1
|
Costa-Garcia M, Moya-Borrego L, Alemany Bonastre R, Moreno Olié R. Optimized protocol for culturing menstrual blood-derived MSCs for combination with oncolytic adenoviruses in cancer treatment. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200907. [PMID: 39758253 PMCID: PMC11697545 DOI: 10.1016/j.omton.2024.200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 01/07/2025]
Abstract
Oncolytic viruses (OVs) are a promising therapeutic approach for cancer, although their systemic administration faces significant challenges. Mesenchymal stem cells have emerged as potential carriers to overcome these obstacles due to their tumor-tropic properties. This study investigates the use of menstrual blood-derived mesenchymal stem cells (MenSCs) as carriers for OVs in cancer therapy, focusing on enhancing their efficacy through different culture conditions. MenSCs were isolated from donors of different ages and cultured under normoxic and hypoxic conditions, with varying adherence capacities. Hypoxic conditions significantly improved MenSCs proliferation and tumor migration capabilities, as demonstrated by proliferation assays and RNA-sequencing analysis, which revealed upregulation of genes related to cell division and tumor tropism. In vivo studies using a lung adenocarcinoma mouse model confirmed that hypoxia-conditioned MenSCs had superior tumor-homing abilities. The study also demonstrated the feasibility of establishing a master and working cell bank from a single menstrual blood donation. These findings suggest that hypoxia-conditioned MenSCs could be highly effective as OV carriers, potentially leading to better clinical outcomes in cancer treatment by enhancing tumor targeting and therapeutic efficacy.
Collapse
Affiliation(s)
- Marcel Costa-Garcia
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Moya-Borrego
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Alemany Bonastre
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Moreno Olié
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
2
|
Mani Giri P, Banerjee A, Ghosal A, Salu P, Reindl K, Layek B. Mesenchymal stem cell-delivered paclitaxel nanoparticles exhibit enhanced efficacy against a syngeneic orthotopic mouse model of pancreatic cancer. Int J Pharm 2024; 666:124753. [PMID: 39321899 DOI: 10.1016/j.ijpharm.2024.124753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic cancer is considered the deadliest among various solid tumors, with a five-year survival rate of 13 %. One of the major challenges in the management of advanced pancreatic cancer is the inefficient delivery of chemotherapeutics to the tumor site. Even though nanocarriers have been developed to improve tumoral delivery of chemotherapeutics, less than 1 % of the drugs reach tumors, rendering inadequate concentration for effective inhibition of tumors. As a potential alternative, mesenchymal stem cells (MSCs) can effectively deliver their cargo to tumor sites because of their resistance to chemotherapeutics and inherent tumor tropism. In this study, we used MSCs for the delivery of dibenzocyclooctyne (DBCO)-functionalized paclitaxel (PTX)-loaded poly(lactide-co-glycolide)-b-poly (ethylene glycol) (PLGA) nanoparticles. MSCs were modified to generate artificial azide groups on their surface, allowing nanoparticle loading via endocytosis and surface conjugation via click chemistry. This dual drug loading strategy significantly improves the PTX-loading capacity of azide-expressed MSCs (MSC-Az, 55.4 pg/cell) compared to unmodified MSCs (28.1 pg/cell). The in vitro studies revealed that PTX-loaded MSC-Az, nano-MSCs, exhibited cytotoxic effects against pancreatic cancer without altering their inherent phenotype, differentiation abilities, and tumor tropism. In an orthotopic pancreatic tumor model, nano-MSCs demonstrated significant inhibition of tumor growth (p < 0.05) and improved survival (p < 0.0001) compared to PTX solution, PTX nanocarriers, and Abraxane. Thus, nano-MSCs could be an effective delivery system for targeted pancreatic cancer chemotherapy and other solid tumors.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Arpita Ghosal
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Philip Salu
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Katie Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States.
| |
Collapse
|
3
|
Mohamadi S, Mehrasa P, Mehramuz B, Kobravi S, Taghizadieh M, Salmaninejad A, Bayat M, Sadri Nahand J. The tumor microenvironment's gambit: Exosomal pawns on the board of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189189. [PMID: 39343066 DOI: 10.1016/j.bbcan.2024.189189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The tumor microenvironment (TME) harbors a hidden universe of interactions that profoundly shape the behavior of head and neck cancers (HNCs). HNCs are not merely localized afflictions; they constitute a pressing global health crisis that impacts millions, frequently resulting in severe prognoses due to late-stage diagnosis and intrinsic resistance to conventional therapies. In this intricate interplay, cancer cells function as strategic players, adeptly manipulating their microenvironment to foster proliferation, evade immune detection, and withstand therapeutic interventions. Central to this dynamic play are exosomes, the enigmatic pawns of cellular communication, carrying vital messages across the board. This review elucidates the multifaceted roles of exosomes within the TME, highlighting their capacity to transmit critical signals that not only promote tumor progression but also modulate immune responses, ultimately playing a crucial role in the evolving narrative of HNC. Our insights aim to catalyze further research and exploration into exosome-targeted therapies, potentially transforming the landscape of HNC treatment and improving clinical outcomes in this formidable battle against cancer.
Collapse
Affiliation(s)
- Solmaz Mohamadi
- Faculty of Dentistry, Tabriz University of Medical Sciences, 15731 Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramuz
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| |
Collapse
|
4
|
Firouzabadi SR, Mohammadi I, Ghafourian K, Mofidi SA, Firouzabadi SR, Hashemi SM, Tehrani FR, Jafarabady K. Mesenchymal stem cell-derived extracellular vesicles therapy for primary ovarian insufficiency: a systematic review and meta-analysis of pre-clinical studies. J Ovarian Res 2024; 17:200. [PMID: 39402602 PMCID: PMC11472498 DOI: 10.1186/s13048-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) manifests with hormonal imbalances, menstrual irregularities, follicle loss, and infertility. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are emerging as a promising treatment for POI. This systematic review aims to assess the effects of MSC-EVs on follicle number, hormonal profile, and fertility in POI animal models. METHODS A systematic search of PubMed, Scopus, and Web of Science databases up to December 14th, 2023 was conducted. Two reviewers independently conducted screening, risk of bias assessment, and data extraction. Meta-analysis was performed to analyze treatment versus control outcomes using a random effects model. Publication bias was assessed using Egger's regression test and sensitivity analysis was assessed using the leave-one-out method. Subgroup analyses and meta-regressions were conducted based on EV source, induction model, type of animal, study quality, administration route, administration frequency and route, and dose. RESULTS a total of 29 studies were included. MSC-EVs treatment significantly increased total follicle count (SMD, (95CI), p-value; 3.56, (0.91, 6.21), < 0.001), including primordial (SMD, (95CI), p-value; 2.86, (1.60, 4.12), < 0.001), primary (SMD, (95CI), p-value; 3.17, (2.28, 4.06), < 0.001), mature (SMD, (95CI), p-value; 2.26, (1.02, 3.50), < 0.001), and antral follicles (SMD, (95CI), p-value; 2.44, (1.21, 3.67), < 0.001). Administration frequency and route did not affect this outcome, but EV source affected primordial, primary, secondary and antral follicle count. Additionally, MSC-EVs treatment elevated anti-müllerian hormone (SMD, (95CI); 3.36, (2.14, 4.58)) and estradiol (SMD, (95CI); 3.19, (2.20, 4.17)) levels while reducing follicle stimulating hormone levels (SMD, (95CI); -2.68, (-4.42, -0.94)). Unlike EV source, which had a significant impact on all three hormones, administration frequency, route, and EV dose did not affect this outcome. Moreover, treatment increased offspring number (SMD, (95CI); 3.70, (2.17, 5.23)) and pregnancy odds (OR, (95CI); 10.25, (4.29, 24.46)) compared to controls. Publication bias and a high level of heterogeneity was evident in all analyses, except for the analysis of the pregnancy odds. However, sensitivity analysis indicated that all of the analyses were stable. CONCLUSION MSC-EVs therapy shows promise for POI treatment, potentially facilitating clinical translation. However, Further research is warranted to optimize methodology and assess side effects.
