1
|
Erenpreisa J, Salmina K, Anatskaya O, Cragg MS. Paradoxes of cancer: Survival at the brink. Semin Cancer Biol 2020; 81:119-131. [PMID: 33340646 DOI: 10.1016/j.semcancer.2020.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022]
Abstract
The fundamental understanding of how Cancer initiates, persists and then progresses is evolving. High-resolution technologies, including single-cell mutation and gene expression measurements, are now attainable, providing an ever-increasing insight into the molecular details. However, this higher resolution has shown that somatic mutation theory itself cannot explain the extraordinary resistance of cancer to extinction. There is a need for a more Systems-based framework of understanding cancer complexity, which in particular explains the regulation of gene expression during cell-fate decisions. Cancer displays a series of paradoxes. Here we attempt to approach them from the view-point of adaptive exploration of gene regulatory networks at the edge of order and chaos, where cell-fate is changed by oscillations between alternative regulators of cellular senescence and reprogramming operating through self-organisation. On this background, the role of polyploidy in accessing the phylogenetically pre-programmed "oncofetal attractor" state, related to unicellularity, and the de-selection of unsuitable variants at the brink of cell survival is highlighted. The concepts of the embryological and atavistic theory of cancer, cancer cell "life-cycle", and cancer aneuploidy paradox are dissected under this lense. Finally, we challenge researchers to consider that cancer "defects" are mostly the adaptation tools of survival programs that have arisen during evolution and are intrinsic of cancer. Recognition of these features should help in the development of more successful anti-cancer treatments.
Collapse
Affiliation(s)
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia
| | | | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
2
|
Baudoin NC, Nicholson JM, Soto K, Martin O, Chen J, Cimini D. Asymmetric clustering of centrosomes defines the early evolution of tetraploid cells. eLife 2020; 9:54565. [PMID: 32347795 PMCID: PMC7250578 DOI: 10.7554/elife.54565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Tetraploidy has long been of interest to both cell and cancer biologists, partly because of its documented role in tumorigenesis. A common model proposes that the extra centrosomes that are typically acquired during tetraploidization are responsible for driving tumorigenesis. However, tetraploid cells evolved in culture have been shown to lack extra centrosomes. This observation raises questions about how tetraploid cells evolve and more specifically about the mechanisms(s) underlying centrosome loss. Here, using a combination of fixed cell analysis, live cell imaging, and mathematical modeling, we show that populations of newly formed tetraploid cells rapidly evolve in vitro to retain a near-tetraploid chromosome number while losing the extra centrosomes gained at the time of tetraploidization. This appears to happen through a process of natural selection in which tetraploid cells that inherit a single centrosome during a bipolar division with asymmetric centrosome clustering are favored for long-term survival.
Collapse
Affiliation(s)
- Nicolaas C Baudoin
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| | - Joshua M Nicholson
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| | - Kimberly Soto
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| | - Olga Martin
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| | - Jing Chen
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
| |
Collapse
|
3
|
Almahwasi A, Jeynes J, Bradley D, Regan P. The fate of radiation induced giant-nucleated cells of human skin fibroblasts. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2017.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Korsnes MS, Korsnes R. Mitotic Catastrophe in BC3H1 Cells following Yessotoxin Exposure. Front Cell Dev Biol 2017; 5:30. [PMID: 28409150 PMCID: PMC5374163 DOI: 10.3389/fcell.2017.00030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/15/2017] [Indexed: 11/13/2022] Open
