1
|
Li J, Mascarinas P, McGlinn E. The expanding roles of Nr6a1 in development and evolution. Front Cell Dev Biol 2024; 12:1357968. [PMID: 38440075 PMCID: PMC10909835 DOI: 10.3389/fcell.2024.1357968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
The Nuclear Receptor (NR) family of transcriptional regulators possess the ability to sense signalling molecules and directly couple that to a transcriptional response. While this large class of proteins are united by sequence and structural homology, individual NR functional output varies greatly depending on their expression, ligand selectivity and DNA binding sequence specificity. Many NRs have remained somewhat enigmatic, with the absence of a defined ligand categorising them as orphan nuclear receptors. One example is Nuclear Receptor subfamily 6 group A member 1 (Nr6a1), an orphan nuclear receptor that has no close evolutionary homologs and thus is alone in subfamily 6. Nonetheless, Nr6a1 has emerged as an important player in the regulation of key pluripotency and developmental genes, as functionally critical for mid-gestational developmental progression and as a possible molecular target for driving evolutionary change in animal body plan. Here, we review the current knowledge on this enigmatic nuclear receptor and how it impacts development and evolution.
Collapse
|
2
|
Chang YC, Manent J, Schroeder J, Wong SFL, Hauswirth GM, Shylo NA, Moore EL, Achilleos A, Garside V, Polo JM, Trainor P, McGlinn E. Nr6a1 controls Hox expression dynamics and is a master regulator of vertebrate trunk development. Nat Commun 2022; 13:7766. [PMID: 36522318 PMCID: PMC9755267 DOI: 10.1038/s41467-022-35303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The vertebrate main-body axis is laid down during embryonic stages in an anterior-to-posterior (head-to-tail) direction, driven and supplied by posteriorly located progenitors. Whilst posterior expansion and segmentation appears broadly uniform along the axis, there is developmental and evolutionary support for at least two discrete modules controlling processes within different axial regions: a trunk and a tail module. Here, we identify Nuclear receptor subfamily 6 group A member 1 (Nr6a1) as a master regulator of trunk development in the mouse. Specifically, Nr6a1 was found to control vertebral number and segmentation of the trunk region, autonomously from other axial regions. Moreover, Nr6a1 was essential for the timely progression of Hox signatures, and neural versus mesodermal cell fate choice, within axial progenitors. Collectively, Nr6a1 has an axially-restricted role in all major cellular and tissue-level events required for vertebral column formation, supporting the view that changes in Nr6a1 levels may underlie evolutionary changes in axial formulae.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jan Manent
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jan Schroeder
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC Australia
| | - Siew Fen Lisa Wong
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Gabriel M. Hauswirth
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Natalia A. Shylo
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA
| | - Emma L. Moore
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA
| | - Annita Achilleos
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA ,grid.413056.50000 0004 0383 4764University of Nicosia, Nicosia, Cyprus
| | - Victoria Garside
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC Australia
| | - Paul Trainor
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA ,grid.412016.00000 0001 2177 6375Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas USA
| | - Edwina McGlinn
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
3
|
Liu X, Fan Z, Li Y, Li Z, Zhou Z, Yu X, Wan J, Min Z, Yang L, Li D. microRNA-196a-5p inhibits testicular germ cell tumor progression via NR6A1/E-cadherin axis. Cancer Med 2020; 9:9107-9122. [PMID: 33034957 PMCID: PMC7724306 DOI: 10.1002/cam4.3498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are a diverse group of neoplasms that are derived from dysfunctional fetal germ cells and can also present in extragonadal sites. The genetic drivers underlying malignant transformation of TGCTs have not been fully elucidated so far. The aim of the present study is to clarify the functional role and regulatory mechanism of miR‐196a‐5p in TGCTs. We demonstrated that miR‐196a‐5p was downregulated in TGCTs. It can inhibit the proliferation, migration, and invasion of testicular tumor cell lines including NT‐2 and NCCIT through targeting the NR6A1 gene, which we proved its role in promotion of cell proliferation and repression of cellular junction and aggregation. Mechanistically, NR6A1 inhibited E‐cadherin through binding with DR0 sites in the CDH1 gene promoter and recruiting methyltransferases Dnmt1. Further, NR6A1 promoted neuronal marker protein MAP2 expression in RA‐induced neurodifferentiation of NT‐2 cells and testicular tumor xenografts. Clinical histopathologically, NR6A1 was positively correlated with MAP2, and negatively correlated with E‐cadherin in TGCTs. These findings revealed that the miR‐196a‐5p represses cell proliferation, migration, invasion, and tumor neurogenesis by inhibition of NR6A1/E‐cadherin signaling axis, which may be a potential target for diagnosis and therapy of TGCTs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| | - Ziling Fan
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| | - Ye Li
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| | - Zhilan Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China.,Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhuan Zhou
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Xuehui Yu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Jingyu Wan
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| | - Ziqian Min
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| | - Lifang Yang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Dan Li
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| |
Collapse
|
4
|
Fang X, Lai Z, Liu J, Zhang C, Li S, Wu F, Zhou Z, Lei C, Dang R. A Novel 13 bp Deletion within the NR6A1 Gene Is Significantly Associated with Growth Traits in Donkeys. Animals (Basel) 2019; 9:ani9090681. [PMID: 31540006 PMCID: PMC6770516 DOI: 10.3390/ani9090681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 02/03/2023] Open
Abstract
Simple Summary The detection of genes potentially associated with economic traits and identification of effective variants can provide a basis for molecular marker-assisted selection of livestock. NR6A1 is a member of the nuclear receptor family and is an important candidate gene related to body size traits. Previous studies showed that NR6A1 gene was associated with body size traits in pigs and other livestock, however, it has not yet been observed in donkeys. In the current study, a 13 bp deletion in NR6A1 gene was firstly identified in donkeys. Analysis showed that this deletion had significant associations with body size traits. Abstract Nuclear receptor subfamily 6, group A, member 1 (NR6A1), as an important member of the nuclear receptor family, plays an important role in regulating growth, metabolism, and differentiation of embryonic stem cells. For this reason, the NR6A1 gene is considered to be a promising candidate for economic traits and was found to be associated with body size traits in many livestock. However, no studies have been conducted on NR6A1 in donkeys so far. Thus, in this research, we focused on donkeys and identified a 13 bp deletion in intron-1 of the NR6A1 gene among 408 individuals from Guanzhong and Dezhou donkeys using polyacrylamide gel electrophoresis. Three genotypes were identified, namely II, ID, and DD. The association analysis indicated that the body lengths and body heights5f genotype II individuals were significantly different to those of genotype ID in Dezhou donkeys. Conclusively, the 13 bp deletion was associated with growth traits in both Guanzhong donkeys and Dezhou donkeys, indicating that the NR6A1 gene could be a possible candidate gene in marker-assisted selection for donkey breeding programs.