Collapse
Affiliation(s)
| | - Ida Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Ghafourian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mofidi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
5
|
Zheng Z, Liu H, Liu S, Luo E, Liu X. Mesenchymal stem cells in craniofacial reconstruction: a comprehensive review. Front Mol Biosci 2024; 11:1362338. [PMID: 38690295 PMCID: PMC11058977 DOI: 10.3389/fmolb.2024.1362338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Craniofacial reconstruction faces many challenges, including high complexity, strong specificity, severe injury, irregular and complex wounds, and high risk of bleeding. Traditionally, the "gold standard" for treating craniofacial bone defects has been tissue transplantation, which involves the transplantation of bone, cartilage, skin, and other tissues from other parts of the body. However, the shape of craniofacial bone and cartilage structures varies greatly and is distinctly different from ordinary long bones. Craniofacial bones originate from the neural crest, while long bones originate from the mesoderm. These factors contribute to the poor effectiveness of tissue transplantation in repairing craniofacial defects. Autologous mesenchymal stem cell transplantation exhibits excellent pluripotency, low immunogenicity, and minimally invasive properties, and is considered a potential alternative to tissue transplantation for treating craniofacial defects. Researchers have found that both craniofacial-specific mesenchymal stem cells and mesenchymal stem cells from other parts of the body have significant effects on the restoration and reconstruction of craniofacial bones, cartilage, wounds, and adipose tissue. In addition, the continuous development and application of tissue engineering technology provide new ideas for craniofacial repair. With the continuous exploration of mesenchymal stem cells by researchers and the continuous development of tissue engineering technology, the use of autologous mesenchymal stem cell transplantation for craniofacial reconstruction has gradually been accepted and promoted. This article will review the applications of various types of mesenchymal stem cells and related tissue engineering in craniofacial repair and reconstruction.
Collapse
Affiliation(s)
| | | | | | - En Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Zhang D, Chen Y, Hao M, Xia Y. Putting Hybrid Nanomaterials to Work for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202319567. [PMID: 38429227 PMCID: PMC11478030 DOI: 10.1002/anie.202319567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal-organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Yidan Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| |
Collapse
|
7
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
8
|
Saadh MJ, Alhuthali HM, Gonzales Aníbal O, Asenjo-Alarcón JA, Younus DG, Alhili A, Adhab ZH, Alsalmi O, Gharib AF, Pecho RDC, Akhavan-Sigari R. Mesenchymal stem cells and their extracellular vesicles in urological cancers: Prostate, bladder, and kidney. Cell Biol Int 2024; 48:3-19. [PMID: 37947445 DOI: 10.1002/cbin.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are recognized for their remarkable ability to differentiate into multiple cell types. They are also known to possess properties that can fight cancer, leading to attempts to modify MSCs for use in anticancer treatments. However, MSCs have also been found to participate in pathways that promote tumor growth. Many studies have been conducted to explore the potential of MSCs for clinical applications, but the results have been inconclusive, possibly due to the diverse nature of MSC populations. Furthermore, the conflicting roles of MSCs in inhibiting tumors and promoting tumor growth hinder their adaptation to anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in urological cancers such as bladder, prostate, and renal are not as well established, and data comparing them are still limited. MSCs hold significant promise as a vehicle for delivering anticancer agents and suicide genes to tumors. Presently, numerous studies have concentrated on the products derived from MSCs, such as extracellular vesicles (EVs), as a form of cell-free therapy. This work aimed to review and discuss the current knowledge of MSCs and their EVs in urological cancer therapy.
Collapse
Affiliation(s)
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | | | | | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
9
|
Sukmana BI, Margiana R, Almajidi YQ, Almalki SG, Hjazi A, Shahab S, Romero-Parra RM, Alazbjee AAA, Alkhayyat A, John V. Supporting wound healing by mesenchymal stem cells (MSCs) therapy in combination with scaffold, hydrogel, and matrix; State of the art. Pathol Res Pract 2023; 248:154575. [PMID: 37285734 DOI: 10.1016/j.prp.2023.154575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Non-healing wounds impose a huge annual cost on the survival of different countries and large populations in the world. Wound healing is a complex and multi-step process, the speed and quality of which can be changed by various factors. To promote wound healing, compounds such as platelet-rich plasma, growth factors, platelet lysate, scaffolds, matrix, hydrogel, and cell therapy, in particular, with mesenchymal stem cells (MSCs) are suggested. Nowadays, the use of MSCs has attracted a lot of attention. These cells can induce their effect by direct effect and secretion of exosomes. On the other hand, scaffolds, matrix, and hydrogels provide suitable conditions for wound healing and the growth, proliferation, differentiation, and secretion of cells. In addition to generating suitable conditions for wound healing, the combination of biomaterials and MSCs increases the function of these cells at the site of injury by favoring their survival, proliferation, differentiation, and paracrine activity. In addition, other compounds such as glycol, sodium alginate/collagen hydrogel, chitosan, peptide, timolol, and poly(vinyl) alcohol can be used along with these treatments to increase the effectiveness of treatments in wound healing. In this review article, we take a glimpse into the merging scaffolds, hydrogels, and matrix application with MSCs therapy to favor wound healing.
Collapse
Affiliation(s)
- Bayu Indra Sukmana
- Oral Biology Department, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Afa Alkhayyat
- College of Pharmacy, the Islamic University, 54001 Najaf, Iraq
| | - Vivek John
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
10
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
11
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
12
|
Wang Y, Li W, Li Z, Mo F, Chen Y, Iida M, Wheeler DL, Hu Q. Active recruitment of anti-PD-1-conjugated platelets through tumor-selective thrombosis for enhanced anticancer immunotherapy. SCIENCE ADVANCES 2023; 9:eadf6854. [PMID: 36989364 PMCID: PMC10058243 DOI: 10.1126/sciadv.adf6854] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Immune checkpoint inhibitors (ICIs) can reinvigorate T cells to eradicate tumor cells, showing great potential in combating various types of tumors. We propose a delivery strategy to enhance tumor-selective ICI accumulation, which leverages the responsiveness of platelets and platelet-derivatives to coagulation cascade signals. A fused protein tTF-RGD targets tumor angiogenic blood vessel endothelial cells and initiates the coagulation locoregionally at the tumor site, forming a "cellular hive" to recruit anti-PD-1 antibody (aPD-1)-conjugated platelets to the tumor site and subsequently activating platelets to release aPD-1 antibody to reactivate T cells for improved immunotherapy. Moreover, on a patient-derived xenograft breast cancer model, the platelet membrane-coated nanoparticles can also respond to the coagulation signals initiated by tTF-RGD, thus enhancing the accumulation and antitumor efficacy of the loaded chemotherapeutics. Our study illustrates a versatile platform technology to enhance the local accumulation of ICIs and chemodrugs by taking advantage of the responsiveness of platelets and platelet derivatives to thrombosis.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wen Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
13
|
Zhang Z, Ding P, Meng Y, Lin T, Zhang Z, Shu H, Ma J, Cohen Stuart M, Gao Y, Wang J, Zhou X. Rational polyelectrolyte nanoparticles endow preosteoclast-targeted siRNA transfection for anabolic therapy of osteoporosis. SCIENCE ADVANCES 2023; 9:eade7379. [PMID: 36888701 PMCID: PMC9995075 DOI: 10.1126/sciadv.ade7379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Targeted transfection of siRNA to preosteoclasts features the potential of anti-osteoporosis, yet challenge arises from the development of satisfied delivery vehicles. Here, we design a rational core-shell nanoparticle (NP) composed of cationic and responsive core for controlled load and release of small interfering RNA (siRNA) and compatible polyethylene glycol shell modified with alendronate for enhanced circulation and bone-targeted delivery of siRNA. The designed NPs perform well on transfection of an active siRNA (siDcstamp) that interferes Dcstamp mRNA expression, leading to impeded preosteoclast fusion and bone resorption, as well as promoted osteogenesis. In vivo results corroborate the abundant siDcstamp accumulation on bone surfaces and the enhanced trabecular bone mass volume and microstructure in treating osteoporotic OVX mice by rebalancing bone resorption, formation, and vascularization. Our study validates the hypothesis that satisfied transfection of siRNA enables preserved preosteoclasts that regulate bone resorption and formation simultaneously as potential anabolic treatment for osteoporosis.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
