1
|
Beckstead MJ, Howell RD. Progressive parkinsonism due to mitochondrial impairment: Lessons from the MitoPark mouse model. Exp Neurol 2021; 341:113707. [PMID: 33753138 PMCID: PMC8169575 DOI: 10.1016/j.expneurol.2021.113707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
The cardinal pathophysiological finding of Parkinson's disease (PD) is a chronic, progressive degeneration of dopamine (DA) neurons in the substantia nigra, which is responsible for the motor and some of the non-motor symptomatology. While the primary causes of nigrostriatal degeneration are hotly debated, considerable evidence supports a central role for impaired mitochondrial function. Postmortem analysis of PD patients reveals impaired respiratory chains and increased mutations of mitochondrial DNA (mtDNA), in addition to increased markers of oxidative stress indicative of mitochondrial impairment. Most animal models of PD, both genetic and toxin-based, target some component of mitochondrial function to reproduce aspects of the human disease. One model that continues to gain attention is the MitoPark mouse, created through a cell type-specific knockout of mitochondrial transcription factor A specifically in midbrain DA neurons. This model effectively recapitulates the slowly developing, adult onset motor decline seen in PD due to mass loss of DA neurons. MitoPark mice therefore represent an effective tool for studying the sequence of events that occurs in the early stages of DA neuron degeneration following mitochondrial impairment, as well as for testing the efficacy of potential disease-modifying therapies in a progressive model of neurodegeneration. A targeted review of key findings from MitoPark mice has not been published since the early years following the initial report of the model in 2007. The current review synthesizes findings from several groups that are exploring MitoPark mice and discusses implications for the future identification of disease-modifying treatments for PD.
Collapse
Affiliation(s)
- Michael J Beckstead
- Oklahoma Medical Research Foundation, Aging & Metabolism Research Program, USA.
| | - Rebecca D Howell
- Oklahoma Medical Research Foundation, Aging & Metabolism Research Program, USA
| |
Collapse
|
2
|
Gibson AS, Keefe KA, Furlong TM. Accelerated habitual learning resulting from L-dopa exposure in rats is prevented by N-acetylcysteine. Pharmacol Biochem Behav 2020; 198:173033. [PMID: 32888972 DOI: 10.1016/j.pbb.2020.173033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Instrumental actions are initially goal-directed and driven by their associated outcome. However, with repeated experience habitual actions develop which are automated and efficient, as they are instead driven by antecedent stimuli. Dopamine is thought to facilitate the transition from goal-directed to habitual actions. This idea has been largely derived from evidence that psychostimulants accelerate the development of habitual actions. In the current study, we examined the impact of L-dopa (levodopa or L-dihydroxyphenylalanine), which also potentiates dopamine activity, on habitual learning. L-dopa was systemically administered prior to training rats to press a lever for a food outcome. When tested, L-dopa exposed animals were insensitive to changes in the value of the food outcome, and hence demonstrated accelerated habitual behavioral control compared to control animals that remained goal directed. We also showed that when N-acetylcysteine (NAC), an antioxidant and regulator of glutamate activity, was co-administered with L-dopa, it prevented the transition to habitual behavior; an effect demonstrated previously for cocaine. Therefore, this study establishes similarities between L-dopa and psychostimulants in both the development and prevention of habitual actions, and supports the notion that excess dopamine potentiates habitual learning. This finding extends the limited existing knowledge of the impact of L-dopa on learning and behavior, and has implications for neurological disorders where L-dopa is the primary treatment.