Collapse
Affiliation(s)
- Xiya Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Zhenyu Lai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Jie Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Chunlan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Shipeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Fei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Zihui Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
5
|
Jin X, Li Y, Guo Y, Jia Y, Qu H, Lu Y, Song P, Zhang X, Shao Y, Qi D, Xu W, Quan C. ERα is required for suppressing OCT4-induced proliferation of breast cancer cells via DNMT1/ISL1/ERK axis. Cell Prolif 2019; 52:e12612. [PMID: 31012189 PMCID: PMC6668970 DOI: 10.1111/cpr.12612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Objective POU5F1 (OCT4) is implicated in cancer stem cell self‐renewal. Currently, some studies have shown that OCT4 has a dual function in suppressing or promoting cancer progression. However, the precise molecular mechanism of OCT4 in breast cancer progression remains unclear. Materials and Methods RT‐PCR and Western blot were utilized to investigate OCT4 expression in breast cancer tissues and cells. Cell proliferation assays and mouse models were applied to determine the effects of OCT4 on breast cancer cell proliferation. DNMT1 inhibitors, ChIP, CoIP, IHC and ERα inhibitors were used to explore the molecular mechanism of OCT4 in breast cancer. Results OCT4 was down‐regulated in breast cancer tissues, and the overexpression of OCT4 promoted MDA‐MB‐231 cell proliferation and inhibited the proliferation of MCF‐7 cells in vitro and in vivo, respectively. Two DNMT1 inhibitors (5‐aza‐dC and zebularine) suppressed OCT4‐induced MDA‐MB‐231 cell proliferation through Ras/Raf1/ERK inactivation by targeting ISL1, which is the downstream of DNMT1. In contrast, OCT4 interacted with ERα, decreased DNMT1 expression and inactivated the Ras/Raf1/ERK signalling pathway in MCF‐7 cells. Moreover, ERα inhibitor (AZD9496) reversed the suppression of OCT4‐induced proliferation in MCF‐7 cells via the activation of ERK signalling pathway. Conclusions OCT4 is dependent on ERα to suppress the proliferation of breast cancer cells through DNMT1/ISL1/ERK axis.
Collapse
Affiliation(s)
- Xiangshu Jin
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yanru Li
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yantong Guo
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yiyang Jia
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Huinan Qu
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yan Lu
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Peiye Song
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xiaoli Zhang
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yijia Shao
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Da Qi
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Wenhong Xu
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chengshi Quan
- The Key Laboratory of Pathology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
6
|
Bizkarguenaga M, Gomez-Santos L, Madrid JF, Sáez FJ, Alonso E. Increase of germ cell nuclear factor expression in globozoospermic Gopc -/- knockout mice. Andrology 2019; 7:319-328. [PMID: 30786176 DOI: 10.1111/andr.12594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC) is a Golgi protein that plays a role in vesicular transport and intracellular protein trafficking and degradation. Mice deficient in GOPC protein have globozoospermia and are infertile. The germ cell nuclear factor (GCNF) is a member of the nuclear receptor superfamily which is expressed in male germ cells, from spermatocytes and spermatids, both in the nucleus and the acrosomal region. It is not known if its expression could be altered in Gopc-/- mice with defective acrosomes. OBJECTIVES The aim of the present work was to analyze the distribution of GCNF protein in spermatids of Gopc-/- knockout mice. MATERIALS AND METHODS We have analyzed the expression and distribution during spermatogenesis of GCNF and its deregulation in Gopc-/- mutant mice by RT-qPCR, Western blot, immunohistochemistry and immunogold. RESULTS Germ cell nuclear factor was localized in the nucleus of all the cell types in the seminiferous tubules. Despite being a nuclear protein, it was also located in the acrosome and in the manchette of elongating spermatids. We have found that in the absence of GOPC, the expression of GCNF was increased in the nucleus of spermatocytes, mainly in leptotene, and in the nucleus and the manchette during the spermatid elongation. DISCUSSION AND CONCLUSION Gopc-/- mice have defective acrosome and manchette. The manchette is involved in the transport of proteins through the cytoplasm and the nucleus. Considering that the GCNF protein is normally transported to the acrosome and the nucleus, it can be thought that transport deficiencies in Gopc-/- mice are responsible for the increased expression of this protein.
Collapse
Affiliation(s)
- M Bizkarguenaga
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - L Gomez-Santos
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - F J Sáez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - E Alonso
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
7
|
Kwon YW, Ahn HS, Park JY, Yang HM, Cho HJ, Kim HS. Imprinted gene Zinc finger protein 127 is a novel regulator of master pluripotency transcription factor, Oct4. BMB Rep 2018; 51:242-248. [PMID: 29335068 PMCID: PMC5988579 DOI: 10.5483/bmbrep.2018.51.5.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Indexed: 11/20/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) show great promise for replacing current stem cell therapies in the field of regenerative medicine. However, the original method for cellular reprogramming, involving four exogenous transcription factors, is characterized by low efficiency. Here, we focused on using epigenetic modifications to enhance the reprogramming efficiency. We hypothesized that there would be a new reprogramming factor involved in DNA demethylation, acting on the promoters of pluripotency-related genes. We screened proteins that bind to the methylated promoter of Oct4 and identified Zinc finger protein 127 (Zfp127), the functions of which have not yet been identified. We found that Zfp127 binds to the Oct4 promoter. Overexpression of Zfp127 in fibroblasts induced demethylation of the Oct4 promoter, thus enhancing Oct4 promoter activity and gene expression. These results demonstrate that Zfp127 is a novel regulator of Oct4, and may become a potent target to improve cellular reprogramming. [BMB Reports 2018; 51(5): 242-248].
Collapse
Affiliation(s)
- Yoo-Wook Kwon
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyo-Suk Ahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Joo-Young Park
- National Research Laboratory for Stem Cell Niche, Seoul National University, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Han-Mo Yang
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyo-Soo Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080; National Research Laboratory for Stem Cell Niche, Seoul National University, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080; Department of Internal Medicine, Seoul National University Hospital, Seoul 03080; Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
8
|
Wu F, Wu Q, Li D, Zhang Y, Wang R, Liu Y, Li W. Oct4 regulates DNA methyltransferase 1 transcription by direct binding of the regulatory element. Cell Mol Biol Lett 2018; 23:39. [PMID: 30140294 PMCID: PMC6097287 DOI: 10.1186/s11658-018-0104-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022] Open
Abstract
Background The transcription factor Oct4 plays a pivotal role in the pre-implantation development of the mouse embryo. DNA methyltransferase 1 (Dnmt1) maintains the changes in DNA methylation during mammalian early embryonic development. Little is known of the role of Oct4 in DNA methylation in mice. In this study, Kunming white mice were used as an animal model to reveal any correlation between DNA methylation and Oct4 during mammalian embryonic development. Results The expressions of Dnmt1 and Oct4 were initially studied using real-time PCR. They exhibited different patterns during the pre-implantation stage. Moreover, by using a promoter assay and ChIP analysis, we found that the transcriptional activities of Dnmt1 in mouse NIH/3 T3 cells and CCE cells were regulated by Oct4 through direct binding to the - 554 to - 294 fragment of the upstream regulation element of Dnmt1. The downregulation of Dnmt1 expression and enzyme activity by mouse Oct4 were further confirmed by transfecting Oct4 siRNA into mouse CCE cells. Conclusion Our results indicate that Oct4 is involved in DNA methylation through the regulation of Dnmt1 transcription, especially during the early stages of mouse pre-implantation embryo development.