| | - Peng Ding
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
| | - Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
| | - Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
| | - Haoming Shu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
| | - Jun Ma
- Department of Orthopedics, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Martien Cohen Stuart
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Gao
- Department of Orthopedics, The Fourth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China
- Translational research center of orthopedics, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
14
|
Rahmani R, Kiani J, Tong WY, Soleimani M, Voelcker NH, Arefian E. Engineered anti-EGFRvIII targeted exosomes induce apoptosis in glioblastoma multiforme. J Drug Target 2023; 31:310-319. [PMID: 36440540 DOI: 10.1080/1061186x.2022.2152819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The drug delivery for treatment of glioblastoma multiforme (GBM) has been unsatisfactory mainly due to the drug resistance and low targeting efficiency. The selective targeting of GBM cells and using a cocktail of therapeutic agents to synergistically induce apoptosis may help enhance the drug delivery. METHODS In this study, mesenchymal stem cells (MSCs) were engineered to produce exosomes, i.e. nanosized natural vesicles presenting anti-EGFRvIII (ab139) antibody on their surface while encapsulating two apoptosis-inducing gene therapy agents, i.e. cytosine deaminase (CDA) and miR-34a. Exosomes were characterised for their size, morphology, protein content and markers using dynamic light scattering and nanoparticle tracking analysis, cryo-TEM, Western blotting, respectively. miR-34a overexpression and Lamp2-ab139 protein expression were analysed using real-time PCR and flow cytometry, respectively. The armed exosomes were delivered to EGFRvIII positive GBM cells (U87EGFRvIII) as well as wild type cell line (U87), which was EGFRvIII negative. Apoptosis was quantified using flow cytometry in both EGFRvIII negative and positive U87 cells, receiving one gene therapy agent (either CDA or miR-34a) or a combination of them (CDAmiR). RESULTS Spherical shape exosomes with an average diameter of 110 nm and a membrane thickness of 6.5 nm were isolated from MSCs. Lamp2-ab139 was successfully expressed on the surface of transfected cells and their secreted exosomes. Induced apoptosis rates was significantly higher in U87EGFRvIII cells than for U87 cells, indicating selectivity. The cell death rate was 6%, 9% and 12% in U87, 13%, 21% and 40% in U87EGFRvIII cells for CDA, miR-34a and CDAmiR treatment respectively, showing a higher apoptosis rate in the cells receiving both drugs compared to when single therapy was applied. CONCLUSION The experimental findings clearly show the improved apoptosis rate of GBM cells when treated by engineered exosomes armed with two gene therapy agents and targeted towards EGFRvIII antigen.
Collapse
Affiliation(s)
- Rana Rahmani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.,Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Victoria, Australia
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Victoria, Australia
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Victoria, Australia.,The Melbourne Centre for Nanofabrication, Clayton, Victoria, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.,Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Xu L, Xu M, Sun X, Feliu N, Feng L, Parak WJ, Liu S. Quantitative Comparison of Gold Nanoparticle Delivery via the Enhanced Permeation and Retention (EPR) Effect and Mesenchymal Stem Cell (MSC)-Based Targeting. ACS NANO 2023; 17:2039-2052. [PMID: 36717361 DOI: 10.1021/acsnano.2c07295] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
There are still some gaps in existing knowledge in the field of cancer nanotheranostics, e.g., the efficiency of nanoparticle-loaded cells for targeted delivery. In the current study, gold nanoparticles (Au NPs) were delivered to tumors in both subcutaneous tumor and lung metastasis tumor models by intravenous injection of either free Au NPs or of human bone marrow mesenchymal stem cells (MSCs), which were loaded with endocytosed Au NPs. By making injections with the same dose of administrated Au NPs, it was possible to directly compare tumor targeting of both delivery modes. Hereby, the passive targeting of tumor by the plain Au NPs was facilitated by the enhanced permeation and retention (EPR) effect. Au NP retention by tumors, as well as tumor penetration, were found to be improved up to 2.4-to-9.3-fold when comparing the MSC-mediated delivery of Au NPs to the delivery of the plain Au NPs via EPR effect on day 7 post administration. While the absolute retention of Au NPs in the tumor remained low, our data show that, upon injection of the same amount of Au NPs, in fact MSC-mediated delivery is quantitatively higher than EPR-mediated delivery of NPs by half an order of magnitude.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Sun
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Neus Feliu
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146 Hamburg, Germany
| | - Liuxing Feng
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100013, China
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
16
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
17
|
Yun WS, Shim MK, Lim S, Song S, Kim J, Yang S, Hwang HS, Kim MR, Yoon HY, Lim DK, Sun IC, Kim K. Mesenchymal Stem Cell-Mediated Deep Tumor Delivery of Gold Nanorod for Photothermal Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3410. [PMID: 36234538 PMCID: PMC9565344 DOI: 10.3390/nano12193410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Gold nanoparticles (AuNPs) with various sizes and morphologies have been extensively investigated for effective photothermal therapy (PTT) against multiple cancer types. However, a highly dynamic and complex tumor microenvironment (TME) considerably reduces the efficacy of PTT by limiting deep tumor penetration of AuNPs. Herein, we propose a mesenchymal stem cell (MSC)-mediated deep tumor delivery of gold nanorod (AuNR) for a potent PTT. First, MSCs are treated with tetraacylated N-azidomannosamine (Ac4ManNAz) to introduce modifiable azide (N3) groups on the cell surface via metabolic glycoengineering. Then, AuNRs modified with bio-orthogonal click molecules of bicyclo[6.1.0]nonyne (AuNR@BCN) are chemically conjugated to the N3 groups on the MSC surface by copper-free click chemistry reaction, resulting in AuNR@MSCs. In cultured MSCs, the appropriate condition to incorporate the AuNR into the MSCs is optimized; in addition, the photothermal efficiency of AuNR-MSCs under light irradiation are assessed, showing efficient heat generation in vitro. In colon tumor-bearing mice, intravenously injected AuNR@MSCs efficiently accumulate within the tumor tissues by allowing deep tissue penetration owing to the tumor homing effect by natural tumor tropism of AuNR@MSCs. Upon localized light irradiation, the AuNR@MSCs significantly inhibit colon tumor growth by the enhanced photothermal effect compared to conventional AuNRs. Collectively, this study shows a promising approach of MSCs-mediated deep tumor delivery of AuNR for effective PTT.
Collapse
Affiliation(s)
- Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Man Kyu Shim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seungho Lim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Sukyung Song
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jinseong Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Suah Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Korea
| | - Mi Ra Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Hong Yeol Yoon
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - In-Cheol Sun
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
18
|
Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis 2022; 13:580. [PMID: 35787632 PMCID: PMC9252569 DOI: 10.1038/s41419-022-05034-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) can be widely isolated from various tissues including bone marrow, umbilical cord, and adipose tissue, with the potential for self-renewal and multipotent differentiation. There is compelling evidence that the therapeutic effect of MSCs mainly depends on their paracrine action. Extracellular vesicles (EVs) are fundamental paracrine effectors of MSCs and play a crucial role in intercellular communication, existing in various body fluids and cell supernatants. Since MSC-derived EVs retain the function of protocells and have lower immunogenicity, they have a wide range of prospective therapeutic applications with advantages over cell therapy. We describe some characteristics of MSC-EVs, and discuss their role in immune regulation and regeneration, with emphasis on the molecular mechanism and application of MSC-EVs in the treatment of fibrosis and support tissue repair. We also highlight current challenges in the clinical application of MSC-EVs and potential ways to overcome the problem of quality heterogeneity.