Collapse
Affiliation(s)
- Anne S Gibson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Kristen A Keefe
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Teri M Furlong
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, Australia; School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
3
|
Effects of daily L-dopa administration on learning and brain structure in older adults undergoing cognitive training: a randomised clinical trial. Sci Rep 2020; 10:5227. [PMID: 32251360 PMCID: PMC7090037 DOI: 10.1038/s41598-020-62172-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/04/2020] [Indexed: 11/08/2022] Open
Abstract
Cognitive aging creates major individual and societal burden, motivating search for treatment and preventive care strategies. Behavioural interventions can improve cognitive performance in older age, but effects are small. Basic research has implicated dopaminergic signalling in plasticity. We investigated whether supplementation with the dopamine-precursor L-dopa improves effects of cognitive training on performance. Sixty-three participants for this randomised, parallel-group, double-blind, placebo-controlled trial were recruited via newspaper advertisements. Inclusion criteria were: age of 65–75 years, Mini-Mental State Examination score >25, absence of serious medical conditions. Eligible subjects were randomly allocated to either receive 100/25 mg L-dopa/benserazide (n = 32) or placebo (n = 31) prior to each of twenty cognitive training sessions administered during a four-week period. Participants and staff were blinded to group assignment. Primary outcomes were latent variables of spatial and verbal fluid intelligence. Compared to the placebo group, subjects receiving L-dopa improved less in spatial intelligence (−0.267 SDs; 95%CI [−0.498, −0.036]; p = 0.024). Change in verbal intelligence did not significantly differ between the groups (−0.081 SDs, 95%CI [−0.242, 0.080]; p = 0.323). Subjects receiving L-dopa also progressed slower through the training and the groups displayed differential volumetric changes in the midbrain. No statistically significant differences were found for the secondary cognitive outcomes. Adverse events occurred for 10 (31%) and 7 (23%) participants in the active and control groups, correspondingly. The results speak against early pharmacological interventions in older healthy adults to improve broader cognitive functions by targeting the dopaminergic system and provide no support for learning-enhancing properties of L-dopa supplements in the healthy elderly. The findings warrant closer investigation about the cognitive effects of early dopamine-replacement therapy in neurological disorders. This trial was preregistered at the European Clinical Trial Registry, EudraCT#2016-000891-54 (2016-10-05).
Collapse
|
4
|
The “highs and lows” of the human brain on dopaminergics: Evidence from neuropharmacology. Neurosci Biobehav Rev 2017. [DOI: 10.1016/j.neubiorev.2017.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Cassano T, Lopalco A, de Candia M, Laquintana V, Lopedota A, Cutrignelli A, Perrone M, Iacobazzi RM, Bedse G, Franco M, Denora N, Altomare CD. Oxazepam-Dopamine Conjugates Increase Dopamine Delivery into Striatum of Intact Rats. Mol Pharm 2017; 14:3178-3187. [PMID: 28780872 DOI: 10.1021/acs.molpharmaceut.7b00405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurotransmitter dopamine (DA) was covalently linked to oxazepam (OXA), a well-known positive allosteric modulator of γ-aminobutyric acid type-A (GABAA) receptor, through a carbamate linkage (4) or a succinic spacer (6). These conjugates were synthesized with the aim of improving the delivery of DA into the brain and enhancing GABAergic transmission, which may be useful for the long-term treatment of Parkinson disease (PD). Structure-based permeability properties, in vitro stability, and blood-brain barrier (BBB) permeability studies led to identify the OXA-DA carbamate conjugate 4a as the compound better combining sufficient stability and ability to cross BBB. Finally, in vivo microdialysis experiments in freely moving rats demonstrated that 4a (20 mg/kg, i.p.) significantly increases extracellular DA levels into striatum, with a peak (more than 15-fold increase over the baseline) at about 80 min after a single administration. The stability and delivery data proved that 4a may be a promising candidate for further pharmacological studies in animal models of PD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia 71100, Italy
| | - Antonio Lopalco
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Valentino Laquintana
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Angela Lopedota
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Mara Perrone
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Rosa M Iacobazzi
