1
|
Kang KJ, Kim YG, Oh SJ, Won J, Lim KS, Baek SH, Lee Y, Choi JY. Determination of optimal injection dose in a small animal-dedicated positron emission tomography for non-human primate neurological studies. Appl Radiat Isot 2024; 211:111404. [PMID: 38917619 DOI: 10.1016/j.apradiso.2024.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
This study aimed to determine the optimal injection dose for non-human primate positron emission tomography (PET). We first used a monkey brain phantom with a volume of 80,000 mm3 containing 250 MBq of [18F]FDG. Next, we compared the radioactivity difference between the PET images and the actual radioactivity from the dose calibrator to determine the low-error range. We then evaluated the image quality using the NEMA-NU phantom. Finally, [18F]FP-CIT PET images were obtained from two monkeys with middle and high doses. As a result, PET images with a middle injected dose generated reasonable image quality and showed a high signal-to-noise ratio in monkey brain PET with [18F]FP-CIT. These results are expected to be actively applied in PET research using non-human primates.
Collapse
Affiliation(s)
- Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Kyung Seob Lim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea.
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
2
|
Colwell MJ, Tagomori H, Shang F, Cheng HI, Wigg CE, Browning M, Cowen PJ, Murphy SE, Harmer CJ. Direct serotonin release in humans shapes aversive learning and inhibition. Nat Commun 2024; 15:6617. [PMID: 39122687 PMCID: PMC11315928 DOI: 10.1038/s41467-024-50394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
The role of serotonin in human behaviour is informed by approaches which allow in vivo modification of synaptic serotonin. However, characterising the effects of increased serotonin signalling in human models of behaviour is challenging given the limitations of available experimental probes, notably selective serotonin reuptake inhibitors. Here we use a now-accessible approach to directly increase synaptic serotonin in humans (a selective serotonin releasing agent) and examine its influence on domains of behaviour historically considered core functions of serotonin. Computational techniques, including reinforcement learning and drift diffusion modelling, explain participant behaviour at baseline and after week-long intervention. Reinforcement learning models reveal that increasing synaptic serotonin reduces sensitivity for outcomes in aversive contexts. Furthermore, increasing synaptic serotonin enhances behavioural inhibition, and shifts bias towards impulse control during exposure to aversive emotional probes. These effects are seen in the context of overall improvements in memory for neutral verbal information. Our findings highlight the direct effects of increasing synaptic serotonin on human behaviour, underlining its role in guiding decision-making within aversive and more neutral contexts, and offering implications for longstanding theories of central serotonin function.
Collapse
Affiliation(s)
- Michael J Colwell
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Hosana Tagomori
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Fei Shang
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Hoi Iao Cheng
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Chloe E Wigg
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
3
|
Gärde M, Matheson GJ, Varnäs K, Svenningsson P, Hedman-Lagerlöf E, Lundberg J, Farde L, Tiger M. Altered Serotonin 1B Receptor Binding After Escitalopram for Depression Is Correlated With Treatment Effect. Int J Neuropsychopharmacol 2024; 27:pyae021. [PMID: 38695786 PMCID: PMC11119883 DOI: 10.1093/ijnp/pyae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is commonly treated with selective serotonin reuptake inhibitors (SSRIs). SSRIs inhibit the serotonin transporter (5-HTT), but the downstream antidepressant mechanism of action of these drugs is poorly understood. The serotonin 1B (5-HT1B) receptor is functionally linked to 5-HTT and 5-HT1B receptor binding and 5-HT1B receptor mRNA is reduced in the raphe nuclei after SSRI administration in primates and rodents, respectively. The effect of SSRI treatment on 5-HT1B receptor binding in patients with MDD has not been examined previously. This positron emission tomography (PET) study aimed to quantify brain 5-HT1B receptor binding changes in vivo after SSRI treatment for MDD in relation to treatment effect. METHODS Eight unmedicated patients with moderate to severe MDD underwent PET with the 5-HT1B receptor radioligand [11C]AZ10419369 before and after 3 to 4 weeks of treatment with the SSRI escitalopram 10 mg daily. Depression severity was assessed at time of PET and after 6 to 7 weeks of treatment with the Montgomery-Åsberg Depression Rating Scale. RESULTS We observed a significant reduction in [11C]AZ10419369 binding in a dorsal brainstem (DBS) region containing the median and dorsal raphe nuclei after escitalopram treatment (P = .036). Change in DBS [11C]AZ10419369 binding correlated with Montgomery-Åsberg Depression Rating Scale reduction after 3-4 (r = 0.78, P = .021) and 6-7 (r = 0.94, P < .001) weeks' treatment. CONCLUSIONS Our findings align with the previously reported reduction of 5-HT1B receptor binding in the raphe nuclei after SSRI administration and support future studies testing change in DBS 5-HT1B receptor binding as an SSRI treatment response marker.
Collapse
Affiliation(s)
- M Gärde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - G J Matheson
- Department of Psychiatry, Columbia University, New York, USA
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - K Varnäs
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - P Svenningsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - E Hedman-Lagerlöf
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - J Lundberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - L Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - M Tiger
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
4
|
Colom M, Vidal B, Fieux S, Redoute J, Costes N, Lavenne F, Mérida I, Irace Z, Iecker T, Bouillot C, Billard T, Newman-Tancredi A, Zimmer L. [ 18F]F13640, a 5-HT 1A Receptor Radiopharmaceutical Sensitive to Brain Serotonin Fluctuations. Front Neurosci 2021; 15:622423. [PMID: 33762906 PMCID: PMC7982540 DOI: 10.3389/fnins.2021.622423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Serotonin is involved in a variety of physiological functions and brain disorders. In this context, efforts have been made to investigate the in vivo fluctuations of this neurotransmitter using positron emission tomography (PET) imaging paradigms. Since serotonin is a full agonist, it binds preferentially to G-protein coupled receptors. In contrast, antagonist PET ligands additionally interact with uncoupled receptors. This could explain the lack of sensitivity to serotonin fluctuations of current 5-HT1A radiopharmaceuticals which are mainly antagonists and suggests that agonist radiotracers would be more appropriate to measure changes in neurotransmitter release. The present study evaluated the sensitivity to endogenous serotonin release of a recently developed, selective 5-HT1A receptor PET radiopharmaceutical, the agonist [18F]F13640 (a.k.a. befiradol or NLX-112). Materials and Methods Four cats each underwent three PET scans with [18F]F13640, i.e., a control PET scan of 90 min, a PET scan preceded 30 min before by an intravenous injection 1 mg/kg of d-fenfluramine, a serotonin releaser (blocking challenge), and a PET scan comprising the intravenous injection of 1 mg/kg of d-fenfluramine 30 min after the radiotracer injection (displacement challenge). Data were analyzed with regions of interest and voxel-based approaches. A lp-ntPET model approach was implemented to determine the dynamic of serotonin release during the challenge study. Results D-fenfluramine pretreatment elicited a massive inhibition of [18F]F13640 labeling in regions known to express 5-HT1A receptors, e.g., raphe nuclei, hippocampus, thalamus, anterior cingulate cortex, caudate putamen, occipital, frontal and parietal cortices, and gray matter of cerebellum. Administration of d-fenfluramine during PET acquisition indicates changes in occupancy from 10% (thalamus) to 31% (gray matter of cerebellum) even though the dissociation rate of [18F]F13640 over the 90 min acquisition time was modest. The lp-ntPET simulation succeeded in differentiating the control and challenge conditions. Conclusion The present findings demonstrate that labeling of 5-HT1A receptors with [18F]F13640 is sensitive to serotonin concentration fluctuations in vivo. Although the data underline the need to perform longer PET scan to ensure accurate measure of displacement, they support clinical development of [18F]F13640 as a tool to explore experimental paradigms involving physiological or pathological (neurological or neuropsychiatric pathologies) fluctuations of extracellular serotonin.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvain Fieux
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | | | | | | | | | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,CERMEP-Imagerie du Vivant, Bron, France.,Institut National des Sciences et Techniques Nucléaires, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Lindberg A, Arakawa R, Nogami T, Nag S, Schou M, Elmore CS, Farde L, Pike VW, Halldin C. Potential for imaging the high-affinity state of the 5-HT 1B receptor: a comparison of three PET radioligands with differing intrinsic activity. EJNMMI Res 2019; 9:100. [PMID: 31754940 PMCID: PMC6872687 DOI: 10.1186/s13550-019-0570-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/01/2019] [Indexed: 11/19/2022] Open
Abstract
Background Over the last decade, a few radioligands have been developed for PET imaging of brain 5-HT1B receptors. The 5-HT1B receptor is a G-protein-coupled receptor (GPCR) that exists in two different agonist affinity states. An agonist ligand is expected to be more sensitive towards competition from another agonist, such as endogenous 5-HT, than an antagonist ligand. It is of interest to know whether the intrinsic activity of a PET radioligand for the 5-HT1B receptor impacts on its ability to detect changes in endogenous synaptic 5-HT density. Three high-affinity 11C-labeled 5-HT1B PET radioligands with differing intrinsic activity were applied to PET measurements in cynomolgus monkey to evaluate their sensitivity to be displaced within the brain by endogenous 5-HT. For these experiments, fenfluramine was pre-administered at two different doses (1.0 and 5.0 mg/kg, i.v.) to induce synaptic 5-HT release. Results A dose-dependent response to fenfluramine was detected for all three radioligands. At the highest dose of fenfluramine (5.0 mg/kg, i.v.), reductions in specific binding in the occipital cortex increased with radioligand agonist efficacy, reaching 61% for [11C]3. The most antagonistic radioligand showed the lowest reduction in specific binding. Conclusions Three 5-HT1B PET radioligands were identified with differing intrinsic activity that could be used in imaging high- and low-affinity states of 5-HT1B receptors using PET. From this limited study, radioligand sensitivity to endogenous 5-HT appears to depend on agonist efficacy. More extensive studies are required to substantiate this suggestion.