Abstract
The marine toxin yessotoxin (YTX) can cause various cytotoxic effects depending on cell type and cell line. It is well known to trigger distinct mechanisms for programmed cell death which may overlap or cross-talk. The present contribution provides the first evidence that YTX can cause genotoxicity and induce mitotic catastrophe which can lead to different types of cell death. This work also demonstrates potential information gain from non-intrusive computer-based tracking of many individual cells during long time. Treatment of BC3H1 cells at their exponential growth phase causes atypical nuclear alterations and formation of giant cells with multiple nuclei. These are the most prominent morphological features of mitotic catastrophe. Giant cells undergo slow cell death in a necrosis-like manner. However, apoptotic-like cell death is also observed in these cells. Electron microscopy of treated BC3H1 cells reveal uncondensed chromatin and cells with double nuclei. Activation of p-p53, p-H2AX, p-Chk1, p-ATM, and p-ATR and down-regulation of p-Chk2 indicate DNA damage response and cell cycle deregulation. Micronuclei formation further support this evidence. Data from tracking single cells reveal that YTX treatment suppresses a second round of cell division in BC3H1 cells. These findings suggest that YTX can induce genomic alterations or imperfections in chromosomal segregation leading to permanent mitotic failure. This understanding extends the list of effects from YTX and which are of interest to control cancer and tumor progression.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway.,Nofima ASÅs, Norway
| | - Reinert Korsnes
- Nofima ASÅs, Norway.,Norwegian Defence Research EstablishmentKjeller, Norway.,Norwegian Institute of Bioeconomy ResearchÅs, Norway
| |
Collapse
|
5
|
Świerczyńska J, Kozieradzka-Kiszkurno M, Bohdanowicz J. Rhinanthus serotinus (Schönheit) Oborny (Scrophulariaceae): immunohistochemical and ultrastructural studies of endosperm chalazal haustorium development. PROTOPLASMA 2013; 250:1369-80. [PMID: 23779214 DOI: 10.1007/s00709-013-0520-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/03/2013] [Indexed: 05/07/2023]
Abstract
Chalazal endosperm haustorium in Rhinanthus serotinus consists of a single large binucleate cell. It originates from the primary endosperm cell dividing transversely into two unequal cells: a smaller micropylar cell and a larger chalazal cell. The chalazal cell undergoes a single mitotic division, then lengthens significantly during development and functions as a chalazal endosperm haustorium. In this paper, immunofluorescent techniques, rhodamine phalloidin assay, and electron microscopy were used to examine the actin and tubulin cytoskeleton during the development of the chalazal haustorium. During the differentiation stage, numerous longitudinally oriented bundles of microfilaments ran along the axis of transvacuolar strands in haustorium. Microtubules formed intensely fluorescent areas near the nuclear envelope and also formed radial perinuclear microtubule arrays. In the fully differentiated haustorium cell, the actin cytoskeleton formed dense clusters of microfilaments on the chalazal and micropylar poles of the haustorium. Numerous microfilament bundles occurred near wall ingrowths on the chalazal wall. There were numerous clusters of microfilaments and microtubules around the huge lobed polytenic haustorial nuclei. The microfilaments were oriented longitudinally to the long axis of the haustorium cell and surrounded both nuclei. The microtubules formed radial perinuclear systems which were appeared to radiate from the surface of the nuclear envelope. The early stage of degeneration of the chalazal haustorium was accompanied by the degradation of microtubules and disruption of the parallel orientation of microtubules in the chalazal area of the cell. The degree of vacuolization increased, autophagous vacuoles appeared and the number of vesicles decreased.