- Istituto tumori IRCCS "Giovanni Paolo II" , Flacco, St. 65, 70124 Bari, Italy
| | - Gaurav Bedse
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , 00185 Rome, Italy.,Department of Psychiatry, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Massimo Franco
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| |
Collapse
|
6
|
Qi L, Thomas E, White SH, Smith SK, Lee CA, Wilson LR, Sombers LA. Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes. Anal Chem 2016; 88:8129-36. [PMID: 27441547 DOI: 10.1021/acs.analchem.6b01871] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
L-DOPA has been the gold standard for symptomatic treatment of Parkinson's disease. However, its efficacy wanes over time as motor complications develop. Very little is known about how L-DOPA therapy affects the dynamics of fluctuating dopamine concentrations in the striatum on a rapid time scale (seconds). Electrochemical studies investigating the effects of L-DOPA treatment on electrically evoked dopamine release have reported conflicting results with significant variability. We hypothesize that the uncertainty in the electrochemical data is largely due to electrode fouling caused by polymerization of L-DOPA and endogenous catecholamines on the electrode surface. Thus, we have systematically optimized the procedure for fabricating cylindrical, Nafion-coated, carbon-fiber microelectrodes. This has enabled rapid and reliable detection of L-DOPA's effects on striatal dopamine signaling in intact rat brain using fast-scan cyclic voltammetry. An acute dose of 5 mg/kg L-DOPA had no significant effect on dopamine dynamics, demonstrating the highly efficient regulatory mechanisms at work in the intact brain. In contrast, administration of 200 mg/kg L-DOPA significantly increased the amplitude of evoked dopamine release by ∼200%. Overall, this work describes a reliable tool that allows a better measure of L-DOPA augmented dopamine release in vivo, measured using fast-scan cyclic voltammetry. It provides a methodology that improves the stability and performance of the carbon-fiber microelectrode when studying the molecular mechanisms underlying L-DOPA therapy and also promises to benefit a wide variety of studies because Nafion is so commonly used in electroanalytical chemistry.
Collapse
Affiliation(s)
- Lingjiao Qi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Elina Thomas
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Stephanie H White
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Samantha K Smith
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Christie A Lee
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Leslie R Wilson
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Leslie A Sombers
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Harun R, Hare KM, Brough EM, Munoz MJ, Grassi CM, Torres GE, Grace AA, Wagner AK. Fast-scan cyclic voltammetry demonstrates that L-DOPA produces dose-dependent, regionally selective bimodal effects on striatal dopamine kinetics in vivo. J Neurochem 2016; 136:1270-1283. [PMID: 26611352 PMCID: PMC4884169 DOI: 10.1111/jnc.13444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a debilitating condition that is caused by a relatively specific degeneration of dopaminergic (DAergic) neurons of the substantia nigra pars compacta. L-DOPA was introduced as a viable treatment option for PD over 40 years ago and still remains the most common and effective therapy for PD. Though the effects of L-DOPA to augment striatal DA production are well known, little is actually known about how L-DOPA alters the kinetics of DA neurotransmission that contribute to its beneficial and adverse effects. In this study, we examined the effects of L-DOPA administration (50 mg/kg carbidopa + 0, 100, and 250 mg/kg L-DOPA) on regional electrically stimulated DA response kinetics using fast-scan cyclic voltammetry in anesthetized rats. We demonstrate that L-DOPA enhances DA release in both the dorsal striatum (D-STR) and nucleus accumbens (NAc), but surprisingly causes a delayed inhibition of release in the D-STR. In both regions, L-DOPA progressively attenuated reuptake kinetics, predominantly through a decrease in Vmax . These findings have important implications on understanding the pharmacodynamics of L-DOPA, which may be informative for understanding its therapeutic effects and also common side effects like L-DOPA-induced dyskinesias (LID). L-DOPA is commonly used to treat Parkinsonian symptoms, but little is known about how it affects presynaptic DA neurotransmission. Using in vivo fast-scan cyclic voltammetry, we show L-DOPA inhibits DA reuptake in a region-specific and dose-dependent manner, and L-DOPA has paradoxical effects on release. These findings may be important when considering mechanisms for L-DOPA's therapeutic benefits and adverse side-effects.