Collapse
Affiliation(s)
- Anton Lindberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden. .,Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892-1003, USA.
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden
| | - Tsuyoshi Nogami
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, R&D, AstraZeneca, SE-17176, Stockholm, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences R&D, AstraZeneca, SE-43250, Göteborg, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, R&D, AstraZeneca, SE-17176, Stockholm, Sweden
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892-1003, USA
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden
| |
Collapse
|
6
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
7
|
In vivo biased agonism at 5-HT 1A receptors: characterisation by simultaneous PET/MR imaging. Neuropsychopharmacology 2018; 43:2310-2319. [PMID: 30030540 PMCID: PMC6135772 DOI: 10.1038/s41386-018-0145-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
Abstract
In neuropharmacology, the recent concept of 'biased agonism' denotes the capacity of certain agonists to target-specific intracellular pathways of a given receptor in specific brain areas. In the context of serotonin pharmacotherapy, 5-HT1A receptor-biased agonists could be of great interest in several neuropsychiatric disorders. The aim of this study was to determine whether biased agonists could be differentiated in terms of regional targeting by use of simultaneous functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) brain imaging. We compared two 5-HT1A-biased agonists, NLX-112 and NLX-101, injected at three different doses in anaesthetised cats (n = 4). PET imaging was acquired for 90 min after bolus administration followed by constant infusion of the 5-HT1A radiotracer, [18F]MPPF. Drug occupancy was evaluated after injection at 50 min and BOLD fMRI was simultaneously acquired to evaluate subsequent brain activation patterns. 5-HT1A receptor occupancy was found to be dose-dependent for both agonists, but differed in magnitude and spatial distribution at equal doses with distinct BOLD patterns. Functional connectivity, as measured by BOLD signal temporal correlations between regions, was also differently modified by NLX-112 or NLX-101. Voxel-based correlation analyses between PET and fMRI suggested that NLX-112 stimulates both 5-HT1A autoreceptors and post-synaptic receptors, whereas NLX-101 preferentially stimulates post-synaptic cortical receptors. In cingulate cortex, the agonists induced opposite BOLD signal changes in response to receptor occupancy. These data constitute the first simultaneous exploration of 5-HT1A occupancy and its consequences in terms of brain activation, and demonstrates differential signalling by two 5-HT1A-biased agonists. Combined PET/fMRI represents a powerful tool in neuropharmacology, and opens new ways to address the concept of biased agonism by translational approaches.
Collapse
|
8
|
Yang KC, Takano A, Halldin C, Farde L, Finnema SJ. Serotonin concentration enhancers at clinically relevant doses reduce [ 11C]AZ10419369 binding to the 5-HT 1B receptors in the nonhuman primate brain. Transl Psychiatry 2018; 8:132. [PMID: 30013068 PMCID: PMC6048172 DOI: 10.1038/s41398-018-0178-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
The serotonin (5-HT) system plays an important role in the pathophysiology and treatment of several major psychiatric disorders. Currently, no suitable positron emission tomography (PET) imaging paradigm is available to assess 5-HT release in the living human brain. [11C]AZ10419369 binds to 5-HT1B receptors and is one of the most 5-HT-sensitive radioligands available. This study applied 5-HT concentration enhancers which can be safely studied in humans, and examined their effect on [11C]AZ10419369 binding at clinically relevant doses, including amphetamine (1 mg/kg), 3,4-methylenedioxymethamphetamine (MDMA; 1 mg/kg) or 5-hydroxy-L-tryptophan (5-HTP; 5 mg/kg). Twenty-six PET measurements (14 for amphetamine, 6 for MDMA and 6 for 5-HTP) using a bolus and constant infusion protocol were performed in four cynomolgus monkeys before or after drug administration. Binding potential (BPND) values were determined with the equilibrium method (integral interval: 63-123 min) using cerebellum as the reference region. BPND values were significantly decreased in several examined brain regions after administration of amphetamine (range: 19-31%), MDMA (16-25%) or 5-HTP (13-31%). Reductions in [11C]AZ10419369 binding were greater in striatum than cortical regions after administration of 5-HTP, while no prominent regional differences were found for amphetamine and MDMA. In conclusion, [11C]AZ10419369 binding is sensitive to changes in 5-HT concentration induced by amphetamine, MDMA or 5-HTP. The robust changes in BPND, following pretreatment drugs administered at clinically relevant doses, indicate that the applied PET imaging paradigms hold promise to be successfully used in future human studies.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Personalized Health Care and Biomarkers, AstraZeneca PET Science Center at Karolinska Institutet, Stockholm, Sweden
| | - Sjoerd J Finnema
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Jørgensen LM, Weikop P, Svarer C, Feng L, Keller SH, Knudsen GM. Cerebral serotonin release correlates with [ 11C]AZ10419369 PET measures of 5-HT 1B receptor binding in the pig brain. J Cereb Blood Flow Metab 2018; 38:1243-1252. [PMID: 28685616 PMCID: PMC6434452 DOI: 10.1177/0271678x17719390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/26/2017] [Accepted: 05/21/2017] [Indexed: 11/17/2022]
Abstract
Positron emission tomography (PET) can, when used with appropriate radioligands, non-invasively capture temporal and spatial information about acute changes in brain neurotransmitter systems. We here evaluate the 5-HT1B receptor partial agonist PET radioligand, [11C]AZ10419369, for its sensitivity to detect changes in endogenous cerebral serotonin levels, as induced by different pharmacological challenges. To enable a direct translation of PET imaging data to changes in brain serotonin levels, we compared the [11C]AZ10419369 PET signal in the pig brain to simultaneous measurements of extracellular serotonin levels with microdialysis after various acute interventions (saline, escitalopram, fenfluramine). The interventions increased the cerebral extracellular serotonin levels to two to six times baseline, with fenfluramine being the most potent pharmacological enhancer of serotonin release. The interventions induced a varying degree of decline in [11C]AZ10419369 binding in the brain, consistent with the occupancy competition model. The observed correlation between changes in the extracellular serotonin level in the pig brain and the 5-HT1B receptor occupancy indicates that [11C]AZ10419369 binding is sensitive to changes in endogenous serotonin levels to a degree equivalent to that reported of [11C]raclopride to dopamine, a much used approach to detect in vivo change in cerebral dopamine.