Collapse
Affiliation(s)
- Fengrui Wu
- 1Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China.,2Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Qingqing Wu
- 1Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China.,2Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Dengkun Li
- 1Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China.,2Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Yuan Zhang
- 1Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China.,2Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Rong Wang
- 1Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China.,2Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- 1Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China.,2Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Wenyong Li
- 1Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China.,2Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| |
Collapse
|
9
|
Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics 2018; 10:17. [PMID: 29449903 PMCID: PMC5807744 DOI: 10.1186/s13148-018-0450-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/30/2018] [Indexed: 11/28/2022] Open
Abstract
Our current view of DNA methylation processes is strongly moving: First, even if it was generally admitted that DNMT3A and DNMT3B are associated with de novo methylation and DNMT1 is associated with inheritance DNA methylation, these distinctions are now not so clear. Secondly, since one decade, many partners of DNMTs have been involved in both the regulation of DNA methylation activity and DNMT recruitment on DNA. The high diversity of interactions and the combination of these interactions let us to subclass the different DNMT-including complexes. For example, the DNMT3L/DNMT3A complex is mainly related to de novo DNA methylation in embryonic states, whereas the DNMT1/PCNA/UHRF1 complex is required for maintaining global DNA methylation following DNA replication. On the opposite to these unspecific DNA methylation machineries (no preferential DNA sequence), some recently identified DNMT-including complexes are recruited on specific DNA sequences. The coexistence of both types of DNA methylation (un/specific) suggests a close cooperation and an orchestration between these systems to maintain genome and epigenome integrities. Deregulation of these systems can lead to pathologic disorders.
Collapse
Affiliation(s)
- Eric Hervouet
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | - Paul Peixoto
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | | | | | - Pierre-François Cartron
- 3INSERM unit S1232, University of Nantes, Nantes, France.,4Institut de cancérologie de l'Ouest, Nantes, France.,REpiCGO (Cancéropole Grand-Ouest), Nantes, France.,EpiSAVMEN Networks, Nantes, Région Pays de la Loire France
| |
Collapse
|
10
|
Zhang W, Zhou S, Gao Y, Song H, Jiao X, Wang X, Li Y. Alterations in DNA methyltransferases and methyl-CpG binding domain proteins during cleft palate formation as induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice. Mol Med Rep 2018; 17:5396-5401. [PMID: 29393476 DOI: 10.3892/mmr.2018.8521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
Maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces cleft palate formation in mice. This TCDD treatment, which may be considered an environmental factor in cleft palate formation, is associated with alterations in DNA methylation. However, the underlying molecular mechanisms of DNA methylation produced by TCDD in mouse embryos are poorly understood. DNA methyltransferases (DNMTs) and methyl‑CpG binding domain proteins (MBDs) are thought to be closely associated with the actions of DNA methylation. Therefore, the present study tested the hypothesis that this cleft palate inducing effect of TCDD will alter the expression levels of DNMTs and various MBDs in palate tissue of fetal mice. Pregnant C57BL/6J mice were treated with either TCDD (64 µg/kg) or corn oil (control) at embryonic day 10.5 (E10.5) and fetal palates were harvested for structural and molecular analyses at E13.5, E14.5, E15.5 and E17.5. Expression levels of DNMTs and MBDs were assayed using reverse transcription‑quantitative polymerase chain reaction and western blotting. The incidence of cleft palates in the TCDD group was 98.24%, whereas no cases of cleft palate were observed in the control group. Expression levels of DNMTs and MBDs were significantly increased in the TCDD group compared with the control. The results demonstrate clear alterations in DNMTs and MBDs, as induced by TCDD, and suggest that such alterations are important in cleft palate formation in fetal mice.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuwei Gao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongquan Song
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaohui Jiao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaotong Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yong Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
11
|
Park S, Do H, Choi W, Kim J, Song H, Seo HG, Kim J. GCNF regulates OCT4 expression through its interactions with nuclear receptor binding elements in NCCIT cells. J Cell Biochem 2017; 119:2719-2730. [DOI: 10.1002/jcb.26438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Sung‐Won Park
- Department of Biomedical Science, College of Life ScienceCHA UniversitySeongnam‐SiGyeonggi‐DoRepublic of Korea
| | - Hyun‐Jin Do
- Department of Biomedical Science, College of Life ScienceCHA UniversitySeongnam‐SiGyeonggi‐DoRepublic of Korea
| | - Wonbin Choi
- Department of Biomedical Science, College of Life ScienceCHA UniversitySeongnam‐SiGyeonggi‐DoRepublic of Korea
| | - Jin‐Hoi Kim
- Department of Stem Cell and Regenerative TechnologyKonkuk UniversitySeoulRepublic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative TechnologyKonkuk UniversitySeoulRepublic of Korea
| | - Han Geuk Seo
- Department of food Science and Biotechnology of Animal Products, Sanghuh College of Life SciencesKonkuk UniversitySeoulRepublic of Korea
| | - Jae‐Hwan Kim
- Department of Biomedical Science, College of Life ScienceCHA UniversitySeongnam‐SiGyeonggi‐DoRepublic of Korea
| |
Collapse
|
12
|
Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 2017; 74:4097-4120. [PMID: 28638936 PMCID: PMC11107725 DOI: 10.1007/s00018-017-2571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece.
| |
Collapse
|
13
|
A Structural Investigation into Oct4 Regulation by Orphan Nuclear Receptors, Germ Cell Nuclear Factor (GCNF), and Liver Receptor Homolog-1 (LRH-1). J Mol Biol 2016; 428:4981-4992. [PMID: 27984042 DOI: 10.1016/j.jmb.2016.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023]
Abstract
Oct4 is a transcription factor required for maintaining pluripotency and self-renewal in stem cells. Prior to differentiation, Oct4 must be silenced to allow for the development of the three germ layers in the developing embryo. This fine-tuning is controlled by the nuclear receptors (NRs), liver receptor homolog-1 (LRH-1) and germ cell nuclear factor (GCNF). Liver receptor homolog-1 is responsible for driving the expression of Oct4 where GCNF represses its expression upon differentiation. Both receptors bind to a DR0 motif located within the Oct4 promoter. Here, we present the first structure of mouse GCNF DNA-binding domain in complex with the Oct4 DR0. The overall structure revealed two molecules bound in a head-to-tail fashion on opposite sides of the DNA. Additionally, we solved the structure of the human LRH-1 DNA-binding domain bound to the same element. We explore the structural elements that govern Oct4 recognition by these two NRs.