Collapse
Affiliation(s)
- Joanna Świerczyńska
- Department of Plant Cytology and Embryology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland,
| | | | | |
Collapse
|
6
|
Grzanka D, Marszałek A, Izdebska M, Gackowska L, Andrzej Szczepanski M, Grzanka A. Actin Cytoskeleton Reorganization Correlates with Cofilin Nuclear Expression and Ultrastructural Changes in CHO AA8 Cell Line after Apoptosis and Mitotic Catastrophe Induction by Doxorubicin. Ultrastruct Pathol 2011; 35:130-8. [DOI: 10.3109/01913123.2010.548113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Fujita Y, Yamamoto N, Kato I, Iwai S, Ono K, Sakurai Y, Ohnishi K, Ohnishi T, Yura Y. Induction of multinucleation in oral squamous cell carcinoma tissue with mutated p53 surviving boron neutron capture therapy. Int J Radiat Biol 2010; 87:293-301. [DOI: 10.3109/09553002.2011.530336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Doxorubicin-induced F-actin reorganization in cofilin-1 (nonmuscle) down-regulated CHO AA8 cells. Folia Histochem Cytobiol 2010; 48:377-86. [DOI: 10.2478/v10042-010-0072-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Ma D, Yu H, Lin D, Sun Y, Liu L, Liu Y, Dai B, Chen W, Cao J. S6K1 is involved in polyploidization through its phosphorylation at Thr421/Ser424. J Cell Physiol 2009; 219:31-44. [PMID: 19065636 DOI: 10.1002/jcp.21647] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Studies on polyploidization of megakaryocytes have been hampered by the lack of synchronized polyploid megakaryocytes. In this study, a relatively synchronized polyploid cell model was successfully established by employing Dami cells treated with nocodazole. In nocodazole-induced cells, cyclin B expression oscillated normally as in diploid cells and polyploid megakaryocytes. By using the nocodazole-induced Dami cell model, we found that 4E-BP1 and Thr421/Ser424 of ribosomal S6 kinase 1(S6K1) were phosphorylated mostly at M-phase in cytoplasm and oscillated in nocodazole-induced polyploid Dami cells, concomitant with increased expression of p27 and cyclin D3. However, phosphorylation of 4E-BP1 and S6K1 on Thr421/Ser424 was significantly decreased in differentiated Dami cells induced by phorbol 12-myristate 13-acetate (PMA), concomitant with increased expression of cyclin D1 and p21 and cyclin D3. Overexpression of the kinase dead form of S6K1 containing the mutation Lys 100 --> Gln in PMA-induced Dami cells increased ploidy whereas overexpression of rapamycin-resistant form of S6K1 containing the mutations Thr421 --> Glu and Ser424 --> Asp significantly dephosphorylated 4E-BP1 and reduced expression of cyclin D1, cyclin D3, p21 and p27, and slightly decreased the ploidy of PMA-induced Dami cells, compared with treatment with PMA alone. Moreover, overexpression of rapamycin-resistant form of S6K1 significantly reversed polyploidization of nocodazole-induced Dami cells. Furthermore, MAP (a novel compound synthesized recently) partly blocked the phosphorylation of S6K1 on Thr421/Ser424 and decreased the expression of p27 and polyploidization in nocodazole-induced Dami cells. Taken together, these data suggested that S6K1/4E-BP1 pathway may play an important role in polyploidization of megakaryocytes.
Collapse
Affiliation(s)
- Dongchu Ma
- Department of Experimental Medicine, Northern Hospital, Shenyang, Liaoning, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. Cell Death Differ 2008; 15:1153-62. [PMID: 18404154 DOI: 10.1038/cdd.2008.47] [Citation(s) in RCA: 462] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitotic catastrophe (MC) has long been considered as a mode of cell death that results from premature or inappropriate entry of cells into mitosis and can be caused by chemical or physical stresses. Whereas it initially was depicted as the main form of cell death induced by ionizing radiation, it is today known to be triggered also by treatment with agents influencing the stability of microtubule, various anticancer drugs and mitotic failure caused by defective cell cycle checkpoints. Although various descriptions explaining MC exist, there is still no general accepted definition of this phenomenon. Here, we present evidences indicating that death-associated MC is not a separate mode of cell death, rather a process ('prestage') preceding cell death, which can occur through necrosis or apoptosis. The final outcome of MC depends on the molecular profile of the cell.
Collapse
Affiliation(s)
- H Vakifahmetoglu
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
11
|
Hauptmann S, Schmitt WD. Transposable elements – Is there a link between evolution and cancer? Med Hypotheses 2006; 66:580-91. [PMID: 16239072 DOI: 10.1016/j.mehy.2005.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/04/2005] [Indexed: 11/28/2022]
Abstract
Currently, the most predominant theory concerning the formation of cancer is that it is a genetic accident. Accordingly, various agents are thought to cause DNA damage which then subsequently activates oncogenes and inactivates tumor suppressor genes. This article, however, describes a theory that interprets cancer as a misguided adaptation. Stressors, which cannot be compensated for with the usual cell possibilities might arouse evolutionary mechanisms intended to create new protein variants. One of these is the activation of transposable elements which leads to a reformatting of the genome. The result of this process is either a cell that survives very well under stress (and will, therefore, never be detected), a dead cell (in case the process is ineffective), or a more or less abnormal and harmful cell that builds up a new but cancerous organ. This theory explains the complex genetic alterations which are present in almost all cancer cells. It also explains the action of non-mutagenic carcinogens. As part of the reformatting process of the cancer cell genome, activation of oncogenes and inactivation of tumor suppressor genes are not stochastic events but the result of an unlucky genomic composition.