Collapse
Affiliation(s)
- Louise M Jørgensen
- Neurobiology Research Unit,
Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences,
University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Department of Neuroscience and
Pharmacology, The Laboratory of Neuropsychiatry, University of Copenhagen,
Copenhagen, Denmark
- Psychiatric Centre Copenhagen,
University of Copenhagen, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit,
Rigshospitalet, Copenhagen, Denmark
| | - Ling Feng
- Neurobiology Research Unit,
Rigshospitalet, Copenhagen, Denmark
| | - Sune H Keller
- Department of Clinical Physiology,
Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen,
Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit,
Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences,
University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
18F-F13640 preclinical evaluation in rodent, cat and primate as a 5-HT 1A receptor agonist for PET neuroimaging. Brain Struct Funct 2018; 223:2973-2988. [PMID: 29730825 DOI: 10.1007/s00429-018-1672-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/20/2018] [Indexed: 12/23/2022]
Abstract
Serotonin 1A receptors are known to play an important role in many psychiatric and neurodegenerative disorders. Currently, all available 5-HT1A receptor PET radiopharmaceuticals that are radiolabeled with fluorine-18 are antagonists. As agonists bind preferentially to the high-affinity state of receptors, it would be of great interest to develop agonist radioligands which could provide a measure of the functional 5-HT1A receptors in pathophysiological processes. The 5-HT1A receptor agonist candidates we recently proposed had promising in vitro properties but were not optimal in terms of PET imaging. F13640, a.k.a befiradol or NLX-112, is a 5-HT1A receptor agonist with a high affinity (Ki = 1 nM) and a high selectivity that would be suitable for a potential PET radiopharmaceutical. With propose here the first preclinical evaluation of 18F-F13640. 18F-F13640's nitro-precursor was synthesized and radiolabeled via a fluoro-nucleophilic substitution. Its radiopharmacological characterization included autoradiographic studies, metabolic studies, and in vivo PET scans in rat, cat and non-human primate. Some of the results were compared with the radiotracer 18F-MPPF, a 5-HT1A receptor antagonist. The radiochemical purity of 18F-F13640 was > 98%. In vitro binding pattern was consistent with the 5-HT1A receptor distribution. Metabolic studies revealed that the radiotracer rapidly entered the brain and led to few brain radiometabolites. Although 18F-F13640 in vivo binding was blocked by the 5-HT1A antagonist WAY-100635 and the 5-HT1A agonist 8-OH-DPAT, the distribution pattern was markedly different from antagonist radiotracers in the three species, suggesting it provides novel information on 5-HT1A receptors. Preliminary studies also suggest a high sensitivity of 18F-F13640 to endogenous serotonin release. 18F-F13640 has suitable characteristics for probing in vitro and in vivo the 5-HT1A receptors in high-affinity state. Quantification analyses with kinetic modeling are in progress to prepare the first-in-man study of 18F-F13640.
Collapse
|
11
|
Yang KC, Stepanov V, Martinsson S, Ettrup A, Takano A, Knudsen GM, Halldin C, Farde L, Finnema SJ. Fenfluramine Reduces [11C]Cimbi-36 Binding to the 5-HT2A Receptor in the Nonhuman Primate Brain. Int J Neuropsychopharmacol 2017; 20:683-691. [PMID: 28911007 PMCID: PMC5581490 DOI: 10.1093/ijnp/pyx051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/18/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND [11C]Cimbi-36 is a serotonin 2A receptor agonist positron emission tomography radioligand that has recently been examined in humans. The binding of agonist radioligand is expected to be more sensitive to endogenous neurotransmitter concentrations than antagonist radioligands. In the current study, we compared the effect of serotonin releaser fenfluramine on the binding of [11C]Cimbi-36, [11C]MDL 100907 (a serotonin 2A receptor antagonist radioligand), and [11C]AZ10419369 (a serotonin 1B receptor partial agonist radioligand with established serotonin sensitivity) in the monkey brain. METHODS Eighteen positron emission tomography measurements, 6 for each radioligand, were performed in 3 rhesus monkeys before or after administration of 5.0 mg/kg fenfluramine. Binding potential values were determined with the simplified reference tissue model using cerebellum as the reference region. RESULTS Fenfluramine significantly decreased [11C]Cimbi-36 (26-62%) and [11C]AZ10419369 (35-58%) binding potential values in most regions (P < 0.05). Fenfluramine-induced decreases in [11C]MDL 100907 binding potential were 8% to 30% and statistically significant in 3 regions. Decreases in [11C]Cimbi-36 binding potential were larger than for [11C]AZ10419369 in neocortical and limbic regions (~35%) but smaller in striatum and thalamus (~40%). Decreases in [11C]Cimbi-36 binding potential were 0.9 to 2.8 times larger than for [11C]MDL 100907, and the fraction of serotonin 2A receptor in the high-affinity state was estimated as 54% in the neocortex. CONCLUSIONS The serotonin sensitivity of serotonin 2A receptor agonist radioligand [11C]Cimbi-36 was higher than for antagonist radioligand [11C]MDL 100907. The serotonin sensitivity of [11C]Cimbi-36 was similar to [11C]AZ10419369, which is one of the most sensitive radioligands. [11C]Cimbi-36 is a promising radioligand to examine serotonin release in the primate brain.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde).,Correspondence: Kai-Chun Yang, MD, Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska University Hospital, Building R5:02, SE-171 76 Stockholm, Sweden ()
| | - Vladimir Stepanov
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Stefan Martinsson
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Anders Ettrup
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Akihiro Takano
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Gitte M Knudsen
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Christer Halldin
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Lars Farde
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Sjoerd J Finnema
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| |
Collapse
|
12
|
Oxytocin and Serotonin Brain Mechanisms in the Nonhuman Primate. J Neurosci 2017; 37:6741-6750. [PMID: 28607170 DOI: 10.1523/jneurosci.0659-17.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/29/2023] Open
Abstract
Oxytocin (OT) is increasingly studied for its therapeutic potential in psychiatric disorders, which are associated with the deregulation of several neurotransmission systems. Studies in rodents demonstrated that the interaction between OT and serotonin (5-HT) is critical for several aspects of social behavior. Using PET scan in humans, we have recently found that 5-HT 1A receptor (5-HT1AR) function is modified after intranasal oxytocin intake. However, the underlying mechanism between OT and 5-HT remains unclear. To understand this interaction, we tested 3 male macaque monkeys using both [11C]DASB and [18F]MPPF, two PET radiotracers, marking the serotonin transporter and the 5-HT1AR, respectively. Oxytocin (1 IU in 20 μl of ACSF) or placebo was injected into the brain lateral ventricle 45 min before scans. Additionally, we performed postmortem autoradiography. Compared with placebo, OT significantly reduced [11C]DASB binding potential in right amygdala, insula, and hippocampus, whereas [18F]MPPF binding potential increased in right amygdala and insula. Autoradiography revealed that [11C]DASB was sensitive to physiological levels of 5-HT modification, and that OT does not act directly on the 5-HT1AR. Our results show that oxytocin administration in nonhuman primates influences serotoninergic neurotransmission via at least two ways: (1) by provoking a release of serotonin in key limbic regions; and (2) by increasing the availability of 5-HT1AR receptors in the same limbic areas. Because these two molecules are important for social behavior, our study sheds light on the specific nature of their interaction, therefore helping to develop new mechanisms-based therapies for psychiatric disorders.SIGNIFICANCE STATEMENT Social behavior is largely controlled by brain neuromodulators, such as oxytocin and serotonin. While these are currently targeted in the context of psychiatric disorders such as autism and schizophrenia, a new promising pharmaceutical strategy is to study the interaction between these systems. Here we depict the interplay between oxytocin and serotonin in the nonhuman primate brain. We found that oxytocin provokes the release of serotonin, which in turn impacts on the serotonin 1A receptor system, by modulating its availability. This happens in several key brain regions for social behavior, such as the amygdala and insula. This novel finding can open ways to advance treatments where drugs are combined to influence several neurotransmission networks.