Collapse
|
14
|
Wood KH, Zhou Z. Emerging Molecular and Biological Functions of MBD2, a Reader of DNA Methylation. Front Genet 2016; 7:93. [PMID: 27303433 PMCID: PMC4880565 DOI: 10.3389/fgene.2016.00093] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/10/2016] [Indexed: 01/25/2023] Open
Abstract
DNA methylation is an epigenetic mark that is essential for many biological processes and is linked to diseases such as cancer. Methylation is usually associated with transcriptional silencing, but new research has challenged this model. Both transcriptional activation and repression have recently been found to be associated with DNA methylation in a context-specific manner. How DNA methylation patterns are interpreted into different functional output remains poorly understood. One mechanism involves the protein ‘readers’ of methylation, which includes the methyl-CpG binding domain (MBD) family of proteins. This review examines the molecular and biological functions of MBD2, which binds to CpG methylation and is an integral part of the nucleosome remodeling and histone deacetylation (NuRD) complex. MBD2 has been linked to immune system function and tumorigenesis, yet little is known about its functions in vivo. Recent studies have found the MBD2 protein is ubiquitously expressed, with relatively high levels in the lung, liver, and colon. Mbd2 null mice surprisingly show relatively mild phenotypes compared to mice with loss of function of other MBD proteins. This evidence has previously been interpreted as functional redundancy between the MBD proteins. Here, we examine and contextualize research that suggests MBD2 has unique properties and functions among the MBD proteins. These functions translate to recently described roles in the development and differentiation of multiple cell lineages, including pluripotent stem cells and various cell types of the immune system, as well as in tumorigenesis. We also consider possible models for the dynamic interactions between MBD2 and NuRD in different tissues in vivo. The functions of MBD2 may have direct therapeutic implications for several areas of human disease, including autoimmune conditions and cancer, in addition to providing insights into the actions of NuRD and chromatin regulation.
Collapse
Affiliation(s)
- Kathleen H Wood
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Zhaolan Zhou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
15
|
Du Q, Luu PL, Stirzaker C, Clark SJ. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 2015; 7:1051-73. [DOI: 10.2217/epi.15.39] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How DNA methylation is interpreted and influences genome regulation remains largely unknown. Proteins of the methyl-CpG-binding domain (MBD) family are primary candidates for the readout of DNA methylation as they recruit chromatin remodelers, histone deacetylases and methylases to methylated DNA associated with gene repression. MBD protein binding requires both functional MBD domains and methyl-CpGs; however, some MBD proteins also bind unmethylated DNA and active regulatory regions via alternative regulatory domains or interaction with the nucleosome remodeling deacetylase (NuRD/Mi-2) complex members. Mutations within MBD domains occur in many diseases, including neurological disorders and cancers, leading to loss of MBD binding specificity to methylated sites and gene deregulation. Here, we summarize the current state of knowledge about MBD proteins and their role as readers of the epigenome.
Collapse
Affiliation(s)
- Qian Du
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Phuc-Loi Luu
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, University of NSW, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
16
|
Abstract
Human pluripotent stem cells provide a versatile platform for regenerative studies, drug testing and disease modeling. That the expression of only four transcription factors, Oct4, Klf4, Sox2 and c-Myc (OKSM), is sufficient for generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells has revolutionized the field and also highlighted the importance of OKSM as targets for genome editing. A number of novel genome-editing systems have been developed recently. In this review, we focus on successful applications of several such systems for generation of iPSCs. In particular, we discuss genome-editing systems based on zinc-finger fusion proteins (ZFs), transcription activator-like effectors (TALEs) and an RNA-guided DNA-specific nuclease, Cas9, derived from the bacterial defense system against viruses that utilizes clustered regularly interspaced short palindromic repeats (CRISPR).
Collapse
|
17
|
Chatagnon A, Veber P, Morin V, Bedo J, Triqueneaux G, Sémon M, Laudet V, d'Alché-Buc F, Benoit G. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements. Nucleic Acids Res 2015; 43:4833-54. [PMID: 25897113 PMCID: PMC4446430 DOI: 10.1093/nar/gkv370] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status.
Collapse
Affiliation(s)
- Amandine Chatagnon
- Université de Lyon, Université Claude Bernard Lyon1, CGphiMC UMR CNRS 5534, 69622 Villeurbanne, France
| | - Philippe Veber
- Université de Lyon, Université Claude Bernard Lyon1, LBBE UMR CNRS 5558, 69622 Villeurbanne, France
| | - Valérie Morin
- Université de Lyon, Université Claude Bernard Lyon1, CGphiMC UMR CNRS 5534, 69622 Villeurbanne, France
| | - Justin Bedo
- Université d'Evry-Val d'Essonne, IBISC EA 4526, 91037 Evry, France
| | - Gérard Triqueneaux
- Université de Lyon, Université Claude Bernard Lyon1, CGphiMC UMR CNRS 5534, 69622 Villeurbanne, France
| | - Marie Sémon
- IGFL, Université de Lyon, Université Lyon 1, CNRS, INRA; Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Vincent Laudet
- IGFL, Université de Lyon, Université Lyon 1, CNRS, INRA; Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | | | - Gérard Benoit
- Université de Lyon, Université Claude Bernard Lyon1, CGphiMC UMR CNRS 5534, 69622 Villeurbanne, France
| |
Collapse
|
18
|
Wang H, Wang X, Archer TK, Zwaka TP, Cooney AJ. GCNF-dependent activation of cyclin D1 expression via repression of Mir302a during ESC differentiation. Stem Cells 2015; 32:1527-37. [PMID: 24578347 DOI: 10.1002/stem.1689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/17/2014] [Accepted: 02/11/2014] [Indexed: 11/06/2022]
Abstract
Cyclin D1 plays an important role in the regulation of cellular proliferation and its expression is activated during gastrulation in the mouse; however, it remains unknown how cyclin D1 expression is regulated during early embryonic development. Here, we define the role of germ cell nuclear factor (GCNF) in the activation of cyclin D1 expression during embryonic stem cell (ESC) differentiation as a model of early development. During our study of GCNF knockout (GCNF(-) (/) (-) ) ESC, we discovered that loss of GCNF leads to the repression of cyclin D1 activation during ESC differentiation. This was determined to be an indirect effect of deregulation Mir302a, which is a cyclin D1 suppressor via binding to the 3'UTR of cyclin D1 mRNA. Moreover, we showed that Mir302 is a target gene of GCNF that inhibits Mir302 expression by binding to a DR0 element within its promoter. Inhibition of Mir302a using Mir302 inhibitor during differentiation of GCNF(-) (/) (-) ESCs restored cyclin D1 expression. Similarly over-expression of GCNF during differentiation of GCNF(-) (/) (-) ESCs rescued the inhibition of Mir302a expression and the activation of cyclin D1. These results reveal that GCNF plays a key role in regulating activation of cyclin D1 expression via inhibition of Mir302a.
Collapse
Affiliation(s)
- Hongran Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA; Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
19
|
Huang HS, Redmond TM, Kubish GM, Gupta S, Thompson RC, Turner DL, Uhler MD. Transcriptional regulatory events initiated by Ascl1 and Neurog2 during neuronal differentiation of P19 embryonic carcinoma cells. J Mol Neurosci 2014; 55:684-705. [PMID: 25189318 DOI: 10.1007/s12031-014-0408-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022]
Abstract
As members of the proneural basic-helix-loop-helix (bHLH) family of transcription factors, Ascl1 and Neurog2 direct the differentiation of specific populations of neurons at various times and locations within the developing nervous system. In order to characterize the mechanisms employed by these two bHLH factors, we generated stable, doxycycline-inducible lines of P19 embryonic carcinoma cells that express comparable levels of Ascl1 and Neurog2. Upon induction, both Ascl1 and Neurog2 directed morphological and immunocytochemical changes consistent with initiation of neuronal differentiation. Comparison of Ascl1- and Neurog2-regulated genes by microarray analyses showed both shared and distinct transcriptional changes for each bHLH protein. In both Ascl1- and Neurog2-differentiating cells, repression of Oct4 mRNA levels was accompanied by increased Oct4 promoter methylation. However, DNA demethylation was not detected for genes induced by either bHLH protein. Neurog2-induced genes included glutamatergic marker genes while Ascl1-induced genes included GABAergic marker genes. The Neurog2-specific induction of a gene encoding a protein phosphatase inhibitor, Ppp1r14a, was dependent on distinct, canonical E-box sequences within the Ppp1r14a promoter and the nucleotide sequences within these E-boxes were partially responsible for Neurog2-specific regulation. Our results illustrate multiple novel mechanisms by which Ascl1 and Neurog2 regulate gene repression during neuronal differentiation in P19 cells.