Collapse
|
19
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
20
|
Singh SK, Singh A, Kumar V, Gupta J, Umrao S, Kumar M, Sarma DK, Leja M, Bhandari MP, Verma V. Nanosheets Based Approach to Elevate the Proliferative and Differentiation Efficacy of Human Wharton's Jelly Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:5816. [PMID: 35628625 PMCID: PMC9143505 DOI: 10.3390/ijms23105816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy and tissue repair necessitate the use of an ideal clinical biomaterial capable of increasing cell proliferation and differentiation. Recently, MXenes 2D nanomaterials have shown remarkable potential for improving the functional properties of MSCs. In the present study, we elucidated the potential of Ti2CTx MXene as a biomaterial through its primary biological response to human Wharton's Jelly MSCs (hWJ-MSCs). A Ti2CTx nanosheet was synthesized and thoroughly characterized using various microscopic and spectroscopic tools. Our findings suggest that Ti2CTx MXene nanosheet exposure does not alter the morphology of the hWJ-MSCs; however, it causes a dose-dependent (10-200 µg/mL) increase in cell proliferation, and upon using it with conditional media, it also enhanced its tri-lineage differentiation potential, which is a novel finding of our study. A two-fold increase in cell viability was also noticed at the highest tested dose of the nanosheet. The treated hWJ-MSCs showed no sign of cellular stress or toxicity. Taken together, these findings suggest that the Ti2CTx MXene nanosheet is capable of augmenting the proliferation and differentiation potential of the cells.
Collapse
Affiliation(s)
- Suraj Kumar Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India; (S.K.S.); (A.S.); (V.K.); (J.G.)
| | - Anshuman Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India; (S.K.S.); (A.S.); (V.K.); (J.G.)
| | - Vinod Kumar
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India; (S.K.S.); (A.S.); (V.K.); (J.G.)
| | - Jalaj Gupta
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India; (S.K.S.); (A.S.); (V.K.); (J.G.)
| | - Sima Umrao
- Indian Institute of Science (IISC), Bangalore 560012, India;
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (D.K.S.)
| | - Devojit Kumar Sarma
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (D.K.S.)
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia;
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
| | | | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India; (S.K.S.); (A.S.); (V.K.); (J.G.)
| |
Collapse
|
21
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
Stem cells therapy for thyroid diseases: progress and challenges. Curr Ther Res Clin Exp 2022; 96:100665. [PMID: 35371349 PMCID: PMC8968462 DOI: 10.1016/j.curtheres.2022.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background Thyroid hormones are indispensable for organ development and maintaining homeostasis. Thyroid diseases, including thyroiditis and thyroid cancer, affect the normal secretion of hormones and result in thyroid dysfunction. Objective This review focuses on therapeutic applications of stem cells for thyroid diseases. Methods A literature search of Medline and PubMed was conducted (January 2000–July 2021) to identify recent reports on stem cell therapy for thyroid diseases. Results Stem cells are partially developed cell types. They have the capacity to form specialized cells. Besides embryonic stem cells and mesenchymal stem cells, organ resident stem cells and cancer stem cells are recently reported to have important roles in forming organ specific cells and cancers. Stem cells, especially mesenchymal stem cells, have anti-inflammatory and anticancer functions as well. Conclusions This review outlines the therapeutic potency of embryonic stem cells, mesenchymal stem cells, thyroid resident stem cells, and thyroid cancer stem cells in thyroid cells’ regeneration, thyroid function modulation, thyroiditis suppression, and antithyroid cancers. Stem cells represent a promising form of treatment for thyroid disorders.
Collapse
|
23
|
Peng J, Liang Q, Xu Z, Cai Y, Peng B, Li J, Zhang W, Kang F, Hong Q, Yan Y, Zhang M. Current Understanding of Exosomal MicroRNAs in Glioma Immune Regulation and Therapeutic Responses. Front Immunol 2022; 12:813747. [PMID: 35095909 PMCID: PMC8796999 DOI: 10.3389/fimmu.2021.813747] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Exosomes, the small extracellular vesicles, are released by multiple cell types, including tumor cells, and represent a novel avenue for intercellular communication via transferring diverse biomolecules. Recently, microRNAs (miRNAs) were demonstrated to be enclosed in exosomes and therefore was protected from degradation. Such exosomal miRNAs can be transmitted to recipient cells where they could regulate multiple cancer-associated biological processes. Accumulative evidence suggests that exosomal miRNAs serve essential roles in modifying the glioma immune microenvironment and potentially affecting the malignant behaviors and therapeutic responses. As exosomal miRNAs are detectable in almost all kinds of biofluids and correlated with clinicopathological characteristics of glioma, they might be served as promising biomarkers for gliomas. We reviewed the novel findings regarding the biological functions of exosomal miRNAs during glioma pathogenesis and immune regulation. Furthermore, we elaborated on their potential clinical applications as biomarkers in glioma diagnosis, prognosis and treatment response prediction. Finally, we summarized the accessible databases that can be employed for exosome-associated miRNAs identification and functional exploration of cancers, including glioma.
Collapse
Affiliation(s)
- Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther 2022; 29:1105-1116. [PMID: 35082400 DOI: 10.1038/s41417-022-00427-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/11/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are known as promising sources for cancer therapy and can be utilized as vehicles in cancer gene therapy. MSC-derived exosomes are central mediators in the therapeutic functions of MSCs, known as the novel cell-free alternatives to MSC-based cell therapy. MSC-derived exosomes show advantages including higher safety as well as more stability and convenience for storage, transport and administration compared to MSCs transplant therapy. Unmodified MSC-derived exosomes can promote or inhibit tumors while modified MSC-derived exosomes are involved in the suppression of cancer development and progression via the delivery of several therapeutics molecules including chemotherapeutic drugs, miRNAs, anti-miRNAs, specific siRNAs, and suicide gene mRNAs. In most malignancies, dysregulation of miRNAs not only occurs as a consequence of cancer progression but also is directly involved during tumor initiation and development due to their roles as oncogenes (oncomiRs) or tumor suppressors (TS-miRNAs). MiRNA restoration is usually achieved by overexpression of TS-miRNAs using synthetic miRNA mimics and viral vectors or even downregulation of oncomiRs using anti-miRNAs. Similar to other therapeutic molecules, the efficacy of miRNAs restoration in cancer therapy depends on the effectiveness of the delivery system. In the present review, we first provided an overview of the properties and potentials of MSCs in cancer therapy as well as the application of MSC-derived exosomes in cancer therapy. Finally, we specifically focused on harnessing the MSC-derived exosomes for the aim of miRNA delivery in cancer therapy.