Collapse
|
13
|
Jørgensen LM, Weikop P, Villadsen J, Visnapuu T, Ettrup A, Hansen HD, Baandrup AO, Andersen FL, Bjarkam CR, Thomsen C, Jespersen B, Knudsen GM. Cerebral 5-HT release correlates with [ 11C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain. J Cereb Blood Flow Metab 2017; 37:425-434. [PMID: 26825776 PMCID: PMC5381441 DOI: 10.1177/0271678x16629483] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Positron emission tomography (PET) can, when used with appropriate radioligands, non-invasively generate temporal and spatial information about acute changes in brain neurotransmitter systems. We for the first time evaluate the novel 5-HT2A receptor agonist PET radioligand, [11C]Cimbi-36, for its sensitivity to detect changes in endogenous cerebral 5-HT levels, as induced by different pharmacological challenges. To enable a direct translation of PET imaging data to changes in brain 5-HT levels, we calibrated the [11C]Cimbi-36 PET signal in the pig brain by simultaneous measurements of extracellular 5-HT levels with microdialysis and [11C]Cimbi-36 PET after various acute interventions (saline, citalopram, citalopram + pindolol, fenfluramine). In a subset of pigs, para-chlorophenylalanine pretreatment was given to deplete cerebral 5-HT. The interventions increased the cerebral extracellular 5-HT levels to 2-11 times baseline, with fenfluramine being the most potent pharmacological enhancer of 5-HT release, and induced a varying degree of decline in [11C]Cimbi-36 binding in the brain, consistent with the occupancy competition model. The observed correlation between changes in the extracellular 5-HT level in the pig brain and the 5-HT2A receptor occupancy indicates that [11C]Cimbi-36 binding is sensitive to changes in endogenous 5-HT levels, although only detectable with PET when the 5-HT release is sufficiently high.
Collapse
Affiliation(s)
- Louise M Jørgensen
- 1 Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,2 Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Pia Weikop
- 3 The Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark.,4 Psychiatric Centre Copenhagen, University of Copenhagen, Denmark
| | - Jonas Villadsen
- 1 Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Tanel Visnapuu
- 3 The Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark.,5 Center for Excellence in Translational Medicine, University of Tartu, Estonia
| | - Anders Ettrup
- 1 Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Hanne D Hansen
- 1 Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Anders O Baandrup
- 6 Research Center for Advanced Imaging, Hospital of Køge and Roskilde, Roskilde, Denmark
| | | | | | - Carsten Thomsen
- 2 Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,9 Department of Radiology, Rigshospitalet, Copenhagen, Denmark
| | - Bo Jespersen
- 10 Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- 1 Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,2 Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
14
|
Slifstein M, Abi-Dargham A. Recent Developments in Molecular Brain Imaging of Neuropsychiatric Disorders. Semin Nucl Med 2016; 47:54-63. [PMID: 27987558 DOI: 10.1053/j.semnuclmed.2016.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular imaging with PET or SPECT has been an important research tool in psychiatry for as long as these modalities have been available. Here, we discuss two areas of neuroimaging relevant to current psychiatry research. The first is the use of imaging to study neurotransmission. We discuss the use of pharmacologic probes to induce changes in levels of neurotransmitters that can be inferred through their effects on outcome measures of imaging experiments, from their historical origins focusing on dopamine transmission through recent developments involving serotonin, GABA, and glutamate. Next, we examine imaging of neuroinflammation in the context of psychiatry. Imaging markers of neuroinflammation have been studied extensively in other areas of brain research, but they have more recently attracted interest in psychiatry research, based on accumulating evidence that there may be an inflammatory component to some psychiatric conditions. Furthermore, new probes are under development that would allow unprecedented insights into cellular processes. In summary, molecular imaging would continue to offer great potential as a unique tool to further our understanding of brain function in health and disease.
Collapse
Affiliation(s)
- Mark Slifstein
- Department of Psychiatry, Columbia University Medical Center, New York, NY; New York State Psychiatric Institute, New York, NY; Department of Psychiatry, Stony Brook University, New York, NY.
| | - Anissa Abi-Dargham
- Department of Psychiatry, Columbia University Medical Center, New York, NY; Department of Radiology, Columbia University Medical Center, New York, NY; New York State Psychiatric Institute, New York, NY; Department of Psychiatry, Stony Brook University, New York, NY
| |
Collapse
|
15
|
Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl) 2015; 232:4129-57. [PMID: 25921033 PMCID: PMC4600473 DOI: 10.1007/s00213-015-3938-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
RATIONALE This review attempts to summarize the current status in relation to the use of positron emission tomography (PET) imaging in the assessment of synaptic concentrations of endogenous mediators in the living brain. OBJECTIVES Although PET radioligands are now available for more than 40 CNS targets, at the initiation of the Innovative Medicines Initiative (IMI) "Novel Methods leading to New Medications in Depression and Schizophrenia" (NEWMEDS) in 2009, PET radioligands sensitive to an endogenous neurotransmitter were only validated for dopamine. NEWMEDS work-package 5, "Cross-species and neurochemical imaging (PET) methods for drug discovery", commenced with a focus on developing methods enabling assessment of changes in extracellular concentrations of serotonin and noradrenaline in the brain. RESULTS Sharing the workload across institutions, we utilized in vitro techniques with cells and tissues, in vivo receptor binding and microdialysis techniques in rodents, and in vivo PET imaging in non-human primates and humans. Here, we discuss these efforts and review other recently published reports on the use of radioligands to assess changes in endogenous levels of dopamine, serotonin, noradrenaline, γ-aminobutyric acid, glutamate, acetylcholine, and opioid peptides. The emphasis is on assessment of the availability of appropriate translational tools (PET radioligands, pharmacological challenge agents) and on studies in non-human primates and human subjects, as well as current challenges and future directions. CONCLUSIONS PET imaging directed at investigating changes in endogenous neurochemicals, including the work done in NEWMEDS, have highlighted an opportunity to further extend the capability and application of this technology in drug development.
Collapse
Affiliation(s)
- Sjoerd J. Finnema
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Mika Scheinin
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland , />Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mohammed Shahid
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Jussi Lehto
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Edilio Borroni
- />Neuroscience Department, Hoffman-La Roche, Basel, Switzerland
| | | | - Jukka Sallinen
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Erik Wong
- />Neuroscience Innovative Medicine Unit, AstraZeneca, Wilmington, DE USA
| | - Lars Farde
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden , />Translational Science Center at Karolinska Institutet, AstraZeneca, Stockholm, Sweden
| | - Christer Halldin
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA. .,, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Yamanaka H, Yokoyama C, Mizuma H, Kurai S, Finnema SJ, Halldin C, Doi H, Onoe H. A possible mechanism of the nucleus accumbens and ventral pallidum 5-HT1B receptors underlying the antidepressant action of ketamine: a PET study with macaques. Transl Psychiatry 2014; 4:e342. [PMID: 24399045 PMCID: PMC3905222 DOI: 10.1038/tp.2013.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/29/2013] [Indexed: 12/19/2022] Open
Abstract
Ketamine is a unique anesthetic reagent known to produce various psychotic symptoms. Ketamine has recently been reported to elicit a long-lasting antidepressant effect in patients with major depression. Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism has not been fully elucidated. To understand the involvement of the brain serotonergic system in the actions of ketamine, we performed a positron emission tomography (PET) study on non-human primates. Four rhesus monkeys underwent PET studies with two serotonin (5-HT)-related PET radioligands, [(11)C]AZ10419369 and [(11)C]DASB, which are highly selective for the 5-HT1B receptor and serotonin transporter (SERT), respectively. Voxel-based analysis using standardized brain images revealed that ketamine administration significantly increased 5-HT1B receptor binding in the nucleus accumbens and ventral pallidum, whereas it significantly reduced SERT binding in these brain regions. Fenfluramine, a 5-HT releaser, significantly decreased 5-HT1B receptor binding, but no additional effect was observed when it was administered with ketamine. Furthermore, pretreatment with 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), a potent antagonist of the glutamate α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor, blocked the action of ketamine on the 5-HT1B receptor but not SERT binding. This indicates the involvement of AMPA receptor activation in ketamine-induced alterations of 5-HT1B receptor binding. Because NBQX is known to block the antidepressant effect of ketamine in rodents, alterations in the serotonergic neurotransmission, particularly upregulation of postsynaptic 5-HT1B receptors in the nucleus accumbens and ventral pallidum may be critically involved in the antidepressant action of ketamine.