Collapse
Affiliation(s)
- Holly S Huang
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI, 48109-2200, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Sabour D, Xu X, Chung ACK, Le Menuet D, Ko K, Tapia N, Araúzo-Bravo MJ, Gentile L, Greber B, Hübner K, Sebastiano V, Wu G, Schöler HR, Cooney AJ. Germ cell nuclear factor regulates gametogenesis in developing gonads. PLoS One 2014; 9:e103985. [PMID: 25140725 PMCID: PMC4139263 DOI: 10.1371/journal.pone.0103985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
Expression of germ cell nuclear factor (GCNF; Nr6a1), an orphan member of the nuclear receptor gene family of transcription factors, during gastrulation and neurulation is critical for normal embryogenesis in mice. Gcnf represses the expression of the POU-domain transcription factor Oct4 (Pou5f1) during mouse post-implantation development. Although Gcnf expression is not critical for the embryonic segregation of the germ cell lineage, we found that sexually dimorphic expression of Gcnf in germ cells correlates with the expression of pluripotency-associated genes, such as Oct4, Sox2, and Nanog, as well as the early meiotic marker gene Stra8. To elucidate the role of Gcnf during mouse germ cell differentiation, we generated an ex vivo Gcnf-knockdown model in combination with a regulated CreLox mutation of Gcnf. Lack of Gcnf impairs normal spermatogenesis and oogenesis in vivo, as well as the derivation of germ cells from embryonic stem cells (ESCs) in vitro. Inactivation of the Gcnf gene in vivo leads to loss of repression of Oct4 expression in both male and female gonads.
Collapse
Affiliation(s)
- Davood Sabour
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Xueping Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arthur C. K. Chung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Centre for Inflammatory Diseases and Molecular Therapies, The University of Hong Kong, Pokfulam, Hong Kong
| | - Damien Le Menuet
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- INSERM, U693, Faculté de Médecine Paris-Sud, Paris, France
| | - Kinarm Ko
- Center for Stem Cell Research, Institute of Biomedical Sciences and Technology, Konkuk University, Seoul, Republic of Korea
- Department of Neuroscience, School of Medicine, Institute of Biomedical Sciences and Technology, Konkuk University, Seoul, Republic of Korea
| | - Natalia Tapia
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marcos J. Araúzo-Bravo
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Luca Gentile
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Boris Greber
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Karin Hübner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
- * E-mail: (AJC); (HRS)
| | - Austin J. Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (AJC); (HRS)
| |
Collapse
|
21
|
Miceli M, Bontempo P, Nebbioso A, Altucci L. Natural compounds in epigenetics: a current view. Food Chem Toxicol 2014; 73:71-83. [PMID: 25139119 DOI: 10.1016/j.fct.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 01/03/2023]
Abstract
The successful treatment of many human diseases, including cancer, has come to be considered a major challenge, as patient response to therapy is difficult to predict. Recently, considerable efforts are being focused on the development of new tools to meet the growing demand for personalized medicine. With few exceptions, synthetic compounds have been unable to meet initial expectations for their clinical use. The last twenty years have been characterized by the failure of several drugs in advanced clinical development, possibly due to the insufficient understanding of molecular pathways underlying their mechanism of action. Although the biodiversity of compounds found in nature has been poorly explored until now, the field of naturally occurring drugs is rapidly expanding. Here, we review the current knowledge on the use of natural compounds with particular emphasis on those that display a chromatin remodeling effect coupled with anticancer action.
Collapse
Affiliation(s)
- Marco Miceli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica, Adriano Buzzati-Traverso, IGB, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Bontempo
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica, Adriano Buzzati-Traverso, IGB, Via P. Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
22
|
Levinson M, Zhou Q. A penalized Bayesian approach to predicting sparse protein-DNA binding landscapes. ACTA ACUST UNITED AC 2014; 30:636-43. [PMID: 24115169 DOI: 10.1093/bioinformatics/btt585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Cellular processes are controlled, directly or indirectly, by the binding of hundreds of different DNA binding factors (DBFs) to the genome. One key to deeper understanding of the cell is discovering where, when and how strongly these DBFs bind to the DNA sequence. Direct measurement of DBF binding sites (BSs; e.g. through ChIP-Chip or ChIP-Seq experiments) is expensive, noisy and not available for every DBF in every cell type. Naive and most existing computational approaches to detecting which DBFs bind in a set of genomic regions of interest often perform poorly, due to the high false discovery rates and restrictive requirements for prior knowledge. RESULTS We develop SparScape, a penalized Bayesian method for identifying DBFs active in the considered regions and predicting a joint probabilistic binding landscape. Using a sparsity-inducing penalization, SparScape is able to select a small subset of DBFs with enriched BSs in a set of DNA sequences from a much larger candidate set. This substantially reduces the false positives in prediction of BSs. Analysis of ChIP-Seq data in mouse embryonic stem cells and simulated data show that SparScape dramatically outperforms the naive motif scanning method and the comparable computational approaches in terms of DBF identification and BS prediction. AVAILABILITY AND IMPLEMENTATION SparScape is implemented in C++ with OpenMP (optional at compilation) and is freely available at 'www.stat.ucla.edu/∼zhou/Software.html' for academic use.
Collapse
Affiliation(s)
- Matthew Levinson
- Department of Statistics, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
23
|
Li L, Lorzadeh A, Hirst M. Regulatory variation: an emerging vantage point for cancer biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:37-59. [DOI: 10.1002/wsbm.1250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Luolan Li
- Centre for High-Throughput Biology, Department of Microbiology & Immunology; University of British Columbia; Vancouver, British Columbia Canada
| | - Alireza Lorzadeh
- Centre for High-Throughput Biology, Department of Microbiology & Immunology; University of British Columbia; Vancouver, British Columbia Canada
| | - Martin Hirst
- Centre for High-Throughput Biology, Department of Microbiology & Immunology; University of British Columbia; Vancouver, British Columbia Canada
- Canada's Michael Smith Genome Sciences Centre; BC Cancer Agency; Vancouver, British Columbia Canada
| |
Collapse
|
24
|
Lee MR, Prasain N, Chae HD, Kim YJ, Mantel C, Yoder MC, Broxmeyer HE. Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. Stem Cells 2013; 31:666-81. [PMID: 23255147 DOI: 10.1002/stem.1302] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 01/10/2023]
Abstract
While most somatic cells undergoing induced pluripotent stem (iPS) cell reprogramming with Yamanaka factors accumulate at stable partially reprogrammed stages, the molecular mechanisms required to achieve full reprogramming are unknown. MicroRNAs (miRNAs) fine-tune mRNA translation and are implicated in reprogramming, but miRNA functional targets critical for complete iPS cell reprogramming remain elusive. We identified methyl-DNA binding domain protein 2 (MBD2) as an epigenetic suppressor, blocking full reprogramming of somatic to iPS cells through direct binding to NANOG promoter elements preventing transcriptional activation. When we overexpressed miR-302 cluster we observed a significant increase in conversion of partial to fully reprogrammed iPS cells by suppressing MBD2 expression, thereby increasing NANOG expression. Thus, expression of exogenous miR-302 cluster (without miR-367) is efficient in attaining a fully reprogrammed iPS state in partially reprogrammed cells by relieving MBD2-mediated inhibition of NANOG expression. Our studies provide a direct molecular mechanism involved in generating complete human iPS cell reprogramming to study disease pathogenesis, drug screening, and for potential cell-based therapies.