Collapse
|
25
|
Mahhengam N, Kazemnezhad K, Setia Budi H, Ansari MJ, Olegovich Bokov D, Suksatan W, Thangavelu L, Siahmansouri H. Targeted therapy of tumor microenvironment by gold nanoparticles as a new therapeutic approach. J Drug Target 2022; 30:494-510. [DOI: 10.1080/1061186x.2022.2032095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Kimia Kazemnezhad
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University,Al-kharj, Saudi Arabia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Gonçalves M, Kairys V, Rodrigues J, Tomás H. Polyester Dendrimers Based on Bis-MPA for Doxorubicin Delivery. Biomacromolecules 2022; 23:20-33. [PMID: 34870412 DOI: 10.1021/acs.biomac.1c00455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although doxorubicin (DOX) is one of the most used chemotherapeutic drugs due to its efficacy against a wide group of cancer types, it presents severe side effects. As such, intensive research is being carried out to find new nanoscale systems that can help to overcome this problem. Polyester dendrimers based on the monomer 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) are very promising systems for biomedical applications due to their biodegradability properties. In this study, bis-MPA-based dendrimers were, for the first time, evaluated as DOX delivery vehicles. Generations 4 and 5 of bis-MPA-based dendrimers with hydroxyl groups at the surface were used (B-G4-OH and B-G5-OH), together with dendrimers partially functionalized with amine groups (B-G4-NH2/OH and B-G5-NH2/OH). Partial functionalization was chosen because the main purpose was to compare the effect of different functional groups on dendrimers' drug delivery behavior without compromising cell viability, which is often affected by dendrimers' cationic charge. Results revealed that bis-MPA-based dendrimers were cytocompatible, independently of the chemical groups that were present at their surface. The B-G4-NH2/OH and B-G5-NH2/OH dendrimers were able to retain a higher number of DOX molecules, but the in vitro release of the drug was faster. On the contrary, the hydroxyl-terminated dendrimers exhibited a lower loading capacity but were able to deliver the drug in a more sustained manner. These results were in accordance with the cytotoxicity studies performed in several models of cancer cell lines and human mesenchymal stem cells. Overall, the results confirmed that it is possible to tune the drug delivery properties of bis-MPA-based dendrimers by modifying surface functionalization. Moreover, molecular modeling studies provided insights into the nature of the interactions established between the drug and the bis-MPA-based dendrimers─DOX molecules attach to their surface rather than being physically encapsulated.
Collapse
Affiliation(s)
- Mara Gonçalves
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Avenue 7, LT-10257 Vilnius, Lithuania
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
27
|
Cigarette smoke-promoted increases in osteopontin expression attract mesenchymal stem cell recruitment and facilitate lung cancer metastasis. J Adv Res 2021; 41:77-87. [DOI: 10.1016/j.jare.2021.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
|
28
|
Xuan X, Tian C, Zhao M, Sun Y, Huang C. Mesenchymal stem cells in cancer progression and anticancer therapeutic resistance. Cancer Cell Int 2021; 21:595. [PMID: 34736460 PMCID: PMC8570012 DOI: 10.1186/s12935-021-02300-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that the tumor microenvironment appears to play an increasingly important role in cancer progression and therapeutic resistance. Several types of cells within the tumor stroma had distinct impacts on cancer progression, either promoting or inhibiting cancer cell growth. Mesenchymal stem cells (MSCs) are a distinct type of cells that is linked to tumor development. MSCs are recognized for homing to tumor locations and promoting or inhibiting cancer cell proliferation, angiogenesis and metastasis. Moreover, emerging studies suggests that MSCs are also involved in therapeutic resistance. In this review, we analyzed the existing researches and elaborate on the functions of MSCs in cancer progression and anticancer therapeutic resistance, demonstrating that MSCs may be a viable cancer therapeutic target.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chunxia Tian
- Department of Cardiology, Hubei Provincial Hospital of TCM, Wuhan, 430022, Hubei, China
| | - Mengjie Zhao
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan, 430022, Hubei, China.
| | - Yanhong Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
29
|
Gonzalez-Pastor R, Hernandez Y, Gimeno M, de Martino A, Man YS, Hallden G, Quintanilla M, de la Fuente JM, Martin-Duque P. Coating an adenovirus with functionalized gold nanoparticles favors uptake, intracellular trafficking and anti-cancer therapeutic efficacy. Acta Biomater 2021; 134:593-604. [PMID: 34325075 DOI: 10.1016/j.actbio.2021.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Adenoviral (Ad) vectors have proven to be important tools for gene and cell therapy, although some issues still need to be addressed, such as undesired interactions with blood components and off-target sequestration that ultimately hamper efficacy. In the past years, several organic and inorganic materials have been developed to reduce immunogenicity and improve biodistribution of Ad vectors. Here we investigated the influence of the functionalization of 14 nm PEGylated gold nanoparticles (AuNPs) with quaternary ammonium groups and an arginine-glycine-aspartic acid (RGD)-motif on the uptake and biodistribution of Ad vectors. We report the formation of Ad@AuNPs complexes that promote cell attachment and uptake, independently of the presence of the coxsackievirus and adenovirus receptor (CAR) and αvβ3 and αvβ5 integrins, significantly improving transduction without limiting Ad bioactivity. Besides, the presence of the RGD peptide favors tumor targeting and decreases Ad sequestration in the liver. Additionally, tumor delivery of a coated Ad vector expressing the human sodium iodide symporter (hNIS) by mesenchymal stem cells induces increased accumulation of radioactive iodine (131I) and tumor volume reduction compared to naked Ad-hNIS, highlighting the promising potential of our coating formulation in cancer gene therapy. STATEMENT OF SIGNIFICANCE: Modification of adenoviral vectors with lipids and polymers can reduce interactions with blood components and increase tumor accumulation; however, increased toxicity and reduced transduction efficiency were indicated. Coating with gold nanoparticles has proven to be a successful strategy for increasing the efficiency of transduction of receptor-defective cell lines. Here we explore the contribution of cell surface receptors on the mechanisms of entry of Ad vectors coated with gold nanoparticles in cell lines with varying degrees of resistance to infection. The enhancement of the anti-tumoral effect shown in this work provides new evidence for the potential of our formulation.
Collapse
|
30
|
Kwong GA, Ghosh S, Gamboa L, Patriotis C, Srivastava S, Bhatia SN. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat Rev Cancer 2021; 21:655-668. [PMID: 34489588 PMCID: PMC8791024 DOI: 10.1038/s41568-021-00389-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Detection of cancer at an early stage when it is still localized improves patient response to medical interventions for most cancer types. The success of screening tools such as cervical cytology to reduce mortality has spurred significant interest in new methods for early detection (for example, using non-invasive blood-based or biofluid-based biomarkers). Yet biomarkers shed from early lesions are limited by fundamental biological and mass transport barriers - such as short circulation times and blood dilution - that limit early detection. To address this issue, synthetic biomarkers are being developed. These represent an emerging class of diagnostics that deploy bioengineered sensors inside the body to query early-stage tumours and amplify disease signals to levels that could potentially exceed those of shed biomarkers. These strategies leverage design principles and advances from chemistry, synthetic biology and cell engineering. In this Review, we discuss the rationale for development of biofluid-based synthetic biomarkers. We examine how these strategies harness dysregulated features of tumours to amplify detection signals, use tumour-selective activation to increase specificity and leverage natural processing of bodily fluids (for example, blood, urine and proximal fluids) for easy detection. Finally, we highlight the challenges that exist for preclinical development and clinical translation of synthetic biomarker diagnostics.
Collapse
Affiliation(s)
- Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Sharmistha Ghosh
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lena Gamboa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Christos Patriotis
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
31
|
Abdul-Al M, Kyeremeh GK, Saeinasab M, Heidari Keshel S, Sefat F. Stem Cell Niche Microenvironment: Review. Bioengineering (Basel) 2021; 8:bioengineering8080108. [PMID: 34436111 PMCID: PMC8389324 DOI: 10.3390/bioengineering8080108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
The cornea comprises a pool of self-regenerating epithelial cells that are crucial to preserving clarity and visibility. Limbal epithelial stem cells (LESCs), which live in a specialized stem cell niche (SCN), are crucial for the survival of the human corneal epithelium. They live at the bottom of the limbal crypts, in a physically enclosed microenvironment with a number of neighboring niche cells. Scientists also simplified features of these diverse microenvironments for more analysis in situ by designing and recreating features of different SCNs. Recent methods for regenerating the corneal epithelium after serious trauma, including burns and allergic assaults, focus mainly on regenerating the LESCs. Mesenchymal stem cells, which can transform into self-renewing and skeletal tissues, hold immense interest for tissue engineering and innovative medicinal exploration. This review summarizes all types of LESCs, identity and location of the human epithelial stem cells (HESCs), reconstruction of LSCN and artificial stem cells for self-renewal.