Collapse
Affiliation(s)
- Rashed Harun
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
| | - Kristin M Hare
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth M Brough
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
| | - Miranda J Munoz
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biological Sciences, Carnegie Mellon University, Mellon College of Science, Pittsburgh, Pennsylvania, USA
| | - Christine M Grassi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gonzalo E Torres
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Departments of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Burrell MH, Atcherley CW, Heien ML, Lipski J. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices. ACS Chem Neurosci 2015; 6:1802-12. [PMID: 26322962 DOI: 10.1021/acschemneuro.5b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tonic dopamine (DA) levels influence the activity of dopaminergic neurons and the dynamics of fast dopaminergic transmission. Although carbon fiber microelectrodes and fast-scan cyclic voltammetry (FSCV) have been extensively used to quantify stimulus-induced release and uptake of DA in vivo and in vitro, this technique relies on background subtraction and thus cannot provide information about absolute extracellular concentrations. It is also generally not suitable for prolonged (>90 s) recordings due to drift of the background current. A recently reported, modified FSCV approach called fast-scan controlled-adsorption voltammetry (FSCAV) has been used to assess tonic DA levels in solution and in the anesthetized mouse brain. Here we describe a novel extension of FSCAV to investigate pharmacologically induced, slowly occurring changes in tonic (background) extracellular DA concentration, and phasic (stimulated) DA release in brain slices. FSCAV was used to measure adsorption dynamics and changes in DA concentration (for up to 1.5 h, sampling interval 30 s, detection threshold < 10 nM) evoked by drugs affecting DA release and uptake (amphetamine, l-DOPA, pargyline, cocaine, Ro4-1284) in submerged striatal slices obtained from rats. We also show that combined FSCAV-FSCV recordings can be used for concurrent study of stimulated release and changes in tonic DA concentration. Our results demonstrate that FSCAV can be effectively used in brain slices to measure prolonged changes in extracellular level of endogenous DA expressed as absolute values, complementing studies conducted in vivo with microdialysis.
Collapse
Affiliation(s)
- Mark H. Burrell
- Department
of Physiology and Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Christopher W. Atcherley
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael L. Heien
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Janusz Lipski
- Department
of Physiology and Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
9
|
Cordery P, James LJ, Peirce N, Maughan RJ, Watson P. A Catecholamine Precursor Does Not Influence Exercise Performance in Warm Conditions. Med Sci Sports Exerc 2015; 48:536-42. [PMID: 26460629 DOI: 10.1249/mss.0000000000000791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Acute doses of Sinemet® (L-DOPA combined with carbidopa) previously failed to influence prolonged exercise performance in a temperate environment, but it is not known whether acute doses of L-DOPA timed to reach maximum plasma concentrations (Cmax) during exercise will improve prolonged cycling performance in warm conditions (30.2°C ± 0.2°C, 50% ± 1%). METHODS Ten physically active men (age, 26 ± 4 yr; height, 1.76 ± 0.08 m; body mass, 76.3 ± 10.6 kg; V˙O2peak, 57 ± 8 mL·kg(-1)·min(-1)) were recruited for this study. Participants cycled for 1 h at 60% V˙O2peak followed by a 30-min exercise test, during which they were instructed to complete as much work as possible. Heart rate, skin and core temperatures, as well as RPE and thermal stress were recorded throughout the exercise, and blood samples were collected at rest, at 15-min intervals during the first hour of exercise, and at the end of the exercise test. Finger tapping tests at the beginning and end of the exercise were conducted to examine fine motor control. RESULTS There was no significant difference in the work done on the placebo (314 ± 43 kJ) and L-DOPA trials (326 ± 48 kJ, P = 0.276). Prolactin concentrations were increased at the end of the exercise in all trials (P < 0.001), but this response was attenuated at the end of the exercise for the L-DOPA trial (11.4 ± 5.5 ng·mL(-1)) and placebo trials (20.8 ± 3.3 ng·mL(-1), P = 0.003). No differences between trials were found for any other measure. CONCLUSIONS The results suggest that increasing central catecholamine availability inhibits the normal prolactin response to exercise in the heat but does not alter performance, thermoregulation, or sympathetic outflow.