Collapse
Affiliation(s)
- Man Ryul Lee
- Department of Microbiology and Immunology and Indiana University School of Medicine, Indianapolis, Indiana 46202-5181, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Revisiting the role of GCNF in embryonic development. Semin Cell Dev Biol 2013; 24:679-86. [PMID: 24029702 DOI: 10.1016/j.semcdb.2013.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
GCNF (NR6A1) is essential for embryonic development. GCNF belongs to the nuclear receptor (NR) gene family, it is distantly related to other NRs and is the only member of subfamily 6. As the ligand for GCNF has not been identified, GCNF is designated an orphan nuclear receptor. GCNF has been found to be a transcriptional repressor, through specific binding to DR0 response elements, which is found in the Oct4 proximal promoter for example. GCNF is expressed widely in early mouse embryos, and later in the developing nervous system. GCNF knockout mouse embryos die around E10.5. GCNF is required for the restriction of Oct4 expression to primordial germ cells after gastrulation. GCNF is expressed in ES/EC cells and during their differentiation, and has been reported to be required for pluripotency gene repression during retinoic acid (RA)-induced mES cell differentiation. GCNF can interact with DNA methylation proteins, and is suggested to recruit DNA methylation complexes to repress and silence Oct4 expression. Nuclear receptor regulation in embryonic development is a complex process, as different nuclear receptors have overlapping and distinct functions. In-depth exploration of GCNF function and mechanism of action will help to comprehensively understand the nuclear receptor regulation in embryonic development.
Collapse
|
26
|
Tennakoon JB, Wang H, Coarfa C, Cooney AJ, Gunaratne PH. Chromatin changes in dicer-deficient mouse embryonic stem cells in response to retinoic acid induced differentiation. PLoS One 2013; 8:e74556. [PMID: 24040281 PMCID: PMC3767645 DOI: 10.1371/journal.pone.0074556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 08/05/2013] [Indexed: 12/29/2022] Open
Abstract
Loss of Dicer, an enzyme critical for microRNA biogenesis, results in lethality due to a block in mouse embryonic stem cell (mES) differentiation. Using ChIP-Seq we found increased H3K9me2 at over 900 CpG islands in the Dicer-/-ES epigenome. Gene ontology analysis revealed that promoters of chromatin regulators to be among the most impacted by increased CpG island H3K9me2 in ES (Dicer-/-). We therefore, extended the study to include H3K4me3 and H3K27me3 marks for selected genes. We found that the ES (Dicer-/-) mutant epigenome was characterized by a shift in the overall balance between transcriptionally favorable (H3K4me3) and unfavorable (H3K27me3) marks at key genes regulating ES cell differentiation. Pluripotency genes Oct4, Sox2 and Nanog were not impacted in relation to patterns of H3K27me3 and H3K4me3 and showed no changes in the rates of transcript down-regulation in response to RA. The most striking changes were observed in regards to genes regulating differentiation and the transition from self-renewal to differentiation. An increase in H3K4me3 at the promoter of Lin28b was associated with the down-regulation of this gene at a lower rate in Dicer-/-ES as compared to wild type ES. An increase in H3K27me3 in the promoters of differentiation genes Hoxa1 and Cdx2 in Dicer-/-ES cells was coincident with an inability to up-regulate these genes at the same rate as ES upon retinoic acid (RA)-induced differentiation. We found that siRNAs Ezh2 and post-transcriptional silencing of Ezh2 by let-7g rescued this effect suggesting that Ezh2 up-regulation is in part responsible for increased H3K27me3 and decreased rates of up-regulation of differentiation genes in Dicer-/-ES.
Collapse
Affiliation(s)
- Jayantha B. Tennakoon
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Hongran Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Austin J. Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (PHG); (AJC)
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (PHG); (AJC)
| |
Collapse
|
27
|
Wagner RT, Cooney AJ. Minireview: the diverse roles of nuclear receptors in the regulation of embryonic stem cell pluripotency. Mol Endocrinol 2013; 27:864-78. [PMID: 23504955 PMCID: PMC3656235 DOI: 10.1210/me.2012-1383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Extensive research has been devoted to the goal of understanding how a single cell of embryonic origin can give rise to every somatic cell type and the germ cell lineage, a hallmark defined as "pluripotency." The aggregate of this work supports fundamentally important roles for the gene transcription networks inherent to the pluripotent cell. Transcription networks have been identified that are both required for pluripotency, as well as sufficient to reprogram somatic cells to a naive pluripotent state. Several members of the nuclear receptor (NR) superfamily of transcription factors have been identified to play diverse roles in the regulation of pluripotency. The ligand-responsive nature of NRs coupled with the abundance of genetic models available has led to a significant advance in the understanding of NR roles in embryonic stem cell pluripotency. Furthermore, the presence of a ligand-binding domain may lead to development of small molecules for a wide range of therapeutic and research applications, even in cases of NRs that are not known to respond to physiologic ligands. Presented here is an overview of NR regulation of pluripotency with a focus on the transcriptional, proteomic, and epigenetic mechanisms by which they promote or suppress the pluripotent state.
Collapse
Affiliation(s)
- Ryan T Wagner
- Department of Cell Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston TX 77030-3498, USA
| | | |
Collapse
|
28
|
Bianco C, Castro NP, Baraty C, Rollman K, Held N, Rangel MC, Karasawa H, Gonzales M, Strizzi L, Salomon DS. Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells. J Cell Physiol 2013; 228:1174-88. [PMID: 23129342 PMCID: PMC3573215 DOI: 10.1002/jcp.24271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/18/2012] [Indexed: 11/07/2022]
Abstract
Human Cripto-1 (CR-1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR-1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the effects of two nuclear receptors, liver receptor homolog (LRH)-1 and germ cell nuclear factor receptor (GCNF) and epigenetic modifications on CR-1 gene expression in NTERA-2 human embryonal carcinoma cells and in breast cancer cells. CR-1 expression in NTERA-2 cells was positively regulated by LRH-1 through direct binding to a DR0 element within the CR-1 promoter, while GCNF strongly suppressed CR-1 expression in these cells. In addition, the CR-1 promoter was unmethylated in NTERA-2 cells, while T47D, ZR75-1, and MCF7 breast cancer cells showed high levels of CR-1 promoter methylation and low CR-1 mRNA and protein expression. Treatment of breast cancer cells with a demethylating agent and histone deacetylase inhibitors reduced methylation of the CR-1 promoter and reactivated CR-1 mRNA and protein expression in these cells, promoting migration and invasion of breast cancer cells. Analysis of a breast cancer tissue array revealed that CR-1 was highly expressed in the majority of human breast tumors, suggesting that CR-1 expression in breast cancer cell lines might not be representative of in vivo expression. Collectively, these findings offer some insight into the transcriptional regulation of CR-1 gene expression and its critical role in the pathogenesis of human cancer.
