress monitoring in iPSC-derived motor neurons using genetically encoded biosensors of H 2O 2. Sci Rep 2022; 12:8928. [PMID: 35624228 PMCID: PMC9142597 DOI: 10.1038/s41598-022-12807-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress plays an important role in the development of neurodegenerative diseases, being either the initiator or part of a pathological cascade that leads to the neuron’s death. Genetically encoded biosensors of oxidative stress demonstrated their general functionality and overall safety in various systems. However, there is still insufficient data regarding their use in the research of disease-related phenotypes in relevant model systems, such as human cells. Here, we establish an approach for monitoring the redox state of live motor neurons with SOD1 mutations associated with amyotrophic lateral sclerosis. Using CRISPR/Cas9, we insert genetically encoded biosensors of cytoplasmic and mitochondrial H2O2 in the genome of induced pluripotent stem cell (iPSC) lines. We demonstrate that the biosensors remain functional in motor neurons derived from these iPSCs and reflect the differences in the stationary redox state of the neurons with different genotypes. Moreover, we show that the biosensors respond to alterations in motor neuron oxidation caused by either environmental changes or cellular stress. Thus, the obtained platform is suitable for cell-based research of neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Elizaveta Ustyantseva
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Sophia V Pavlova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Lavrentiev Ave., 630090, Novosibirsk, Russia.,E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055, Novosibirsk, Russia
| | - Anastasia A Malakhova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Lavrentiev Ave., 630090, Novosibirsk, Russia.,E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055, Novosibirsk, Russia
| | - Kirill Ustyantsev
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia
| | - Suren M Zakian
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Lavrentiev Ave., 630090, Novosibirsk, Russia.,E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055, Novosibirsk, Russia
| | - Sergey P Medvedev
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090, Novosibirsk, Russia. .,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Lavrentiev Ave., 630090, Novosibirsk, Russia. .,E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055, Novosibirsk, Russia.
| |
Collapse
|
9
|
Yiangou L, Blanch-Asensio A, de Korte T, Miller DC, van Meer BJ, Mol MPH, van den Brink L, Brandão KO, Mummery CL, Davis RP. Optogenetic reporters delivered as mRNA facilitate repeatable action potential and calcium handling assessment in human iPSC-derived cardiomyocytes. Stem Cells 2022; 40:655-668. [PMID: 35429386 PMCID: PMC9332902 DOI: 10.1093/stmcls/sxac029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/05/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Electrical activity and intracellular Ca 2+ transients are key features of cardiomyocytes. They can be measured using organic voltage- and Ca 2+-sensitive dyes but their photostability and phototoxicity means they are unsuitable for long-term measurements. Here, we investigated whether genetically-encoded voltage and Ca 2+ indicators (GEVIs and GECIs) delivered as modified mRNA (modRNA) into human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be accurate alternatives allowing measurements over long periods. These indicators were detected in hiPSC-CMs for up to 7 days after transfection and did not affect responses to proarrhythmic compounds. Furthermore, using the GEVI ASAP2f we observed action potential prolongation in long QT syndrome models, while the GECI jRCaMP1b facilitated the repeated evaluation of Ca 2+ handling responses for various tyrosine kinase inhibitors. This study demonstrated that modRNAs encoding optogenetic constructs report cardiac physiology in hiPSC-CMs without toxicity or the need for stable integration, illustrating their value as alternatives to organic dyes or other gene delivery methods for expressing transgenes.