Collapse
Affiliation(s)
- Mohamed Abdul-Al
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD71DP, UK; (M.A.-A.); (G.K.K.)
| | - George Kumi Kyeremeh
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD71DP, UK; (M.A.-A.); (G.K.K.)
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91779 48974, Iran;
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839 69411, Iran;
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD71DP, UK; (M.A.-A.); (G.K.K.)
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD71DP, UK
- Correspondence:
| |
Collapse
|
32
|
Abstract
Drug delivery systems have shown tremendous promise to improve the diagnostic and therapeutic effects of drugs due to their special property. Targeting tissue damage, tumors, or drugs with limited toxicity at the site of infection is the goal of successful pharmaceuticals. Targeted drug delivery has become significantly important in enhancing the pharmaceutical effects of drugs and reducing their side effects of therapeutics in the treatment of various disease conditions. Unfortunately, clinical translation of these targeted drug delivery system mechanisms faces many challenges. At present, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even though numerous surface markers and targeting approaches have been developed. Thus, cell-mediated drug-delivery targeting systems have received considerable attention for their enhanced therapeutic specificity and efficacy in the treatment of the disease. This review highlights the recent advances in the design of the different types of cells that have been explored for cell-mediated drug delivery and targeting mechanisms. A better understanding of cell biology orientation and a new generation of delivery strategies that utilize these endogenous approaches are expected to provide better solutions for specific site delivery and further facilitate clinical translation.
Collapse
Affiliation(s)
- Hongli Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Zhihong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fei Li
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lisa Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Ahmed N, Gandhi D, Melhem ER, Frenkel V. MRI Guided Focused Ultrasound-Mediated Delivery of Therapeutic Cells to the Brain: A Review of the State-of-the-Art Methodology and Future Applications. Front Neurol 2021; 12:669449. [PMID: 34220679 PMCID: PMC8248790 DOI: 10.3389/fneur.2021.669449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Stem cell and immune cell therapies are being investigated as a potential therapeutic modality for CNS disorders, performing functions such as targeted drug or growth factor delivery, tumor cell destruction, or inflammatory regulation. Despite promising preclinical studies, delivery routes for maximizing cell engraftment, such as stereotactic or intrathecal injection, are invasive and carry risks of hemorrhage and infection. Recent developments in MRI-guided focused ultrasound (MRgFUS) technology have significant implications for treating focal CNS pathologies including neurodegenerative, vascular and malignant processes. MRgFUS is currently employed in the clinic for treating essential tremor and Parkinson's Disease by producing precise, incisionless, transcranial lesions. This non-invasive technology can also be modified for non-destructive applications to safely and transiently open the blood-brain barrier (BBB) to deliver a range of therapeutics, including cells. This review is meant to familiarize the neuro-interventionalist with this topic and discusses the use of MRgFUS for facilitating cellular delivery to the brain. A detailed and comprehensive description is provided on routes of cell administration, imaging strategies for targeting and tracking cellular delivery and engraftment, biophysical mechanisms of BBB enhanced permeability, supportive proof-of-concept studies, and potential for clinical translation.
Collapse
Affiliation(s)
- Nabid Ahmed
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dheeraj Gandhi
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor Frenkel
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
35
|
Biomimetic Nanotechnology: A Natural Path Forward for Tumor-Selective and Tumor-Specific NIR Activable Photonanomedicines. Pharmaceutics 2021; 13:pharmaceutics13060786. [PMID: 34070233 PMCID: PMC8225032 DOI: 10.3390/pharmaceutics13060786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of biomimetic nanotechnology has seen an exponential rise over the past decade with applications in regenerative medicine, immunotherapy and drug delivery. In the context of nanomedicines activated by near infrared (NIR) photodynamic processes (photonanomedicines; PNMs), biomimetic nanotechnology is pushing the boundaries of activatable tumor targeted nanoscale drug delivery systems. This review discusses how, by harnessing a unique collective of biological processes critical to targeting of solid tumors, biomimetic PNMs (bPNMs) can impart tumor cell specific and tumor selective photodynamic therapy-based combination regimens. Through molecular immune evasion and self-recognition, bPNMs can confer both tumor selectivity (preferential bulk tumor accumulation) and tumor specificity (discrete molecular affinity for cancer cells), respectively. They do so in a manner that is akin, yet arguably superior, to synthetic molecular-targeted PNMs. A particular emphasis is made on how bPNMs can be engineered to circumvent tumor cell heterogeneity, which is considered the Achilles’ heel of molecular targeted therapeutics. Forward-looking propositions are also presented on how patient tumor heterogeneity can ultimately be recapitulated to fabricate patient-specific, heterogeneity-targeting bPNMs.
Collapse
|
36
|
Ni Y, Zhou X, Yang J, Shi H, Li H, Zhao X, Ma X. The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment. Front Cell Dev Biol 2021; 9:637675. [PMID: 34095111 PMCID: PMC8173135 DOI: 10.3389/fcell.2021.637675] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer cells resistance to various therapies remains to be a key challenge nowadays. For a long time, scientists focused on tumor cells themselves for the mechanisms of acquired drug resistance. However, recent evidence showed that tumor microenvironment (TME) is essential for regulating immune escape, drug resistance, progression and metastasis of malignant cells. Reciprocal interactions between cancer cells and non-malignant cells within this milieu often reshape the TME and promote drug resistance. Therefore, advanced knowledge about these sophisticated interactions is significant for the design of effective therapeutic approaches. In this review, we highlight cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory lymphocytes (Tregs), mesenchymal stem cells (MSCs), cancer-associated adipocytes (CAAs), and tumor endothelial cells (TECs) existing in TME, as well as their multiple cross-talk with tumor cells, which eventually endows tumor cells with therapeutic resistance.
Collapse
Affiliation(s)
- Yanghong Ni
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jia Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Houhui Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Motohara T, Yoshida GJ, Katabuchi H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. Semin Cancer Biol 2021; 77:182-193. [PMID: 33812986 DOI: 10.1016/j.semcancer.2021.03.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
The concept of a "cancer stem cell" has evolved over the past decades, and research on cancer stem cell biology has entered into a stage of remarkable progress. Cancer stem cells are a major determining factor contributing to the establishment of phenotypic and functional intratumoral heterogeneity in synchronization with their surrounding "cancer stem cell niches." They serve as the driving force for cancer initiation, metastasis, and therapeutic resistance in various types of malignancies. In verity, reciprocal interplay between ovarian cancer stem cells and their niches involves a complex but ingeniously orchestrated tumor microenvironment within the intraperitoneal milieu and especially contribute to chemotherapy resistance in patients with advanced ovarian cancer. Herein, we review the principles of our current understanding of the biological features of ovarian cancer stem cells, focusing mainly on the precise mechanisms underlying acquired chemotherapy resistance. Furthermore, we highlight the specific roles of various cancer-associated stromal and immune cells in creating possible cancer stem cell niches that regulate ovarian cancer stemness.