Collapse
Affiliation(s)
- Philip Cordery
- 1School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UNITED KINGDOM; 2England and Wales Cricket Board, National Cricket Performance Centre, Loughborough University, Leicestershire, UNITED KINGDOM; and 3Department of Human Physiology, Vrije Universiteit Brussel, Brussels, BELGIUM
| | | | | | | | | |
Collapse
|
10
|
Morales I, Sabate M, Rodriguez M. Striatal glutamate induces retrograde excitotoxicity and neuronal degeneration of intralaminar thalamic nuclei: their potential relevance for Parkinson's disease. Eur J Neurosci 2013; 38:2172-82. [DOI: 10.1111/ejn.12205] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 01/23/2023]
Affiliation(s)
| | - Magdalena Sabate
- Department of Pharmacology and Physical Medicine; Faculty of Medicine; University of La Laguna; Service of Rehabilitation HUC; La Laguna; Tenerife; Canary Islands; Spain
| | | |
Collapse
|
11
|
Howard CD, Pastuzyn ED, Barker-Haliski ML, Garris PA, Keefe KA. Phasic-like stimulation of the medial forebrain bundle augments striatal gene expression despite methamphetamine-induced partial dopamine denervation. J Neurochem 2013; 125:555-65. [PMID: 23480199 DOI: 10.1111/jnc.12234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/20/2013] [Accepted: 03/04/2013] [Indexed: 11/30/2022]
Abstract
Methamphetamine-induced partial dopamine depletions are associated with impaired basal ganglia function, including decreased preprotachykinin mRNA expression and impaired transcriptional activation of activity-regulated, cytoskeleton-associated (Arc) gene in striatum. Recent work implicates deficits in phasic dopamine signaling as a potential mechanism linking methamphetamine-induced dopamine loss to impaired basal ganglia function. This study thus sought to establish a causal link between phasic dopamine transmission and altered basal ganglia function by determining whether the deficits in striatal neuron gene expression could be restored by increasing phasic dopamine release. Three weeks after pretreatment with saline or a neurotoxic regimen of methamphetamine, rats underwent phasic- or tonic-like stimulation of ascending dopamine neurons. Striatal gene expression was examined using in situ hybridization histochemistry. Phasic-like, but not tonic-like, stimulation induced immediate-early genes Arc and zif268 in both groups, despite the partial striatal dopamine denervation in methamphetamine-pretreated rats, with the Arc expression occurring in presumed striatonigral efferent neurons. Phasic-like stimulation also restored preprotachykinin mRNA expression. These results suggest that disruption of phasic dopamine signaling likely underlies methamphetamine-induced impairments in basal ganglia function, and that restoring phasic dopamine signaling may be a viable approach to manage long-term consequences of methamphetamine-induced dopamine loss on basal ganglia functions.