Collapse
MESH Headings
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Binding Sites
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Embryonal/genetics
- Carcinoma, Embryonal/metabolism
- Carcinoma, Embryonal/pathology
- Cell Movement
- DNA Methylation/drug effects
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- Decitabine
- Dose-Response Relationship, Drug
- Embryonal Carcinoma Stem Cells/metabolism
- Embryonal Carcinoma Stem Cells/pathology
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hydroxamic Acids/pharmacology
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Luciferases/biosynthesis
- Luciferases/genetics
- MCF-7 Cells
- Neoplasm Invasiveness
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Receptor Subfamily 6, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 6, Group A, Member 1/metabolism
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Time Factors
- Tissue Array Analysis
- Transcription, Genetic
- Transfection
- Tretinoin/pharmacology
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- Caterina Bianco
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nadia P. Castro
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Christina Baraty
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Kelly Rollman
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Natalie Held
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Maria Cristina Rangel
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Hideaki Karasawa
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Monica Gonzales
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Luigi Strizzi
- Children’s Memorial Research Center, Robert H. Lurie Comprehensive Cancer Center Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David S. Salomon
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
29
|
Juárez-Moreno K, Erices R, Beltran AS, Stolzenburg S, Cuello-Fredes M, Owen GI, Qian H, Blancafort P. Breaking through an epigenetic wall: re-activation of Oct4 by KRAB-containing designer zinc finger transcription factors. Epigenetics 2013; 8:164-76. [PMID: 23314702 DOI: 10.4161/epi.23503] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gene Oct4 encodes a transcription factor critical for the maintenance of pluripotency and self-renewal in embryonic stem cells. In addition, improper re-activation of Oct4 contributes to oncogenic processes. Herein, we describe a novel designer zinc finger protein (ZFP) capable of upregulating the endogenous Oct4 promoter in a panel of breast and ovarian cell lines carrying a silenced gene. In some ovarian tumor lines, the ZFP triggered a strong reactivation of Oct4, with levels of expression comparable with exogenous Oct4 cDNA delivery. Surprisingly, the reactivation of Oct4 required a KRAB domain for effective upregulation of the endogenous gene. While KRAB-containing ZFPs are traditionally described as transcriptional repressors, our results suggest that these proteins could, in certain genomic contexts, function as potent activators and, thus, outline an emerging novel function of KRAB-ZFPs. In addition, we document a novel ZFP that could be used for the epigenetic reprograming of cancer cells.
Collapse
Affiliation(s)
- Karla Juárez-Moreno
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang Q, Cooney AJ. The Role of Nuclear Receptors in Embryonic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:287-306. [DOI: 10.1007/978-94-007-6621-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Park Y, Lee JM, Hwang MY, Son GH, Geum D. NonO binds to the CpG island of oct4 promoter and functions as a transcriptional activator of oct4 gene expression. Mol Cells 2013; 35:61-9. [PMID: 23212346 PMCID: PMC3887857 DOI: 10.1007/s10059-013-2273-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 12/16/2022] Open
Abstract
We investigated the relationship between oct4 gene expression patterns and CpG sites methylation profiles during ES cell differentiation into neurons, and identified relevant binding factor. The oct4 gene expression level gradually declined as ES cell differentiation progressed, and the CpG sites in the oct4 proximal enhancer (PE) and promoter regions were methylated in concert with ES cell differentiation. An electro-mobility shift assay (EMSA) showed that putative proteins bind to CpG sites in the oct4 PE/promoter. We purified CpG binding proteins with DNAbinding purification method, and NonO was identified by liquid chromatography-mass spectrometry. EMSA with specific competitors revealed that NonO specifically binds to the conserved CCGGTGAC sequence in the oct4 promoter. Methylation at a specific cytosine residue (CC* GGTGAC) reduced the binding affinity of NonO for the recognition sequence. Chromatin immunoprecipitation analysis confirmed that NonO binds to the unmethylated oct4 promoter. There were no changes in the NonO mRNA and protein levels between ES cells and differentiated cells. The transcriptional role of NonO in oct4 gene expression was evaluated by luciferase assays and knockdown experiments. The luciferase activity significantly increased threefold when the NonO expression vector was cotransfected with the NonO recognition sequence, indicating that NonO has a transcription activator effect on oct4 gene expression. In accordance with this effect, when NonO expression was inhibited by siRNA treatment, oct4 expression was also significantly reduced. In summary, we purified NonO, a novel protein that binds to the CpG island of oct4 promoter, and positively regulates oct4 gene expression in ES cells.
Collapse
Affiliation(s)
| | | | | | - Gi-hoon Son
- Graduate School of Medicine, Department of Legal Medicine, Medical School, Korea University, Seoul 136-705,
Korea
| | - Dongho Geum
- Graduate School of Medicine, Department of Legal Medicine, Medical School, Korea University, Seoul 136-705,
Korea
| |
Collapse
|
32
|
Li KK, Luo LF, Shen Y, Xu J, Chen Z, Chen SJ. DNA Methyltransferases in Hematologic Malignancies. Semin Hematol 2013; 50:48-60. [DOI: 10.1053/j.seminhematol.2013.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Schmidt CS, Bultmann S, Meilinger D, Zacher B, Tresch A, Maier KC, Peter C, Martin DE, Leonhardt H, Spada F. Global DNA hypomethylation prevents consolidation of differentiation programs and allows reversion to the embryonic stem cell state. PLoS One 2012; 7:e52629. [PMID: 23300728 PMCID: PMC3531338 DOI: 10.1371/journal.pone.0052629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
DNA methylation patterns change dynamically during mammalian development and lineage specification, yet scarce information is available about how DNA methylation affects gene expression profiles upon differentiation. Here we determine genome-wide transcription profiles during undirected differentiation of severely hypomethylated (Dnmt1−/−) embryonic stem cells (ESCs) as well as ESCs completely devoid of DNA methylation (Dnmt1−/−;Dnmt3a−/−;Dnmt3b−/− or TKO) and assay their potential to transit in and out of the ESC state. We find that the expression of only few genes mainly associated with germ line function and the X chromosome is affected in undifferentiated TKO ESCs. Upon initial differentiation as embryoid bodies (EBs) wild type, Dnmt1−/− and TKO cells downregulate pluripotency associated genes and upregulate lineage specific genes, but their transcription profiles progressively diverge upon prolonged EB culture. While Oct4 protein levels are completely and homogeneously suppressed, transcription of Oct4 and Nanog is not completely silenced even at late stages in both Dnmt1−/− and TKO EBs. Despite late wild type and Dnmt1−/− EBs showing a much higher degree of concordant expression, after EB dissociation and replating under pluripotency promoting conditions both Dnmt1−/− and TKO cells, but not wild type cells rapidly revert to expression profiles typical of undifferentiated ESCs. Thus, while DNA methylation seems not to be critical for initial activation of differentiation programs, it is crucial for permanent restriction of developmental fate during differentiation.