Collapse
Affiliation(s)
- Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.
| | - Go J Yoshida
- Department of Immunological Diagnosis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| |
Collapse
|
38
|
Su Y, Zhang T, Huang T, Gao J. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. Int J Pharm 2021; 600:120477. [PMID: 33737099 DOI: 10.1016/j.ijpharm.2021.120477] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as a promising living carrier for targeted drug delivery. A wealth of literature has shown evidence for great advances in MSCs-based drug delivery system (MSCs-DDS) in the treatment of various diseases. Nevertheless, as this field of study rapidly advances, several challenges associated with this delivery strategy have arisen, mainly due to the inherent limitations of MSCs. To this end, several novel technologies are being developed in parallel to improve the efficiency or safety of this system. In this review, we introduce recent advances and summarize the present challenges of MSCs-DDS. We also highlight some potential technologies to improve MSCs-DDS, including nanotechnology, genome engineering technology, and biomimetic technology. Finally, prospects for application of artificially improved MSCs-DDS are addressed. The technologies summarized in this review provide a general guideline for the improvement of MSCs-DDS.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol 2021; 14:24. [PMID: 33579329 PMCID: PMC7880217 DOI: 10.1186/s13045-021-01037-x] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have been intensely investigated for clinical applications within the last decades. However, the majority of registered clinical trials applying MSC therapy for diverse human diseases have fallen short of expectations, despite the encouraging pre-clinical outcomes in varied animal disease models. This can be attributable to inconsistent criteria for MSCs identity across studies and their inherited heterogeneity. Nowadays, with the emergence of advanced biological techniques and substantial improvements in bio-engineered materials, strategies have been developed to overcome clinical challenges in MSC application. Here in this review, we will discuss the major challenges of MSC therapies in clinical application, the factors impacting the diversity of MSCs, the potential approaches that modify MSC products with the highest therapeutic potential, and finally the usage of MSCs for COVID-19 pandemic disease.
Collapse
|
40
|
Banani MA, Rahmatullah M, Farhan N, Hancox Z, Yousaf S, Arabpour Z, Moghaddam ZS, Mozafari M, Sefat F. Adipose tissue-derived mesenchymal stem cells for breast tissue regeneration. Regen Med 2021; 16:47-70. [PMID: 33533667 DOI: 10.2217/rme-2020-0045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With an escalating incidence of breast cancer cases all over the world and the deleterious psychological impact that mastectomy has on patients along with several limitations of the currently applied modalities, it's plausible to seek unconventional approaches to encounter such a burgeoning issue. Breast tissue engineering may allow that chance via providing more personalized solutions which are able to regenerate, mimicking natural tissues also facing the witnessed limitations. This review is dedicated to explore the utilization of adipose tissue-derived mesenchymal stem cells for breast tissue regeneration among postmastectomy cases focusing on biomaterials and cellular aspects in terms of harvesting, isolation, differentiation and new tissue formation as well as scaffolds types, properties, material-host interaction and an in vitro breast tissue modeling.
Collapse
Affiliation(s)
- Mohammed A Banani
- Division of Surgery & Interventional Science, University College London, London, NW3 2PS, UK
| | - Mohammed Rahmatullah
- Division of Surgery & Interventional Science, University College London, London, NW3 2PS, UK
| | - Nawras Farhan
- Division of Surgery & Interventional Science, University College London, London, NW3 2PS, UK
| | - Zoe Hancox
- Department of Biomedical & Electronics Engineering, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Safiyya Yousaf
- Department of Biomedical & Electronics Engineering, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Zohreh Arabpour
- Department of Biomedical & Electronics Engineering, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Zoha Salehi Moghaddam
- Department of Biomedical & Electronics Engineering, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK.,Interdisciplinary Research Centre in Polymer Science & Technology (IRC Polymer), University of Bradford, Bradford, BD7 1DP, UK
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, M5G 1X5, Canada
| | - Farshid Sefat
- Department of Biomedical & Electronics Engineering, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK.,Interdisciplinary Research Centre in Polymer Science & Technology (IRC Polymer), University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
41
|
Oncolytic virotherapy: Challenges and solutions. Curr Probl Cancer 2021; 45:100639. [DOI: 10.1016/j.currproblcancer.2020.100639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
|
42
|
Moreno R. Mesenchymal stem cells and oncolytic viruses: joining forces against cancer. J Immunother Cancer 2021; 9:e001684. [PMID: 33558278 PMCID: PMC7871674 DOI: 10.1136/jitc-2020-001684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
The development of oncolytic viruses (OVs) has increased significantly in the past 20 years, with many candidates entering clinical trials and three of them receiving approval for some indications. Recently, OVs have also gathered interest as candidates to use in combination with immunotherapies for cancer due to their immunogenic properties, which include immunogenic cell death and the possibility to carry therapeutic transgenes in their genomes. OVs transform non-immunogenic 'cold' tumors into inflamed immunogenic 'hot' tumors, where immunotherapies show the highest efficacy. However, in monotherapy or in combination with immunotherapy, OVs face numerous challenges that limit their successful application, in particular upon systemic administration, such as liver sequestration, neutralizing interactions in blood, physical barriers to infection, and fast clearance by the immune system. In this regard, the use of mesenchymal stem cells (MSCs) as cells carrier for OV delivery addresses many of these obstacles acting as virus carriers and factories, expressing additional transgenes, and modulating the immune system. Here, I review the current progress of OVs-loaded MSCs in cancer, focusing on their interaction with the immune system, and discuss new strategies to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Rafael Moreno
- Virotherapy and immunotherapy group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Cancer Virotherapy group, Oncobell Program, Institutd'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
43
|
Kelly JJ, Saee-Marand M, Nyström NN, Evans MM, Chen Y, Martinez FM, Hamilton AM, Ronald JA. Safe harbor-targeted CRISPR-Cas9 homology-independent targeted integration for multimodality reporter gene-based cell tracking. SCIENCE ADVANCES 2021; 7:eabc3791. [PMID: 33523917 PMCID: PMC7817109 DOI: 10.1126/sciadv.abc3791] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/25/2020] [Indexed: 05/12/2023]
Abstract
Imaging reporter genes provides longitudinal information on the biodistribution, growth, and survival of engineered cells in vivo. A translational bottleneck to using reporter genes is the necessity to engineer cells with randomly integrating vectors. Here, we built homology-independent targeted integration (HITI) CRISPR-Cas9 minicircle donors for precise safe harbor-targeted knock-in of fluorescence, bioluminescence, and MRI (Oatp1a1) reporter genes. Our results showed greater knock-in efficiency using HITI vectors compared to homology-directed repair vectors. HITI clones demonstrated functional fluorescence and bioluminescence reporter activity as well as significant Oatp1a1-mediated uptake of the clinically approved MRI agent gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid. Contrast-enhanced MRI improved the conspicuity of both subcutaneous and metastatic Oatp1a1-expressing tumors before they became palpable or even readily visible on precontrast images. Our work demonstrates the first CRISPR-Cas9 HITI system for knock-in of large DNA donor constructs at a safe harbor locus, enabling multimodal longitudinal in vivo imaging of cells.
Collapse
Affiliation(s)
- John J Kelly
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Moe Saee-Marand
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Nivin N Nyström
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Melissa M Evans
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Yuanxin Chen
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Francisco M Martinez
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Amanda M Hamilton
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - John A Ronald
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
44
|
Kumar PR, Moore JA, Bowles KM, Rushworth SA, Moncrieff MD. Mitochondrial oxidative phosphorylation in cutaneous melanoma. Br J Cancer 2021; 124:115-123. [PMID: 33204029 PMCID: PMC7782830 DOI: 10.1038/s41416-020-01159-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
The Warburg effect in tumour cells is associated with the upregulation of glycolysis to generate ATP, even under normoxic conditions and the presence of fully functioning mitochondria. However, scientific advances made over the past 15 years have reformed this perspective, demonstrating the importance of oxidative phosphorylation (OXPHOS) as well as glycolysis in malignant cells. The metabolic phenotypes in melanoma display heterogeneic dynamism (metabolic plasticity) between glycolysis and OXPHOS, conferring a survival advantage to adapt to harsh conditions and pathways of chemoresistance. Furthermore, the simultaneous upregulation of both OXPHOS and glycolysis (metabolic symbiosis) has been shown to be vital for melanoma progression. The tumour microenvironment (TME) has an essential supporting role in promoting progression, invasion and metastasis of melanoma. Mesenchymal stromal cells (MSCs) in the TME show a symbiotic relationship with melanoma, protecting tumour cells from apoptosis and conferring chemoresistance. With the significant role of OXPHOS in metabolic plasticity and symbiosis, our review outlines how mitochondrial transfer from MSCs to melanoma tumour cells plays a key role in melanoma progression and is the mechanism by which melanoma cells regain OXPHOS capacity even in the presence of mitochondrial mutations. The studies outlined in this review indicate that targeting mitochondrial trafficking is a potential novel therapeutic approach for this highly refractory disease.