Collapse
Affiliation(s)
- H Yamanaka
- Bio-Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - C Yokoyama
- Bio-Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - H Mizuma
- Bio-Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - S Kurai
- Labelling Chemistry Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - S J Finnema
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska University Hospital, Stockholm, Sweden
| | - C Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska University Hospital, Stockholm, Sweden
| | - H Doi
- Labelling Chemistry Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - H Onoe
- Bio-Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan,Bio-Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan. E-mail:
| |
Collapse
|
17
|
Yamamoto S, Ohba H, Nishiyama S, Harada N, Kakiuchi T, Tsukada H, Domino EF. Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: a PET study in conscious monkeys. Neuropsychopharmacology 2013; 38:2666-74. [PMID: 23880871 PMCID: PMC3828538 DOI: 10.1038/npp.2013.176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/18/2013] [Accepted: 07/17/2013] [Indexed: 01/10/2023]
Abstract
Subanesthetic doses of ketamine, an N-methyl-D-aspartic acid (NMDA) antagonist, have a rapid antidepressant effect which lasts for up to 2 weeks. However, the neurobiological mechanism regarding this effect remains unclear. In the present study, the effects of subanesthetic doses of ketamine on serotonergic systems in conscious monkey brain were investigated. Five young monkeys underwent four positron emission tomography measurements with [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)benzonitrile ([(11)C]DASB) for the serotonin transporter (SERT), during and after intravenous infusion of vehicle or ketamine hydrochloride in a dose of 0.5 or 1.5 mg/kg for 40 min, and 24 h post infusion. Global reduction of [(11)C]DASB binding to SERT was observed during ketamine infusion in a dose-dependent manner, but not 24 h later. The effect of ketamine on the serotonin 1A receptor (5-HT1A-R) and dopamine transporter (DAT) was also investigated in the same subjects studied with [(11)C]DASB. No significant changes were observed in either 5-HT1A-R or DAT binding after ketamine infusion. Microdialysis analysis indicated that ketamine infusion transiently increased serotonin levels in the extracellular fluid of the prefrontal cortex. The present study demonstrates that subanesthetic ketamine selectively enhanced serotonergic transmission by inhibition of SERT activity. This action coexists with the rapid antidepressant effect of subanesthetic doses of ketamine. Further studies are needed to investigate whether the transient combination of SERT and NMDA reception inhibition enhances each other's antidepressant actions.
Collapse
Affiliation(s)
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan
| | - Edward F Domino
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-05632, USA, Tel: +1 734 764 9115, Fax: +1 734 763 4450, E-mail:
| |
Collapse
|
18
|
Finnema SJ, Varrone A, Hwang TJ, Halldin C, Farde L. Confirmation of fenfluramine effect on 5-HT(1B) receptor binding of [(11)C]AZ10419369 using an equilibrium approach. J Cereb Blood Flow Metab 2012; 32:685-95. [PMID: 22167236 PMCID: PMC3318146 DOI: 10.1038/jcbfm.2011.172] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Assessment of serotonin release in the living brain with positron emission tomography (PET) may have been hampered by the lack of suitable radioligands. We previously reported that fenfluramine caused a dose-dependent reduction in specific binding in monkeys using a classical displacement paradigm with bolus administration of [(11)C]AZ10419369. The aim of this study was to confirm our previous findings using an equilibrium approach in monkey. A total of 24 PET measurements were conducted using a bolus infusion protocol of [(11)C]AZ10419369 in three cynomolgus monkeys. Initial PET measurements were performed to assess suitable K(bol) values. The fenfluramine effect on [(11)C]AZ10419369 binding was evaluated in a displacement and pretreatment paradigm. The effect of fenfluramine on [(11)C]AZ10419369 binding potential (BP(ND)) was dose-dependent in the displacement paradigm and confirmed in the pretreatment paradigm. After pretreatment administration of fenfluramine (5.0 mg/kg), the mean BP(ND) of the occipital cortex decreased by 39%, from 1.38±0.04 to 0.84±0.09. This study confirms that the new 5-HT(1B) receptor radioligand [(11)C]AZ10419369 is sensitive to fenfluramine-induced changes in endogenous serotonin levels in vivo. The more advanced methodology is suitable for exploring the sensitivity limit to serotonin release as measured using [(11)C]AZ10419369 and PET.
Collapse
Affiliation(s)
- Sjoerd J Finnema
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
19
|
Ridler K, Plisson C, Rabiner EA, Gunn RN, Easwaramoorthy B, Abi-Dargham A, Laruelle M, Slifstein M. Characterization of in vivo pharmacological properties and sensitivity to endogenous serotonin of [11C] P943: A positron emission tomography study in Papio anubis. Synapse 2011; 65:1119-27. [DOI: 10.1002/syn.20946] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/21/2011] [Indexed: 11/08/2022]
|
20
|
Cosgrove KP, Kloczynski T, Nabulsi N, Weinzimmer D, Lin SF, Staley JK, Bhagwagar Z, Carson RE. Assessing the sensitivity of [¹¹C]p943, a novel 5-HT1B radioligand, to endogenous serotonin release. Synapse 2011; 65:1113-7. [PMID: 21484884 DOI: 10.1002/syn.20942] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/03/2011] [Indexed: 11/09/2022]
Abstract
The main objective of the current study was to determine the sensitivity of the positron emission tomography (PET) radioligand [¹¹C]P943 to fenfluramine-induced changes in endogenous 5-HT in nonhuman primate brain. Fenfluramine-induced changes in 5-HT(1B) occupancy were compared to those obtained by self-block with unlabeled P943. Two baboons and 1 rhesus monkey were given preblocking or displacing doses of fenfluramine (1-5 mg/kg) or preblocking doses of unlabeled P943 (0.2 mg/kg) and imaged with [¹¹C]P943 PET. Receptor occupancy by the low dose of fenfluramine (1 mg/kg) in the baboons was 25 and 29% and by the high dose of fenfluramine (5 mg/kg) in the rhesus macaque was 42%. Receptor occupancy by P943 (0.2 mg/kg) was 68 and 86% in the baboons. PET imaging of 5-HT(1B) receptors with [¹¹C]P943 may be a useful approach for measuring changes in endogenous 5-HT in the living human brain.
Collapse
Affiliation(s)
- Kelly P Cosgrove
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Howell LL, Murnane KS. Nonhuman primate positron emission tomography neuroimaging in drug abuse research. J Pharmacol Exp Ther 2011; 337:324-34. [PMID: 21317354 DOI: 10.1124/jpet.108.136689] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also characterized in vivo drug interactions with specific protein targets in the brain, including neurotransmitter receptors and transporters. In vivo determinations of cerebral blood flow and metabolism have localized brain circuits implicated in the effects of abused drugs and drug-associated stimuli. Moreover, determinations of the predisposing factors to chronic drug use and long-term neurobiological consequences of chronic drug use, such as potential neurotoxicity, have led to novel insights regarding the pathology and treatment of drug addiction. However, similar approaches clearly need to be extended to drug classes other than stimulants. Although dopaminergic systems have been extensively studied, other neurotransmitter systems known to play a critical role in the pharmacological effects of abused drugs have been largely ignored in nonhuman primate PET neuroimaging. Finally, the study of brain activation with PET neuroimaging has been replaced in humans mostly by functional magnetic resonance imaging (fMRI). There has been some success in implementing pharmacological fMRI in awake nonhuman primates. Nevertheless, the unique versatility of PET imaging will continue to complement the systems-level strengths of fMRI, especially in the context of nonhuman primate drug abuse research.