Collapse
Affiliation(s)
- Steffen Hauptmann
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, Magdeburger Strasse 14, D-06097 Halle (Saale), Germany.
| | | |
Collapse
|
12
|
Anatskaya OV, Vinogradov AE. Paraoxical relationship between protein content and nucleolar activity in mammalian cardiomyocytes. Genome 2004; 47:565-78. [PMID: 15190374 DOI: 10.1139/g04-015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It was recently demonstrated that polyploidization of the avian myocardium is associated with a reduction of cardiac aerobic capacity evaluated by the heart mass to body mass ratio (heart index). To investigate possible cellular correlates of polyploidization, the protein content and nucleolar activity per cell and per genome were examined by image cytometry in 21 mammalian species, differing in the degree of heart polyploidization and heart index. We found that average cardiomyocyte ploidy level correlates negatively with the animal heart index (r = –0.75, p < 10–4), i.e., the large heart of athletic mammals is polyploidized to a lesser degree than the relatively smaller heart of sedentary species, which confirms the picture observed in birds. The protein content per genome decreased with the elevation of cardiomyocyte ploidy level. This inverse correlation was especially pronounced with the removed effect of body mass (r = –0.79, p < 10–4). Surprisingly, these changes were accompanied by the increase of nucleolar activity per genome (r = 0.61, p < 10–3). In the two species, for which the microarray gene expression data were available (human and mouse), this increase was paralleled by the elevated expression of ribosomal protein genes (but there was no increase in the expression of tissue-specific genes). Thus, in the polyploid cardiomyocytes there is a misbalance between protein content per genome and ribosome biogenesis. The reduction of protein content (per genome) of polyploid cardio my ocytes should further curtail heart functionality (in addition to reduction of heart index), because it is known that cardio myocyte protein content consists of more than 90% contractile proteins. This finding makes doubtful a widespread notion that polyploidization is necessary for cell function. Because somatic polyploidization is associated with stressful conditions and impaired energetics, we suppose that additional genomes can serve for cell regeneration and as a defense against oxidative damage in the organs that work at the limit of their metabolic capacity.Key words: somatic polyploidy, heart, functional capacity, protein–DNA ratio.
Collapse
Affiliation(s)
- Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | |
Collapse
|
13
|
Erenpreisa J, Cragg MS. Mitotic death: a mechanism of survival? A review. Cancer Cell Int 2001; 1:1. [PMID: 11983025 PMCID: PMC101225 DOI: 10.1186/1475-2867-1-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Accepted: 11/23/2001] [Indexed: 11/20/2022] Open
Abstract
Mitotic death is a delayed response of p53 mutant tumours that are resistant to genotoxic damage. Questions surround why this response is so delayed and how its mechanisms serve a survival function. After uncoupling apoptosis from G1 and S phase arrests and adapting these checkpoints, p53 mutated tumour cells arrive at the G2 compartment where decisions regarding survival and death are made. Missed or insufficient DNA repair in G1 and S phases after severe genotoxic damage results in cells arriving in G2 with an accumulation of point mutations and chromosome breaks. Double strand breaks can be repaired by homologous recombination during G2 arrest. However, cells with excessive chromosome lesions either directly bypass the G2/M checkpoint, starting endocycles from G2 arrest, or are subsequently detected by the spindle checkpoint and present with the features of mitotic death. These complex features include apoptosis from metaphase and mitosis restitution, the latter of which can also facilitate transient endocycles, producing endopolyploid cells. The ability of cells to initiate endocycles during G2 arrest and mitosis restitution most likely reflects their similar molecular environments, with down-regulated mitosis promoting factor activity. Resulting endocycling cells have the ability to repair damaged DNA, and although mostly reproductively dead, in some cases give rise to mitotic progeny. We conclude that the features of mitotic death do not simply represent aberrations of dying cells but are indicative of a switch to amitotic modes of cell survival that may provide additional mechanisms of genotoxic resistance.