Collapse
Affiliation(s)
- Christine S. Schmidt
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Sebastian Bultmann
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Daniela Meilinger
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Benedikt Zacher
- Gene Center, Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Achim Tresch
- Gene Center, Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
- Institute for Genetics, Botanical Institute, University of Cologne, Cologne, Germany
- Department for Computational Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kerstin C. Maier
- Gene Center, Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Christian Peter
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Dietmar E. Martin
- Gene Center, Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Fabio Spada
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
34
|
Implication of DNA demethylation and bivalent histone modification for selective gene regulation in mouse primordial germ cells. PLoS One 2012; 7:e46036. [PMID: 23029374 PMCID: PMC3461056 DOI: 10.1371/journal.pone.0046036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/28/2012] [Indexed: 01/15/2023] Open
Abstract
Primordial germ cells (PGCs) sequentially induce specific genes required for their development. We focused on epigenetic changes that regulate PGC-specific gene expression. mil-1, Blimp1, and Stella are preferentially expressed in PGCs, and their expression is upregulated during PGC differentiation. Here, we first determined DNA methylation status of mil-1, Blimp1, and Stella regulatory regions in epiblast and in PGCs, and found that they were hypomethylated in differentiating PGCs after E9.0, in which those genes were highly expressed. We used siRNA to inhibit a maintenance DNA methyltransferase, Dnmt1, in embryonic stem (ES) cells and found that the flanking regions of all three genes became hypomethylated and that expression of each gene increased 1.5- to 3-fold. In addition, we also found 1.5- to 5-fold increase of the PGC genes in the PGCLCs (PGC-like cells) induced form ES cells by knockdown of Dnmt1. We also obtained evidence showing that methylation of the regulatory region of mil-1 resulted in 2.5-fold decrease in expression in a reporter assay. Together, these results suggested that DNA demethylation does not play a major role on initial activation of the PGC genes in the nascent PGCs but contributed to enhancement of their expression in PGCs after E9.0. However, we also found that repression of representative somatic genes, Hoxa1 and Hoxb1, and a tissue-specific gene, Gfap, in PGCs was not dependent on DNA methylation; their flanking regions were hypomethylated, but their expression was not observed in PGCs at E13.5. Their promoter regions showed the bivalent histone modification in PGCs, that may be involved in repression of their expression. Our results indicated that epigenetic status of PGC genes and of somatic genes in PGCs were distinct, and suggested contribution of epigenetic mechanisms in regulation of the expression of a specific gene set in PGCs.
Collapse
|
35
|
Liu D, Zhou P, Zhang L, Zheng Y, He F. HPV16 activates the promoter of Oct4 gene by sequestering HDAC1 from repressor complex to target it to proteasomal degradation. Med Hypotheses 2012; 79:531-4. [PMID: 22867868 DOI: 10.1016/j.mehy.2012.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/25/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
Abstract
Human papillomavirus 16 (HPV16) is the key factor to initiate cervical carcinogenesis and development. Octamer-binding transcription factor 4 (Oct4) is an important transcriptional factor which is up-regulated in some cancer cells. Our study showed that the expression of Oct4 might be activated by HPV16 infection. Both the levels of histone deacetylase 1 (HDAC1) and DNA methyltransferase 3A (DNMT3A) were negatively correlated with the level of Oct4 in cervical cancer cells. Moreover, HDAC1 and DNMT3A proteins were in the same complex, the level of which was higher in the presence of HPV16. The treatment with HDAC1 inhibitor reduced the level of this complex, followed by the upregulation of Oct4 expression. Based on these findings and previous reports, we hypothesize that a repressor complex containing methyl CpG-binding domain protein 2 (MBD2), DNMT3A and HDAC1 binds to the hyper-methylated regulatory regions of Oct4 gene to facilitate forming a close chromatin which results in the suppression of Oct4 transcription in cervical cells. The oncoproteins of HPV16 synergistically sequester HDAC1 protein from repressor complex, and target it to ubiquitin mediated proteasome degradation. The repressor complex is thus destroyed and the close chromatin is relaxed, which eventually lead to the upregulation of Oct4 expression.
Collapse
Affiliation(s)
- Dongbo Liu
- Department of Biochemistry and Molecular Biology, Third Military Medical University, 30 Gaotanyan Street, Shapingba, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
36
|
Abstract
Pluripotency is a "blank" cellular state characteristic of specific cells within the early embryo (e.g., epiblast cells) and of certain cells propagated in vitro (e.g., embryonic stem cells, ESCs). The terms pluripotent cell and stem cell are often used interchangeably to describe cells capable of differentiating into multiple cell types. In this review, we discuss the prevailing molecular and functional definitions of pluripotency and the working parameters employed to describe this state, both in the context of cells residing within the early embryo and cells propagated in vitro.
Collapse
Affiliation(s)
- Marion Dejosez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
37
|
Latos PA, Helliwell C, Mosaku O, Dudzinska DA, Stubbs B, Berdasco M, Esteller M, Hendrich B. NuRD-dependent DNA methylation prevents ES cells from accessing a trophectoderm fate. Biol Open 2012; 1:341-52. [PMID: 23213424 PMCID: PMC3509455 DOI: 10.1242/bio.2012513] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Embryonic Stem (ES) cells are able to give rise to the three germ layers of the embryo but are prevented from contributing to the trophoblast. The molecular nature of this barrier between embryonic and trophectodermal cell fates is not clear, but is known to involve DNA methylation. Here we demonstrate that the Nucleosome Remodeling and Deacetylation (NuRD) co-repressor complex maintains the developmental barrier between embryonic and trophectodermal cell fates by maintaining transcriptional silencing of trophectoderm determinant genes in ES cells. We further show that NuRD activity facilitates DNA methylation of several of its target promoters, where it acts non-redundantly with DNA methylation to enforce transcriptional silencing. NuRD-deficient ES cells fail to completely silence expression of the trophectoderm determinant genes Elf5 and Eomes, but this alone is not sufficient to induce transdifferentiation towards the trophectoderm fate. Rather this leaves ES cells capable of activating expression of trophectoderm-specific genes in response to appropriate extracellular signals, enabling them to commit to a trophectodermal cell fate. Our findings clarify the molecular nature of the developmental barrier between the embryonic and trophoblast cell fates, and establish a role for NuRD activity in specifying sites for de novo DNA methylation.
Collapse
Affiliation(s)
- Paulina A Latos
- Wellcome Trust Centre for Stem Cell Research, MRC Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge , Tennis Court Road, Cambridge, CB2 1QR , UK ; Babraham Institute, Babraham Research Campus , Cambridge, CB22 3AT , UK
| | | | | | | | | | | | | | | |
Collapse
|