Collapse
Affiliation(s)
- Leonard Lee Howell
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.
| | | |
Collapse
|
22
|
Varnäs K, Nyberg S, Karlsson P, Pierson ME, Kågedal M, Cselényi Z, McCarthy D, Xiao A, Zhang M, Halldin C, Farde L. Dose-dependent binding of AZD3783 to brain 5-HT1B receptors in non-human primates and human subjects: a positron emission tomography study with [11C]AZ10419369. Psychopharmacology (Berl) 2011; 213:533-45. [PMID: 21234549 DOI: 10.1007/s00213-011-2165-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/02/2011] [Indexed: 12/22/2022]
Abstract
RATIONALE The serotonin 5-HT(1B) receptor is a potential target for the pharmacologic treatment of depression. Positron emission tomography (PET) determination of 5-HT(1B) receptor occupancy with drug candidates targeting this receptor in non-human primate and human subjects may facilitate translation of research from animal models and guide dose selection for clinical studies. AZD3783 is a recently developed, orally bioavailable 5-HT(1B) receptor antagonist with potential antidepressant properties. OBJECTIVES To determine the relationship between plasma concentration of AZD3783 and occupancy at primate brain 5-HT(1B) receptors using PET and the radioligand [(11)C]AZ10419369. METHODS PET studies with [(11)C]AZ10419369 were performed in three non-human primates at baseline and after intravenous injection of AZD3783. Subsequently, PET measurements were undertaken in six human subjects at baseline and after administration of different single oral doses of AZD3783 (1-40 mg). RESULTS After administration in non-human primates and human subjects, AZD3783 reduced regional [(11)C]AZ10419369 binding in a dose-dependent and saturable manner. The AZD3783 plasma concentration required for 50% receptor occupancy (K (i,plasma)) for monkeys was 25 and 27 nmol/L in occipital cortex and striatum, respectively. Corresponding estimates for human occipital cortex and ventral striatum were 24 and 18 nmol/L, respectively. CONCLUSIONS The potential antidepressant AZD3783 binds in a saturable manner to brain 5-HT(1B) receptors with a similar in vivo affinity for human and monkey receptors. [(11)C]AZ10419369 can be successfully used to determine occupancy at brain 5-HT(1B) receptors in vivo and constitutes a useful tool for dose selection in clinical studies with 5-HT(1B) receptor compounds.
Collapse
Affiliation(s)
- Katarina Varnäs
- Karolinska Institutet, Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
In vivo serotonin-sensitive binding of [11C]CUMI-101: a serotonin 1A receptor agonist positron emission tomography radiotracer. J Cereb Blood Flow Metab 2011; 31:243-9. [PMID: 20571518 PMCID: PMC3049488 DOI: 10.1038/jcbfm.2010.83] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Positron emission tomography studies of 5-hydroxytryptamine (5-HT)(1A) receptors have hitherto been limited to antagonist radiotracers. Antagonists do not distinguish high/low-affinity conformations of G protein-coupled receptors and are less likely to be sensitive to intrasynaptic serotonin levels. We developed a novel 5-HT(1A) agonist radiotracer [(11)C]CUMI-101. This study evaluates the sensitivity of [(11)C]CUMI-101 binding to increases in intrasynaptic serotonin induced by intravenous citalopram and fenfluramine. Two Papio anubis were scanned, using [(11)C]CUMI-101 intravenous bolus of 4.5 ± 1.5 mCi. Binding potential (BP(F)=B(avail)/K(D)) was measured before (n=10) and 20 minutes after elevation of intrasynaptic serotonin by intravenous citalopram (2 mg/kg, n=3; 4 mg/kg, n=3) and fenfluramine (2.5 mg/kg, n=3) using a metabolite-corrected arterial input function. Occupancy was also estimated by the Lassen graphical approach. Both citalopram and fenfluramine effects were significant for BP(F) (P=0.031, P=0.049, respectively). The Lassen approach estimated 15.0, 30.4, and 23.7% average occupancy after citalopram 2 mg/kg, 4 mg/kg, and fenfluramine 2.5 mg/kg, respectively. [(11)C]CUMI-101 binding is sensitive to a large increase in intrasynaptic serotonin in response to robust pharmacological challenges. These modest changes in BP(F) may make it unlikely that this ligand will detect changes in intrasynaptic 5-HT under physiologic conditions; future work will focus on evaluating its utility in measuring the responsiveness of the 5-HT system to pharmacological challenges.
Collapse
|
24
|
Abstract
Molecular in vivo neuroimaging techniques can be used to measure regional changes in endogenous neurotransmitters, evoked by challenges that alter synaptic neurotransmitter concentration. This technique has most successfully been applied to the study of endogenous dopamine release using positron emission tomography, but has not yet been adequately extended to other neurotransmitter systems. This review focuses on how the technique has been applied to the study of the 5-hydroxytryptamine (5-HT) system. The principles behind visualising fluctuations in neurotransmitters are introduced, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT(1A), 5-HT(2A), and 5-HT(4) receptors and the serotonin reuptake transporter have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made as to how the selection of targets, radiotracers, challenge paradigms, and experimental design might be optimised to improve our chances of successfully imaging endogenous neurotransmitters in the future.
Collapse
|
25
|
Finnema SJ, Varrone A, Hwang TJ, Gulyás B, Pierson ME, Halldin C, Farde L. Fenfluramine-induced serotonin release decreases [11C]AZ10419369 binding to 5-HT1B-receptors in the primate brain. Synapse 2010; 64:573-7. [PMID: 20222157 DOI: 10.1002/syn.20780] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The need for positron emission tomography (PET)-radioligands that are sensitive to changes in endogenous serotonin (5-HT) levels in brain is recognized in experimental and clinical psychiatric research. We recently developed the novel PET radioligand [(11)C]AZ10419369 that is highly selective for the 5-HT(1B) receptor. In this PET-study in three cynomolgus monkeys, we examined the sensitivity of [(11)C]AZ10419369 to altered endogenous 5-HT levels. Fenfluramine-induced 5-HT release decreased radioligand binding in a dose-dependent fashion with a regional average of 27% after 1 mg/kg and 50% after 5 mg/kg. This preliminary study supports that [(11)C]AZ10419369 is sensitive to endogenous 5-HT levels in vivo and may serve as a tool to examine the pathophysiology and treatment of major psychiatric disorders.
Collapse
Affiliation(s)
- S J Finnema
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
26
|
Yatham LN, Liddle PF, Erez J, Kauer-Sant'Anna M, Lam RW, Imperial M, Sossi V, Ruth TJ. Brain serotonin-2 receptors in acute mania. Br J Psychiatry 2010; 196:47-51. [PMID: 20044660 DOI: 10.1192/bjp.bp.108.057919] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although 5-hydroxytryptamine (5-HT) has been implicated in mania, the precise alterations in the 5-HT system remain elusive. AIMS To assess brain 5-HT2 receptors in drug-free individuals experiencing a manic episode in comparison with healthy volunteers using positron emission tomography (PET). METHOD Participants (n = 10) with DSM-IV bipolar I disorder-manic episode and healthy controls (n = 10) underwent [18F]-setoperone scans. The differences in 5-HT2 receptor binding potential between the two groups were determined using statistical parametric mapping (SPM) analysis. RESULTS Age was a significant correlate with 5-HT2 receptor binding potential with a similar magnitude of correlation in both groups. The SPM analysis with age as a covariate showed that the individuals with current mania had significantly lower 5-HT2 receptor binding potential in frontal, temporal, parietal and occipital cortical regions, with changes more prominent in the right cortical regions compared with controls. CONCLUSIONS This study suggests that brain 5-HT2 receptors are decreased in people with acute mania.