Collapse
Affiliation(s)
- Jekaterina Erenpreisa
- Laboratory of Tumour Cell Biology, Biomedicine Centre of the Latvian University, Latvia
| | - M S Cragg
- Tenovus Research Laboratory, Cancer Sciences Division, Southampton University, UK
| |
Collapse
|
14
|
Carow CE, Fox NE, Kaushansky K. Kinetics of endomitosis in primary murine megakaryocytes. J Cell Physiol 2001; 188:291-303. [PMID: 11473355 DOI: 10.1002/jcp.1120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Megakaryocytes (MKs) develop from diploid progenitor cells via successive rounds of DNA synthesis in the absence of cell division, a process termed endomitosis (EnM). While the mechanism underlying EnM is not known, studies in yeast and leukemic cell lines have suggested that it may be due to reduced levels of cyclin B1 or cdc2, leading to a decrease in mitotic kinase activity. Using flow cytometry to study EnM highly purified marrow-derived MK precursors, we found that: (1) on average, 36% of 8N-32N MKs expressed abundant cyclin B during G2/M. The percentage of cells in G2/M decreased in >64N MKs, suggesting the limit of EnM, (2) the level of cyclin B per G2/M MK increased linearly with ploidy, (3) cyclin B expression oscillated normally in polyploid MKs, (4) MPM-2, a phosphoepitope created by the action of mitotic kinases and specific to M-phase cells, was expressed in a significant fraction of polyploid MKs, and (5) there was an apparent increase of cyclin B in G1-phase in polyploid MKs. This study provides the first qualitative kinetic data regarding the cell cycle status of MKs within individual ploidy classes. It also demonstrates the feasibility of using anti-cyclin B antibody and flow cytometry to resolve G1 from G2/M populations in polyploid MKs. Finally, these findings establish that neither a relative nor absolute deficiency of mitotic kinase components is responsible for EnM, suggesting that the departure from normal cell division kinetics seen in polyploid MKs is likely due to alterations in other cell cycle regulators.
Collapse
Affiliation(s)
- C E Carow
- Department of Medicine, University of Washington, Seattle 98195-7710, USA.
| | | | | |
Collapse
|
15
|
Vinogradov AE, Anatskaya OV, Kudryavtsev BN. Relationship of hepatocyte ploidy levels with body size and growth rate in mammals. Genome 2001; 44:350-60. [PMID: 11444693 DOI: 10.1139/g01-015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate possible causes of the elevation of genome number in somatic cells, hepatocyte ploidy levels were measured cytofluorimetrically and related to the organismal parameters (body size, postnatal growth rate, and postnatal development type) in 53 mammalian species. Metabolic scope (ratio of maximal metabolic rate to basal metabolic rate) was also included in 23 species. Body masses ranged 10(5) times, and growth rate more than 30 times. Postnatal growth rate was found to have the strongest effect on the hepatocyte ploidy. At a fixed body mass the growth rate closely correlates (partial correlation analysis) with the cell ploidy level (r = 0.85, P < 10(-6)), whereas at a fixed growth rate body mass correlates poorly with ploidy level (r = -0.38, P < 0.01). The mature young (precocial mammals) of the species have, on average, a higher cell ploidy level than the immature-born (altricial) animals. However, the relationship between precocity of young and cell ploidy levels disappears when the influences of growth rate and body mass are removed. Interspecies variability of the hepatocyte ploidy levels may be explained by different levels of competition between the processes of proliferation and differentiation in cells. In turn, the animal differences in the levels of this competition are due to differences in growth rate. A high negative correlation between the hepatocyte ploidy level and the metabolic scope indicates a low safety margin of organs with a high number of polyploid cells. This fact allows us to challenge a common opinion that increasing ploidy enhances the functional capability of cells or is necessary for cell differentiation. Somatic polyploidy can be considered a "cheap" solution of growth problems that appear when an organ is working at the limit of its capabilities.