Collapse
Affiliation(s)
- Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Albert Blanch-Asensio
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Tessa de Korte
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Duncan C Miller
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
- Present Max Delbrück Center for Molecular Medicine (MDC), Berlin, Berlin, Germany
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Mervyn P H Mol
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Lettine van den Brink
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Karina O Brandão
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
10
|
Liu Z, Xu D, Fang J, Xia Q, Zhong W, Li H, Huang Z, Cao N, Liu X, Chen HJ, Hu N. Intracellular Recording of Cardiomyocytes by Integrated Electrical Signal Recording and Electrical Pulse Regulating System. Front Bioeng Biotechnol 2021; 9:799312. [PMID: 34976989 PMCID: PMC8714743 DOI: 10.3389/fbioe.2021.799312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
The electrophysiological signal can reflect the basic activity of cardiomyocytes, which is often used to study the working mechanism of heart. Intracellular recording is a powerful technique for studying transmembrane potential, proving a favorable strategy for electrophysiological research. To obtain high-quality and high-throughput intracellular electrical signals, an integrated electrical signal recording and electrical pulse regulating system based on nanopatterned microelectrode array (NPMEA) is developed in this work. Due to the large impedance of the electrode, a high-input impedance preamplifier is required. The high-frequency noise of the circuit and the baseline drift of the sensor are suppressed by a band-pass filter. After amplifying the signal, the data acquisition card (DAQ) is used to collect the signal. Meanwhile, the DAQ is utilized to generate pulses, achieving the electroporation of cells by NPMEA. Each channel uses a voltage follower to improve the pulse driving ability and isolates each electrode. The corresponding recording control software based on LabVIEW is developed to control the DAQ to collect, display and record electrical signals, and generate pulses. This integrated system can achieve high-throughput detection of intracellular electrical signals and provide a reliable recording tool for cell electro-physiological investigation.
Collapse
Affiliation(s)
- Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Qijian Xia
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Wenxi Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Zhanyun Huang
- Laboratory Teaching Center of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Nan Cao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingxing Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xingxing Liu, ; Hui-Jiuan Chen, ; Ning Hu, ,
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xingxing Liu, ; Hui-Jiuan Chen, ; Ning Hu, ,
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
- Laboratory Teaching Center of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Xingxing Liu, ; Hui-Jiuan Chen, ; Ning Hu, ,
| |
Collapse
|
11
|
Kabanov D, Klimovic S, Rotrekl V, Pesl M, Pribyl J. Atomic Force Spectroscopy is a promising tool to study contractile properties of cardiac cells. Micron 2021; 155:103199. [DOI: 10.1016/j.micron.2021.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
|
12
|
Ovechkina VS, Zakian SM, Medvedev SP, Valetdinova KR. Genetically Encoded Fluorescent Biosensors for Biomedical Applications. Biomedicines 2021; 9:biomedicines9111528. [PMID: 34829757 PMCID: PMC8615007 DOI: 10.3390/biomedicines9111528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
One of the challenges of modern biology and medicine is to visualize biomolecules in their natural environment, in real-time and in a non-invasive fashion, so as to gain insight into their physiological behavior and highlight alterations in pathological settings, which will enable to devise appropriate therapeutic strategies. Genetically encoded fluorescent biosensors constitute a class of imaging agents that enable visualization of biological processes and events directly in situ, preserving the native biological context and providing detailed insight into their localization and dynamics in cells. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically encoded fluorescent biosensors in drug screening. This review summarizes results of the studies that have been conducted in the last years toward the fabrication of genetically encoded fluorescent biosensors for biomedical applications with a comprehensive discussion on the challenges, future trends, and potential inputs needed for improving them.
Collapse
Affiliation(s)
- Vera S. Ovechkina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey P. Medvedev
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Kamila R. Valetdinova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
13
|
Stellon D, Tran MTN, Talbot J, Chear S, Khalid MKNM, Pébay A, Vickers JC, King AE, Hewitt AW, Cook AL. CRISPR/Cas-Mediated Knock-in of Genetically Encoded Fluorescent Biosensors into the AAVS1 Locus of Human-Induced Pluripotent Stem Cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2549:379-398. [PMID: 34505269 DOI: 10.1007/7651_2021_422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetically encoded fluorescent biosensors (GEFBs) enable researchers to visualize and quantify cellular processes in live cells. Induced pluripotent stem cells (iPSCs) can be genetically engineered to express GEFBs via integration into the Adeno-Associated Virus Integration Site 1 (AAVS1) safe harbor locus. This can be achieved using CRISPR/Cas ribonucleoprotein targeting to cause a double-strand break at the AAVS1 locus, which subsequently undergoes homology-directed repair (HDR) in the presence of a donor plasmid containing the GEFB sequence. We describe an optimized protocol for CRISPR/Cas-mediated knock-in of GEFBs into the AAVS1 locus of human iPSCs that allows puromycin selection and which exhibits negligible off-target editing. The resulting iPSC lines can be differentiated into cells of different lineages while retaining expression of the GEFB, enabling live-cell interrogation of cell pathway activities across a diversity of disease models.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia.
| | | | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Sueanne Chear
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | | | - Alice Pébay
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
14
|
Esser T, Trossmann V, Lentz S, Engel F, Scheibel T. Designing of spider silk proteins for human induced pluripotent stem cell-based cardiac tissue engineering. Mater Today Bio 2021; 11:100114. [PMID: 34169268 PMCID: PMC8209670 DOI: 10.1016/j.mtbio.2021.100114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 12/25/2022] Open
Abstract
Materials made of recombinant spider silk proteins are promising candidates for cardiac tissue engineering, and their suitability has so far been investigated utilizing primary rat cardiomyocytes. Herein, we expanded the tool box of available spider silk variants and demonstrated for the first time that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes attach, contract, and respond to pharmacological treatment using phenylephrine and verapamil on explicit spider silk films. The hiPSC-cardiomyocytes contracted for at least 14 days on films made of positively charged engineered Araneus diadematus fibroin 4 (eADF4(κ16)) and three different arginyl-glycyl-aspartic acid (RGD)-tagged spider silk variants (positively or negatively charged and uncharged). Notably, hiPSC-cardiomyocytes exhibited different morphologies depending on the spider silk variant used, with less spreading and being smaller on films made of eADF4(κ16) than on RGD-tagged spider silk films. These results indicate that spider silk engineering is a powerful tool to provide new materials suitable for hiPSC-based cardiac tissue engineering. hiPSC-cardiomyocytes attach and contract on positively charged and/or RGD-tagged spider silk variants. hiPSC-cardiomyocytes exhibit spider silk variant-dependent morphology upon adhesion. Explicit spider silk variants promote long-term contractility of hiPSC-cardiomyocytes. hiPSC-cardiomyocytes grown on spider silk materials respond to pharmacological treatment.
Collapse
Key Words
- AFM, atomic force microscopy
- APTES, (3-aminopropyl) triethoxysilane
- ATR, attenuated total reflection
- DPBS, Dulbecco's phosphate-buffered saline
- EthHD1, ethidium homodimer 1
- FT-IR, Fourier-transform infrared (spectroscopy)
- IPTG, isopropyl-β-D-thiogalactoside
- MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- eADF4, Engineered Araneus diadematus fibroin 4
- hiPSC, human-induced pluripotent stem cell
Collapse
Affiliation(s)
- T.U. Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - V.T. Trossmann
- Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, Bayreuth, 95447, Germany
| | - S. Lentz
- Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, Bayreuth, 95447, Germany
| | - F.B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
- MURCE, Muscle Research Center Erlangen, Erlangen, Germany
- Corresponding author. Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany.
| | - T. Scheibel
- Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, Bayreuth, 95447, Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universitätsstraße 30, Universität Bayreuth, Bayreuth, D-95447, Germany
- Corresponding author. Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, Bayreuth, 95447, Germany.
| |
Collapse
|
15
|
iPSC-Cardiomyocyte Models of Brugada Syndrome-Achievements, Challenges and Future Perspectives. Int J Mol Sci 2021; 22:ijms22062825. [PMID: 33802229 PMCID: PMC8001521 DOI: 10.3390/ijms22062825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited cardiac arrhythmia that predisposes to ventricular fibrillation and sudden cardiac death. It originates from oligogenic alterations that affect cardiac ion channels or their accessory proteins. The main hurdle for the study of the functional effects of those variants is the need for a specific model that mimics the complex environment of human cardiomyocytes. Traditionally, animal models or transient heterologous expression systems are applied for electrophysiological investigations, each of these models having their limitations. The ability to create induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), providing a source of human patient-specific cells, offers new opportunities in the field of cardiac disease modelling. Contemporary iPSC-CMs constitute the best possible in vitro model to study complex cardiac arrhythmia syndromes such as BrS. To date, thirteen reports on iPSC-CM models for BrS have been published and with this review we provide an overview of the current findings, with a focus on the electrophysiological parameters. We also discuss the methods that are used for cell derivation and data acquisition. In the end, we critically evaluate the knowledge gained by the use of these iPSC-CM models and discuss challenges and future perspectives for iPSC-CMs in the study of BrS and other arrhythmias.