Collapse
Affiliation(s)
- Prakrit R Kumar
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Jamie A Moore
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kristian M Bowles
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Stuart A Rushworth
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Marc D Moncrieff
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK.
- Department of Plastic and Reconstructive Surgery, Norfolk and Norwich University Hospital, Norwich, NR4 7UY, UK.
| |
Collapse
|
45
|
Bomba HN, Sheets KT, Valdivia A, Khagi S, Ruterbories L, Mariani CL, Borst LB, Tokarz DA, Hingtgen SD. Personalized-induced neural stem cell therapy: Generation, transplant, and safety in a large animal model. Bioeng Transl Med 2021; 6:e10171. [PMID: 33532581 PMCID: PMC7823134 DOI: 10.1002/btm2.10171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, we take an important step toward clinical translation by generating the first canine-induced neural stem cells (iNSCs). We explore key aspects of scale-up, persistence, and safety of personalized iNSC therapy in autologous canine surgery models. iNSCs are a promising new approach to treat aggressive cancers of the brain, including the deadly glioblastoma. Created by direct transdifferentiation of fibroblasts, iNSCs are known to migrate through the brain, track down invasive cancer foci, and deliver anticancer payloads that significantly reduce tumor burden and extend survival of tumor-bearing mice. Here, skin biopsies were collected from canines and converted into the first personalized canine iNSCs engineered to carry TNFα-related apoptosis-inducing ligand (TRAIL) and thymidine kinase (TK), as well as magnetic resonance imaging (MRI) contrast agents for in vivo tracking. Time-lapse analysis showed canine iNSCs efficiently migrate to human tumor cells, and cell viability assays showed both TRAIL and TK monotherapy markedly reduced tumor growth. Using intraoperative navigation and two delivery methods to closely mimic human therapy, canines received autologous iNSCs either within postsurgical cavities in a biocompatible matrix or via a catheter placed in the lateral ventricle. Both strategies were well tolerated, and serial MRI showed hypointense regions at the implant sites that remained stable through 86 days postimplant. Serial fluid sample testing following iNSC delivery showed the bimodal personalized therapy was well tolerated, with no iNSC-induced abnormal tissue pathology. Overall, this study lays an important foundation as this promising personalized cell therapy advances toward human patient testing.
Collapse
Affiliation(s)
- Hunter N. Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kevin T. Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Simon Khagi
- Department of NeurosurgeryThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Laura Ruterbories
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Christopher L. Mariani
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Luke B. Borst
- Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Debra A. Tokarz
- Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
46
|
Bush LM, Healy CP, Javdan SB, Emmons JC, Deans TL. Biological Cells as Therapeutic Delivery Vehicles. Trends Pharmacol Sci 2020; 42:106-118. [PMID: 33342562 DOI: 10.1016/j.tips.2020.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
One of the significant challenges remaining in the field of drug delivery is insufficient targeting of diseased tissues or cells. While efforts to perform targeted drug delivery by engineered nanoparticles have shown some success, there are underlying targeting, toxicity, and immunogenicity challenges. By contrast, live cells usually have innate targeting mechanisms, and can be used as drug-delivery vehicles to increase the efficiency with which a drug accumulates to act on the intended tissue. In some cases, when no native cell types exhibit the desired therapeutic phenotype, preferred outcomes can be achieved by genetically modifying and reprogramming cells with gene circuits. This review highlights recent advances in the use of cells to deliver therapeutics. Specifically, we discuss how red blood cells (RBCs), platelets, neutrophils, mesenchymal stem cells (MSCs), and bacteria have been utilized to advance drug delivery.
Collapse
Affiliation(s)
- Lucas M Bush
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Connor P Healy
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Shwan B Javdan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Jonathan C Emmons
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
47
|
Coccè V, Bonomi A, Cavicchini L, Sisto F, Giannì A, Farronato G, Alessandri G, Petrella F, Sordi V, Parati E, Bondiolotti G, Paino F, Pessina A. Paclitaxel Priming of TRAIL Expressing Mesenchymal Stromal Cells (MSCs-TRAIL) Increases Antitumor Efficacy of Their Secretome. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-111520. [PMID: 33200709 DOI: 10.2174/1568009620666201116112153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adipose tissue derived MSCs engineered with the tumor necrosis factor-related apoptosis-inducing ligand protein (MSCs-TRAIL) have a significant anticancer activity. MSCs, without any genetic modifications, exposed to high doses of chemotherapeutic agents are able to uptake the drug and release it in amount affecting tumor proliferation. The purpose of this study was to verify the ability of MSCs-TRAIL to uptake and release paclitaxel (PTX) by providing an increased antitumor efficacy. METHODS MSCs and MSCs-TRAIL were tested for their sensitivity to Paclitaxel (PTX) by MTT assay and the cells were loaded with PTX according to a standardized procedure. The secretome was analysed by HPLC for the presence of PTX, microarray assay for soluble TRAIL (s-TRAIL) and tested for in vitro anticancer activity. RESULTS MSCs-TRAIL were resistant to PTX and able to incorporate and then release the drug. The secretion of s-TRAIL by PTX loaded MSCs-TRAIL was not inhibited and the PTX delivery together with s-TRAIL secretion resulted into an increased antitumor efficacy of cell secretoma as tested in vitro on human pancreatic carcinoma (CFPAC-1) and glioblastoma (U87-MG). CONCLUSIONS Our result is the first demonstration of the possible merging of two new MSCs therapy approaches based on genetic manipulation and drug delivery. If confirmed in vivo, this could potentiate the efficacy of MSCs-TRAIL and strongly contribute to reduce the toxicity due to the systemic treatment of PTX.
Collapse
Affiliation(s)
- Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Arianna Bonomi
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Loredana Cavicchini
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Francesca Sisto
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Aldo Giannì
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Giampietro Farronato
- Department of Biomedical, Surgical and Dental Sciences, Unit of Orthodontics and Paediatric Dentistry, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano. Italy
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan. Italy
| | - Francesco Petrella
- Department of Oncology and Hematology, University of Milan, Milan. Italy
| | - Valeria Sordi
- San Raffaele Diabetes Research Institute; San Raffaele Scientific Institute, Milan. Italy
| | - Eugenio Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan. Italy
| | - Gianpietro Bondiolotti
- Department of Medical Biotechnology and Translational Medicine, University of Milan. Italy
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| |
Collapse
|
48
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
49
|
Understanding and addressing barriers to successful adenovirus-based virotherapy for ovarian cancer. Cancer Gene Ther 2020; 28:375-389. [PMID: 32951021 DOI: 10.1038/s41417-020-00227-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023]
Abstract
Ovarian cancer is the leading cause of death among women with gynecological cancer, with an overall 5-year survival rate below 50% due to a lack of specific symptoms, late stage at time of diagnosis and a high rate of recurrence after standard therapy. A better understanding of heterogeneity, genetic mutations, biological behavior and immunosuppression in the tumor microenvironment have allowed the development of more effective therapies based on anti-angiogenic treatments, PARP and immune checkpoint inhibitors, adoptive cell therapies and oncolytic vectors. Oncolytic adenoviruses are commonly used platforms in cancer gene therapy that selectively replicate in tumor cells and at the same time are able to stimulate the immune system. In addition, they can be genetically modified to enhance their potency and overcome physical and immunological barriers. In this review we highlight the challenges of adenovirus-based oncolytic therapies targeting ovarian cancer and outline recent advances to improve their potential in combination with immunotherapies.
Collapse
|
50
|
Harnessing cells to deliver nanoparticle drugs to treat cancer. Biotechnol Adv 2020; 42:107339. [DOI: 10.1016/j.biotechadv.2019.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/27/2022]
|