Collapse
Affiliation(s)
- A E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia.
| | | | | |
Collapse
|
16
|
Anatskaya OV, Vinogradov AE, Kudryavtsev BN. Cardiomyocyte ploidy levels in birds with different growth rates. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 289:48-58. [PMID: 11169492 DOI: 10.1002/1097-010x(20010101/31)289:1<48::aid-jez5>3.0.co;2-s] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytofluorimetric study of ploidy levels in ventricular cardiomyocytes was carried out on 36 adult bird species belonging to 10 orders as well as on the quail Coturnix coturnix, of different ages. It was shown that polyploidization of quail cardiomyocytes occurs during the first 40 days after hatching and ends by the time growth is completed. In adult birds, the cardiomyocyte ploidy hardly changed at all. Interspecies comparison revealed that in the adult bird myocardium 2cx2 myocytes are predominant, accounting for at least 50% of the cell population. Multinuclear cells with three to eight diploid nuclei were widespread. The percentage of such cells was five to six times higher in precocial species than in altricial birds of the same weight. Myocytes with polyploid nuclei were rare. A significant interspecies variability of cardiomyocyte ploidy levels was observed. The most prominent differences were found between the precocial and the altricial birds. The mean number of genomes in cells correlated both with the body mass and with the growth rate of the birds. The differences between the precocial and altricial birds disappeared when a statistical method was used to eliminate the effect of the growth rate, but did not when the effect of body mass was eliminated. Among the altricial birds, which are generally immobile during growth, the cardiomyocyte ploidy levels also correlated more closely with growth rate than with body mass. The opposite was observed in the precocial birds, which are highly mobile from the first minutes of life. We conclude that the interspecies variability of bird cardiomyocyte ploidy levels is a result of changes in the balance between the cardiac functional load and the growth rate; this is manifested at the cellular level as a competition between the proliferation and differentiation of cardiomyocytes. J. Exp. Zool. 289:48-58, 2001.
Collapse
Affiliation(s)
- O V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia
| | | | | |
Collapse
|
17
|
Rietze R, Poulin P, Weiss S. Mitotically active cells that generate neurons and astrocytes are present in multiple regions of the adult mouse hippocampus. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000828)424:3<397::aid-cne2>3.0.co;2-a] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Erenpreisa J, Roach HI. Aberrations of cell cycle and cell death in normal development of the chick embryo growth plate. Mech Ageing Dev 1999; 108:227-38. [PMID: 10405983 DOI: 10.1016/s0047-6374(99)00018-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The epiphyses of femurs from 7.5-15 day chicken embryos were studied by electron microscopy. Several forms of aberrant cell cycles were present: (1) in the perichondrium, polyploid metaphases, segmentating large (giant) cells, and mitotic catastrophe (midway between mitosis and apoptosis) were observed; (2) in the resting zone, premature chromosome condensation was found; (3) in the proliferative zone, approximately 5% of divisions were aberrant, representing most often mitosis restitution from metaphase and more seldom from the anaphase; (4) in all layers, 'dark chondrocytes' representing a premortal form of hypersecretory cells undergoing often a-mitotic nuclear segmentation were present. Many of the aberrations of cell cycle were combined with cell death. These deviations omitting or adapting the cell cycle check-points represent evidently the normal epigenetic mechanisms of development and repair. At the same time, by origin and appearances they seem very close to the loss of the growth control displayed by malignant tumours. This connection is briefly analysed in view of some current concepts of carcinogenesis.
Collapse
Affiliation(s)
- J Erenpreisa
- Lab. Tum. Cell Biol., A. Kirchenstein Institute of Microbiology and Virology, Latvia.