Collapse
|
16
|
Lam CK, Wu JC. Clinical Trial in a Dish: Using Patient-Derived Induced Pluripotent Stem Cells to Identify Risks of Drug-Induced Cardiotoxicity. Arterioscler Thromb Vasc Biol 2021; 41:1019-1031. [PMID: 33472401 PMCID: PMC11006431 DOI: 10.1161/atvbaha.120.314695] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cardiotoxicity is a significant clinical issue, with many drugs in the market being labeled with warnings on cardiovascular adverse effects. Treatments are often prematurely halted when cardiotoxicity is observed, which limits their therapeutic potential. Moreover, cardiotoxicity is a major reason for abandonment during drug development, reducing available treatment options for diseases and creating a significant financial burden and disincentive for drug developers. Thus, it is important to minimize the cardiotoxic effects of medications that are in use or in development. To this end, identifying patients at a higher risk of developing cardiovascular adverse effects for the drug of interest may be an effective strategy. The discovery of human induced pluripotent stem cells has enabled researchers to generate relevant cell types that retain a patient's own genome and examine patient-specific disease mechanisms, paving the way for precision medicine. Combined with the rapid development of pharmacogenomic analysis, the ability of induced pluripotent stem cell-derivatives to recapitulate patient-specific drug responses provides a powerful platform to identify subsets of patients who are particularly vulnerable to drug-induced cardiotoxicity. In this review, we will discuss the current use of patient-specific induced pluripotent stem cells in identifying populations who are at risk to drug-induced cardiotoxicity and their potential applications in future precision medicine practice. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
17
|
Wang Q, Chear S, Wing K, Stellon D, Nguyen Tran MT, Talbot J, Pébay A, Hewitt AW, Cook AL. Use of CRISPR/Cas ribonucleoproteins for high throughput gene editing of induced pluripotent stem cells. Methods 2021; 194:18-29. [PMID: 33607266 DOI: 10.1016/j.ymeth.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have become widely used for disease modelling, particularly with regard to predisposing genetic risk factors and causal gene variants. Alongside this, technologies such as the CRISPR/Cas system have been adapted to enable programmable gene editing in human cells. When combined, CRISPR/Cas gene editing of donor-specific iPSC to generate isogenic cell lines that differ only at specific gene variants provides a powerful model with which to investigate genetic variants associated with diseases affecting many organs, including the brain and eye. Here we describe our optimized protocol for using CRISPR/Cas ribonucleoproteins to edit disease causing gene variants in human iPSCs. We discuss design of crRNAs and homology-directed repair templates, assembly of CRISPR/Cas ribonucleoproteins, optimization of delivery via nucleofection, and strategies for single cell cloning, efficient clone cryopreservation and genotyping for identifying iPSC clones for further characterization.
Collapse
Affiliation(s)
- Qi Wang
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Sueanne Chear
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Kristof Wing
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | | | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Alice Pébay
- Department of Anatomy and Neuroscience, the University of Melbourne, Australia; Department of Surgery, the University of Melbourne, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia.
| |
Collapse
|
18
|
Potekhina ES, Bass DY, Kelmanson IV, Fetisova ES, Ivanenko AV, Belousov VV, Bilan DS. Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. Int J Mol Sci 2020; 22:E148. [PMID: 33375682 PMCID: PMC7794770 DOI: 10.3390/ijms22010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically-encoded fluorescent sensors have been actively developed over the last few decades and used in live imaging and drug screening. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically-encoded fluorescent sensors in drug screening. In combination with high-throughput screening (HTS), some genetically-encoded fluorescent sensors may provide high reproducibility and robustness to assays. We provide a brief overview of successful, perspective, and hopeful attempts at using genetically encoded fluorescent sensors in HTS of modulators of ion channels, Ca2+ homeostasis, GPCR activity, and for screening cytotoxic, anticancer, and anti-parasitic compounds. We discuss the advantages of sensors in whole organism drug screening models and the perspectives of the combination of human disease modeling by CRISPR techniques with genetically encoded fluorescent sensors for drug screening.
Collapse
Affiliation(s)
- Ekaterina S. Potekhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dina Y. Bass
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
| | - Alexander V. Ivanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|