Collapse
Affiliation(s)
- Lakshmi N Yatham
- Mood Disorders Program, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu S, Liow JS, Zoghbi SS, Hong J, Innis RB, Pike VW. Evaluation of [C]S14506 and [F]S14506 in rat and monkey as agonist PET radioligands for brain 5-HT(1A) receptors. Curr Radiopharm 2010; 3:9-18. [PMID: 20657759 DOI: 10.2174/1874471011003010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro and ex vivo measurements have shown that the binding of the selective high-affinity agonist, S14506 (1-[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxy-naphthyl)piperazine), to 5-HT(1A) receptors, is similar in affinity (K(d) = 0.79 nM) and extent (B(max)) to that of the antagonist, WAY 100635. We aimed to test whether S14506, labeled with a positron-emitter, might serve as a radioligand for imaging brain 5-HT(1A) receptors in vivo with positron emission tomography (PET). Here we evaluated [(11)C]S14506 and [(18)F]S14506 in rat and rhesus monkey in vivo. After intravenous administration of [(11)C]S14506 into rat, radioactivity entered brain, reaching 210% SUV at 2 min. Radioactivity uptake into brain was higher (~ 350% SUV) in rats pre-treated with the P-glycoprotein (P-gp) inhibitor, cyclosporin A. In rhesus monkey, peak brain uptake of radioactivity after administration of [(11)C]S14506 or [(18)F]S14506 was also moderate and for [(11)C]S14506 increased from ~ 170% SUV after 7 min, to 240% SUV in a monkey pre-treated with the P-gp inhibitor, tariquidar. The ratios of radioactivity in 5-HT(1A) receptor-rich regions, such as cingulate or hippocampus to that in receptor-poor cerebellum reached between 1.35 and 1.5 at 60 min for both [(11)C]S14506 and [(18)F]S14506. [(11)C]S14506 gave one major polar radiometabolite in monkey plasma, and [(18)F]S14506 gave three and two more polar radiometabolites in rat and monkey plasma, respectively. The rat radiometabolites of [(18)F]S14506 did not accumulate in brain. [(18)F]S14506 was not radiodefluorinated in monkey. Thus, despite high-affinity and lack of troublesome brain radiometabolites, both [(11)C]S14506 and [(18)F]S14506 were ineffective for imaging rat or monkey brain 5-HT(1A) receptors in vivo, even under P-gp inhibited conditions. Explanations for the failure of these radioligands are offered.
Collapse
Affiliation(s)
- Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda MD 20892-1003, USA
| | | | | | | | | | | |
Collapse
|
28
|
Antagonist but not agonist labeling of serotonin-1A receptors is decreased in major depressive disorder. J Psychiatr Res 2009; 43:887-94. [PMID: 19215942 PMCID: PMC2754145 DOI: 10.1016/j.jpsychires.2009.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/22/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
Serotonin-1A receptors may play a role in the pathophysiology of depression and suicide. In postmortem brain tissue, agonist binding to serotonin-1A receptors is reportedly increased or unchanged in depression or suicide, while neuroimaging studies report a decrease in antagonist binding to these receptors in subjects with depression. In this study, both agonist and antagonist radioligand binding to serotonin-1A receptors were examined in postmortem orbitofrontal cortex from subjects with major depressive disorder (MDD). Brain tissue was collected at autopsy from 11 subjects with MDD and 11 age- and gender-matched normal control subjects. Two depressed subjects had a recent psychoactive substance use disorder. Six subjects with MDD had a prescription for an antidepressant drug in the last month of life, and, of these six, postmortem bloods from only two subjects tested positive for an antidepressant drug. There was no significant difference between cohorts for age, postmortem interval or tissue pH. The receptor agonist [3H]8-OH-DPAT or the antagonist [3H]MPPF were used to autoradiographically label serotonin-1A receptors in frozen sections from cytoarchitectonically-defined left rostral orbitofrontal cortex (area 47). There was no significant difference between depressed and control subjects in agonist binding to serotonin-1A receptors. However, antagonist binding was significantly decreased in outer layers of orbitofrontal cortex in MDD. This observation in postmortem tissue confirms reports using an antagonist radioligand in living subjects with depression. Decreased antagonist binding to serotonin-1A receptors in outer layers of orbitofrontal cortex suggests diminished receptor signaling and may be linked to corresponding neuronal changes detected previously in these depressed subjects.
Collapse
|
29
|
Moulin-Sallanon M, Charnay Y, Ginovart N, Perret P, Lanfumey L, Hamon M, Hen R, Fagret D, Ibáñez V, Millet P. Acute and chronic effects of citalopram on 5-HT1A receptor-labeling by [18F]MPPF and -coupling to receptors-G proteins. Synapse 2009; 63:106-16. [PMID: 19016488 DOI: 10.1002/syn.20588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Selective serotonin reuptake inhibitors take several weeks to produce their maximal therapeutic antidepressant effect. This delay has been attributed to the gradual desensitization of somatodendritic serotonin 5-HT(1A) autoreceptors. We evaluated adaptive changes of 5-HT(1A) receptors after acute and chronic citalopram challenges in rat. Small animal positron emission tomography trial and quantitative ex vivo autoradiography studies using [(18)F]MPPF were employed, as well as in vitro 8-OH-DPAT-stimulated [(35)S]-GTPgammaS binding assay. Additionally, 5-HT(1A) receptor knock-out mice were used to assess the specificity of [(18)F]MPPF. Acute treatment with citalopram did not alter [(18)F]MPPF binding in dorsal raphe nucleus (DR), frontal cortex, or hippocampus. The absence of [(18)F]MPPF binding in the brain of 5-HT(1A) knock-out mice demonstrates the specificity of MPPF for 5-HT(1A) receptor brain imaging, but the high affinity of [(18)F]MPPF compared to 5-HT suggests that it would only be displaced by dramatic increases in extracellular 5-HT. Chronic citalopram did not modify 5-HT(1A) receptor density in any of the brain regions studied. In addition, this treatment did not modify 8-OH-DPAT-stimulated [(35)S]-GTPgammaS binding in DR, although a significant increase was observed in frontal cortex and hippocampus. [(18)F]MPPF appears to be an efficient radioligand to quantify specifically 5-HT(1A) receptor density in brain imaging. The delayed therapeutic efficacy of citalopram did not appear to be linked to either a downregulation of 5-HT(1A) receptors or to a 5-HT(1A) receptor-G protein decoupling process in serotonergic neurons, but to increased functional sensitivity of postsynaptic 5-HT(1A) receptors.
Collapse
|
30
|
Preece MA, Taylor MJ, Raley J, Blamire A, Sharp T, Sibson NR. Evidence that increased 5-HT release evokes region-specific effects on blood-oxygenation level-dependent functional magnetic resonance imaging responses in the rat brain. Neuroscience 2009; 159:751-9. [PMID: 19174180 DOI: 10.1016/j.neuroscience.2008.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/18/2008] [Accepted: 12/16/2008] [Indexed: 01/10/2023]
Abstract
This study aimed to determine the potential of in vivo functional magnetic resonance imaging (fMRI) methods as a non-invasive means of detecting effects of increased 5-HT release in brain. Changes in blood-oxygenation level-dependent (BOLD) contrast induced by administration of the 5-HT-releasing agent, fenfluramine, were measured in selected brain regions of halothane-anesthetized rats. Initial immunohistochemical measurements of the marker of neural activation, Fos, confirmed that in halothane-anesthetized rats fenfluramine (10 mg/kg i.v.) evoked cellular responses in cortical regions which were attenuated by pre-treatment with the 5-HT synthesis inhibitor p-chlorophenylalanine (300 mg/kg i.p. once daily for 2 days). Fenfluramine-induced Fos was demonstrated in numerous glutamatergic pyramidal neurons (Fos/excitatory amino acid carrier 1 (EAAC1) co-labeled), but also a small number of GABA interneurons (Fos/glutamic acid decarboxylase (GAD)(67) colabeled). Fenfluramine (10 mg/kg i.v.) evoked changes in BOLD signal intensity in a number of cortical and sub-cortical regions with the greatest effects being observed in the nucleus accumbens (-13.0%+/-2.7%), prefrontal cortex (-10.1%+/-3.2%) and motor cortex (+2.3%+/-1.0%). Pre-treatment with p-chlorophenylalanine, significantly attenuated the response to fenfluramine (10 mg/kg i.v.) in all regions with the exception of the motor cortex which showed a trend. These experiments demonstrate that increased 5-HT release evokes region-specific changes in the BOLD signal in rats, and that this effect is attenuated in almost all regions by 5-HT depletion. These findings support the use of fMRI imaging methods as a non-invasive tool to study 5-HT function in animal models, with the potential for extension to clinical studies.