| | | |
Collapse
|
19
|
Dolber PC, Bauman RP, Rembert JC, Greenfield JC. Are interatrial band myocytes maximally hypertrophied in normal canine hearts? THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1225-35. [PMID: 9746470 DOI: 10.1152/ajpheart.1998.275.4.h1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In canine right atrial hypertrophy, the cross-sectional area (Axs) of right atrial myocytes increases, whereas the Axs of the broader interatrial band myocytes does not. In the current study, myocyte reconstructions showed that right atrial myocyte length increased in proportion to Axs in right atrial hypertrophy. On the other hand, mean interatrial band myocyte length in both normal and right atrial hypertrophy dogs was roughly inversely proportional to mean Axs, as expected if interatrial band myocyte volume was constant. Plotting mean Axs vs. myocyte length for individual interatrial band myocytes revealed a distribution whose border defined a maximal volume curve; many myocytes were well beneath that curve. Mononuclear myocytes (generally diploid) were limited by a 65,000-micrometer 3 curve, which many binuclear myocytes (generally tetraploid) surpassed; myocyte ploidy thus constrained myocyte volume. However, because many mononuclear and binuclear myocytes had lower volumes, their failure to hypertrophy cannot be attributed to attainment of the maximal volume possible for their ploidy.
Collapse
Affiliation(s)
- P C Dolber
- Department of Surgery and Division of Cardiology, Department of Medicine, and Pathology, Duke University Medical Center, Durham NC 27710, USA
| | | | | | | |
Collapse
|
20
|
Smothers JF, Madireddi MT, Warner FD, Allis CD. Programmed DNA degradation and nucleolar biogenesis occur in distinct organelles during macronuclear development in Tetrahymena. J Eukaryot Microbiol 1997; 44:79-88. [PMID: 9109258 DOI: 10.1111/j.1550-7408.1997.tb05942.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Programmed DNA rearrangements, including DNA degradation, characterize the development of the soma from the germline in a number of developmental systems. Pdd1p (programmed DNA degradation 1 protein), a development-specific polypeptide in Tetrahymena, is enriched in developing macronuclei (anlagen) and has been implicated in DNA elimination and nucleolar biogenesis. Here, immunocytochemistry and fluorescent in situ hybridization (FISH) were employed to follow Pdd1p and two nucleolar markers (Nopp52 and rDNA) during macronuclear development. Both Pdd1p and Nopp52 localize to subnuclear structures, each of which resemble nucleoli. However, while true nucleoli form and persist during development, Pdd1p-positive structures are only present for a brief period of macronuclear differentiation. Accordingly, two distinct organelles can be recognized in anlagen: (1) Pdd1p-positive structures, which lack Nopp52 and rDNA, and (2) developing nucleoli which contain rDNA and Nopp52 but lack Pdd1p. Taken together with recent data corroborating Pdd1p's role in DNA elimination, we favor the hypothesis that Pdd1p structures are unique, short-lived organelles, likely to function in programmed DNA degradation and not in nucleolar biogenesis.
Collapse
Affiliation(s)
- J F Smothers
- Department of Biology, University of Rochester, New York 14627, USA
| | | | | | | |
Collapse
|
21
|
Williams DW, Müller F, Lavender FL, Orbán L, Maclean N. High transgene activity in the yolk syncytial layer affects quantitative transient expression assays in zebrafish Danio rerio) embryos. Transgenic Res 1996; 5:433-42. [PMID: 8840526 DOI: 10.1007/bf01980208] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
For the purpose of studying the factors that cause wide variation in transient transgene expression in individual fish, a lacZ reporter gene linked to a carp beta-actin regulatory sequence was introduced into zebrafish embryos. As a general trend, a correlation between the number of transgene copies injected and the level of transgene expression was found. However, a substantial variation in the level of expression still occurred that could not be attributed to technical factors such as the difference in injected volume of the transgene. Co-injection of 32P-dCTP and transgene into the same embryo followed by detection of beta-galactosidase activity, has shown that the volume used for transgene injection, which was determined in terms of radioactivity, is not closely related to the level and location of transgene expression. Injection into the animal pole at zygote stage and the yolk cytoplasmic layer (YCL) at the 64-cell stage followed by determination of transgene expression in terms of unit injection volume, revealed that there are marked differences among tissues with regard to their capacity for transgene expression, and that the yolk syncytial layer is higher in this capacity. This high activity is assumed to be due to the high transcriptional activity or enhanced transgene replication in the syncytial layer, which is known to contain giant polyploid nuclei. The high levels of expression in the YSL may influence transient expression studies using quantitative comparative analyses and should be taken into consideration when expression data are derived from homogenates of yolk sac embryos.