Collapse
|
12
|
Denora N, Cassano T, Laquintana V, Lopalco A, Trapani A, Cimmino CS, Laconca L, Giuffrida A, Trapani G. Novel codrugs with GABAergic activity for dopamine delivery in the brain. Int J Pharm 2012; 437:221-31. [PMID: 22940209 DOI: 10.1016/j.ijpharm.2012.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
Abstract
This study investigates the use of codrugs of the GABAergic agent 2-phenyl-imidazo[1,2-a]pyridinacetamide and dopamine (DA) or ethyl ester L-Dopa (LD) as a strategy to deliver DA and simultaneously activate GABA-receptors in the brain. For this purpose, both DA and LD ethyl ester were linked by carbamate bond to imidazo[1,2-a]pyridine acetamide moieties to yield two DA- and two LD-imidazopyridine derivatives. These compounds were evaluated in vitro to assess their stability, binding affinities and cell membrane transport, and in vivo to assess their bio-availability via microdialysis studies. The two DA derivatives were adequately stable in buffered solution, but underwent cleavage in diluted human serum. By contrast, the LD derivatives were unstable in buffered solution. Receptor binding studies showed that the DA-imidazopyridine carbamates had binding affinity for benzodiazepine receptors in the nanomolar range. Brain microdialysis experiments indicated that intraperitoneal administration of the DA derivatives sustained DA levels in rat striatum over a 4-h period. These results suggest that DA-imidazopyridine carbamates are new DA codrugs with potential application for DA replacement therapy.
Collapse
Affiliation(s)
- Nunzio Denora
- Department of Pharmacy, University of Bari, Bari 70125, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liggins J, Pihl RO, Benkelfat C, Leyton M. The dopamine augmenter L-DOPA does not affect positive mood in healthy human volunteers. PLoS One 2012; 7:e28370. [PMID: 22238577 PMCID: PMC3251561 DOI: 10.1371/journal.pone.0028370] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
Dopamine neurotransmission influences approach toward rewards and reward-related cues. The best cited interpretation of this effect proposes that dopamine mediates the pleasure that commonly accompanies reward. This hypothesis has received support in some animal models and a few studies in humans. However, direct assessments of the effect of transiently increasing dopamine neurotransmission have been largely limited to the use of psychostimulant drugs, which elevate brain levels of multiple neurotransmitters in addition to dopamine. In the present study we tested the effect of more selectively elevating dopamine neurotransmission, as produced by administration of the immediate dopamine precursor, L-DOPA (0, 100/25, 200/50 mg, Sinemet), in healthy human volunteers. Neither dose altered positive mood. The results suggest that dopamine neurotransmission does not directly influence positive mood in humans.
Collapse
Affiliation(s)
- John Liggins
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Robert O. Pihl
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
14
|
Yoshimi K, Naya Y, Mitani N, Kato T, Inoue M, Natori S, Takahashi T, Weitemier A, Nishikawa N, McHugh T, Einaga Y, Kitazawa S. Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes. Neurosci Res 2011; 71:49-62. [PMID: 21645558 DOI: 10.1016/j.neures.2011.05.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 04/16/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Reward-induced burst firing of dopaminergic neurons has mainly been studied in the primate midbrain. Voltammetry allows high-speed detection of dopamine release in the projection area. Although voltammetry has revealed presynaptic modulation of dopamine release in the striatum, to date, reward-induced release in awakened brains has been recorded only in rodents. To make such recordings, it is possible to use conventional carbon fibres in monkey brains but the use of these fibres is limited by their physical fragility. In this study, constant-potential amperometry was applied to novel diamond microelectrodes for high-speed detection of dopamine. In primate brains during Pavlovian cue-reward trials, a sharp response to a reward cue was detected in the caudate of Japanese monkeys. Overall, this method allows measurements of monoamine release in specific target areas of large brains, the findings from which will expand the knowledge of reward responses obtained by unit recordings.