Collapse
Affiliation(s)
- M A Preece
- Department of Pharmacology, Mansfield Road, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
31
|
In vivo quantification of 5-HT1A–[18F]MPPF interactions in rats using the YAP-(S)PET scanner and a β-microprobe. Neuroimage 2008; 41:823-34. [DOI: 10.1016/j.neuroimage.2008.02.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/28/2008] [Accepted: 02/28/2008] [Indexed: 11/20/2022] Open
|
32
|
Abstract
The serotonin 5-HT(1A) receptor is implicated in the pathophysiology of major neuropsychiatric disorders, including depression, suicidal behavior, panic disorder, epilepsy, bulimia, schizophrenia, Parkinson's disease, and Alzheimer's disease and is, therefore, an important target for drug therapy. 5-HT(1A) receptors are expressed as somatodendritic autoreceptors in serotonin neurons of the raphé nuclei (presynaptic) and as postsynaptic receptors in cortical and subcortical serotonin terminal fields in the brain. Due to the higher concentration and heterogeneous distribution of this receptor, it is an attractive target for quantification in vivo using positron emission tomography (PET) and single photon emission tomography (SPECT). Here, we review the PET radioligands employed for imaging 5-HT(1A) receptors in living brain.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Department of Psychiatry, Columbia University College of Physicians and Surgeons & New York State Psychiatric Institute, New York, NY 10032, United States.
| | | |
Collapse
|
33
|
Lundquist P, Roman M, Syvänen S, Hartvig P, Blomquist G, Hammarlund-Udenaes M, Långström B. Effect on [11C]DASB binding after tranylcypromine-induced increase in serotonin concentration: positron emission tomography studies in monkeys and rats. Synapse 2007; 61:440-9. [PMID: 17372973 DOI: 10.1002/syn.20382] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several research groups have demonstrated that under specific conditions, in vivo neuroreceptor binding techniques can be used to measure acute changes in the concentrations of endogenous transmitters in the vicinity of neuroreceptors. The aim of this study was to investigate whether [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile ([(11)C]DASB) binding to the plasma membrane serotonin transporter (SERT) in the rhesus monkey and rat brain decreased after a pharmacologically-induced increase in the interstitial serotonin (5HT) concentration. Three rhesus monkeys were given repeated single boluses of [(11)C]DASB in sequential positron emission tomography (PET) experiments. Rats were given the tracer as a bolus dose plus a constant infusion. In vivo binding in both models was studied before and after presumably having increased interstitial 5HT concentrations using tranylcypromine (TCP), which inhibits the enzyme (monoamine oxidase, MAO), that degrades 5HT. The rat brain tissue was analyzed using high-performance liquid chromatography (HPLC) to determine the proportion of the PET signal comprising unchanged [(11)C]DASB. The binding of [(11)C]DASB in the thalamus decreased in both rhesus monkeys and rats after TCP administration. The possibility of using [(11)C]DASB as a tool for monitoring changes in endogenous serotonin concentrations merits further investigation.
Collapse
Affiliation(s)
- Pinelopi Lundquist
- Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
34
|
Easwaramoorthy B, Pichika R, Collins D, Potkin SG, Leslie FM, Mukherjee J. Effect of acetylcholinesterase inhibitors on the binding of nicotinic alpha4beta2 receptor PET radiotracer, (18)F-nifene: A measure of acetylcholine competition. Synapse 2007; 61:29-36. [PMID: 17068780 DOI: 10.1002/syn.20338] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetylcholinesterase inhibitors (AChEI's) are used to treat Alzheimer's disease (AD), and the putative mode of action is to increase acetylcholine (ACh) levels. Our goal is to evaluate competition of ACh with nicotinic alpha4beta2 receptor PET agonist radiotracer, 2-[(18)F]fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ((18)F-nifene). This ability to measure ACh-(18)F-nifene competition may have potential to assess efficacy of AChEI's in vivo. In vitro studies in rat brain slices used two AChEI's, physostigmine (PHY) and galanthamine (GAL). Brain slices were incubated with (18)F-nifene and various concentrations of PHY (0.2-20 microM) or GAL (0.4-4 microM) prior to (18)F-nifene treatment. For ACh competition, slices were also incubated with PHY + 100 nM ACh or GAL + 100 nM ACh or 100 nM ACh alone. Nonspecific binding of (18)F-nifene was determined using 300 microM nicotine. In the in vitro rat brain homogenate binding assay, ACh inhibited (3)H-cytisine binding to alpha4beta2 receptors with K(i) values of 19.2 nM (with PHY) and 34.7 microM (no PHY) indicating approximately 1.8 x 10(3) weaker binding of ACh in the absence of AChEI. Binding of (18)F-nifene was not affected by PHY (0.2-20 microM) or ACh 100 nM alone but decreased substantially by PHY + ACh 100 nM in all brain regions (down by >40% of control in thalamus). Similarly, for GAL (4 microM) no effect on (18)F-nifene binding occurred but GAL (0.4-4 microM) + ACh 100 nM showed a reduction of (18)F-nifene binding in all brain regions (down by approximately 15%). The reduction in both cases is a result of ACh competition with (18)F-nifene in the presence of AChEI. These preliminary in vitro results suggest that ACh is able to compete with (18)F-nifene at the alpha4beta2 receptors in the presence of PHY or GAL. The effect is AChEI-concentration dependent and is greater for PHY than GAL. Thus (18)F-nifene has promise for assessing ACh levels and AChEI effects in vivo.
Collapse
Affiliation(s)
- Balasubramaniam Easwaramoorthy
- Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
35
|
Aznavour N, Zimmer L. [18F]MPPF as a tool for the in vivo imaging of 5-HT1A receptors in animal and human brain. Neuropharmacology 2006; 52:695-707. [PMID: 17101155 DOI: 10.1016/j.neuropharm.2006.09.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 09/21/2006] [Accepted: 09/29/2006] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and its various receptors are involved in numerous CNS functions and psychiatric disorders. 5-HT(1A), the best-characterized subtype of currently known 5-HT receptors, is tightly implicated in the pathogenesis of depression, anxiety, epilepsy and eating disorders. It thus represents an important target for drug therapy. Specific radioligands and positron emission tomography (PET) allow for a quantitative imaging of brain 5-HT(1A) receptor distribution in living animals and humans. Recently, the selective 5-HT(1A) receptor antagonist, MPPF, has been successfully labeled with [(18)F]fluorine ([(18)F]MPPF), and an increasing number of academic and industry centres have used this radiotracer in preclinical and clinical studies. After a brief account of some of the structural, distributional and electrophysiological characteristics of brain 5-HT(1A) receptors, this review focuses on studies conducted with [(18)F]MPPF, with emphasis on preclinical results illustrating the actual and potential value of this PET radioligand for clinical research and drug development.
Collapse
Affiliation(s)
- Nicolas Aznavour
- Laboratoire de Neuropharmacologie, Université Lyon 1, Lyon, France
| | | |
Collapse
|