Collapse
Affiliation(s)
- D W Williams
- Department of Biology, School of Biological Sciences, University of Southampton, UK
| | | | | | | | | |
Collapse
|
22
|
Erusalimsky JD, Martin JF. The regulation of megakaryocyte polyploidization and its implications for coronary artery occlusion. Eur J Clin Invest 1993; 23:1-9. [PMID: 8444270 DOI: 10.1111/j.1365-2362.1993.tb00711.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Polyploidization is a distinctive feature of megakaryocyte differentiation. The physiological meaning and the regulation of this process are obscure. Megakaryocyte ploidy varies in normal biology and in disease. Here we review the evidence suggesting that ploidy changes may have a role in the determination of platelet reactivity and in the aetiology of coronary artery occlusion. We also present a hypothesis that may serve as a framework to explore the regulation of megakaryocyte polyploidization at the molecular level and also may provide a rational basis to explain the occurrence of ploidy changes in ischaemic heart disease.
Collapse
Affiliation(s)
- J D Erusalimsky
- Department of Medicine, King's College School of Medicine and Dentistry, Denmark Hill, London
| | | |
Collapse
|
23
|
Mann JM, Jennison SH, Moss E, Davies MJ. Assessment of rejection in orthotopic human heart transplantation using proliferating cell nuclear antigen (PCNA) as an index of cell proliferation. J Pathol 1992; 167:385-9. [PMID: 1357122 DOI: 10.1002/path.1711670407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Myocardial biopsies taken during the management of cardiac transplantation were stained for proliferating cell nuclear antigen (PCNA). Counts of PCNA-positive interstitial cells were compared, in retrospect, with the reported histological grade of rejection. Biopsies without rejection had negligible numbers of PCNA-positive cells. Ascending grades of rejection were paralleled by an increase in the number of PCNA-positive cells [grade 1, 13 +/- 35 (mean +/- SD); grade 2a, 38 +/- 40; grade 2b, 91 +/- 75; grade 3, 170 +/- 78]. While highly significant, in statistical terms, the overlap in the counts between different grades means that prediction of rejection from the PCNA count alone is not feasible. Biopsies graded as 0 or 1 and which immediately preceded more severe rejection episodes showed no increase in PCNA-positive cells. The majority of PCNA-positive cells are fibroblasts, although in grade 2b and 3 rejection a small population of PCNA-positive T lymphocytes occurs. PCNA staining is also seen in cardiac myocytes immediately after transplantation, during rejection episodes, and late after transplantation in the absence of rejection. The positive PCNA staining of cardiac myocytes probably reflects DNA synthesis that occurs with the shift toward polyploidy in hypertrophy.
Collapse
Affiliation(s)
- J M Mann
- British Heart Foundation Cardiovascular Pathology Unit, Department of Cardiological Sciences, St George's Hospital Medical School, London, U.K
| | | | | | | |
Collapse
|
24
|
Cecchini E, Natali L, Cavallini A, Durante M. DNA variations in regenerated plants of pea (Pisum sativum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:874-879. [PMID: 24201489 DOI: 10.1007/bf00227399] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/1992] [Accepted: 02/26/1992] [Indexed: 06/02/2023]
Abstract
The aim of this study was to determine whether DNA variations could be detected in regenerated pea plants. Two different genotypes were analyzed by cytogenetic and molecular techniques: the "Dolce Provenza" cultivar and the "5075" experimental line. "Dolce Provenza" regenerated plants showed a reduction in DNA content, particularly at the level of unique sequences and ribosomal genes. Moreover, regeneration was associated with an increase in DNA methylation of both internal and external cytosines of the CCG sequence. On the other hand, the DNA content of the "5075" line remained stable after regeneration. DNA reduction was found only in "5075" plants regenerated from callus cultures maintained for long incubation periods (about a year). The DNA variations observed are discussed both in relation to the genotype source and the role of tissue-culture stress.
Collapse
Affiliation(s)
- E Cecchini
- Department of Agricultural Plant Biology, Genetics Section, University of Pisa, Via Matteotti 1/B, I-56124, Pisa, Italy
| | | | | | | |
Collapse
|