Collapse
Affiliation(s)
- Kenji Yoshimi
- Department of Neurophysiology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Belujon P, Lodge DJ, Grace AA. Aberrant striatal plasticity is specifically associated with dyskinesia following levodopa treatment. Mov Disord 2010; 25:1568-76. [PMID: 20623773 DOI: 10.1002/mds.23245] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chronic levodopa treatment for Parkinson's disease often results in the development of abnormal involuntary movement, known as L-dopa-induced dyskinesia (LIDs). Studies suggest that LIDs may be associated with aberrant corticostriatal plasticity. Using in vivo extracellular recordings from identified Type I and Type II medium spiny striatal neurons, chronic L-dopa treatment was found to produce abnormal corticostriatal information processing. Specifically, after chronic L-dopa treatment in dopamine-depleted rats, there was a transition from a cortically evoked long-term depression (LTD) to a complementary but opposing form of plasticity, long-term potentiation, in Type II "indirect" pathway neurons. In contrast, LTD could still be induced in Type I neurons. Interestingly, the one parameter that correlated best with dyskinesias was the inability to de-depress established LTD in Type I medium spiny striatal neurons. Taken as a whole, we propose that the induction of LIDs is due, at least in part, to an aberrant induction of plasticity within the Type II indirect pathway neurons combined with an inability to de-depress established plastic responses in Type I neurons. Such information is critical for understanding the cellular mechanisms underlying one of the major caveats to L-dopa therapy.
Collapse
Affiliation(s)
- Pauline Belujon
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
16
|
Abstract
Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation of the boundaries of dopaminergic volume transmission. Bursts primarily increase occupancy of D(1) receptors, whereas pauses translate into low occupancy of D(1) and D(2) receptors. Phasic firing patterns, composed of bursts and pauses, reduce the average D(2) receptor occupancy and increase average D(1) receptor occupancy compared with equivalent tonic firing. Receptor occupancy is crucially dependent on synchrony and the balance between tonic and phasic firing modes. Our results provide quantitative insight in the dynamics of volume transmission and complement experimental data obtained with electrophysiology, positron emission tomography, microdialysis, amperometry, and voltammetry.
Collapse
|
17
|
Juri C, Rodriguez-Oroz M, Obeso JA. The pathophysiological basis of sensory disturbances in Parkinson's disease. J Neurol Sci 2009; 289:60-5. [PMID: 19758602 DOI: 10.1016/j.jns.2009.08.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The diagnosis of Parkinson's disease (PD) is still based on the recognition of the cardinal motor features. However, it is now recognized that non-motor manifestations (NMM) may actually precede the emergence of motor manifestations. NMM are very frequently present in the overall population of PD patients and are a major determinant of their quality of life. In this article we discuss the origin of sensory manifestations in PD, particularly focus on pain mechanisms, which is the most frequent and better studied NMM. Analysis of experimental and clinical data reveals that the basal ganglia (BG) indeed have an anatomo-functional organization which sustains sensory functions. In addition, the dopaminergic system is also engaged in the modulation and integration of sensory information and the response to pain. In patients with PD, pain is often related with motor fluctuations and dyskinesias induced by dopaminergic treatments, which suggest some common mechanisms with the origin of motor complications in PD. Clinically, sensory manifestations are often disturbing and poorly treated and may occasionally become a major cause of disability for PD patients. Thus, more clinical and basic studies are warranted to clarify pain mechanisms in PD, with the aim of achieving better treatments.
Collapse
Affiliation(s)
- Carlos Juri
- Departments of Neurology, Neurophysiology and Neurosurgery, Clinica Universitaria and Medical School, Neuroscience Centre, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
18
|
Lundblad M, af Bjerkén S, Cenci MA, Pomerleau F, Gerhardt GA, Strömberg I. Chronic intermittent L-DOPA treatment induces changes in dopamine release. J Neurochem 2009; 108:998-1008. [PMID: 19196428 DOI: 10.1111/j.1471-4159.2008.05848.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3,4-Dihydroxyphenyl-l-alanine (l-DOPA)-induced dyskinesia often develops as a side effect of chronic l-DOPA therapy. This study was undertaken to investigate dopamine (DA) release upon l-DOPA treatment. Chronoamperometric measurements were performed in unilaterally DA-depleted rats, chronically treated with l-DOPA, resulting in dyskinetic and non-dyskinetic animals. Normal and lesioned l-DOPA naïve animals were used as controls. Potassium-evoked DA releases were significantly reduced in intact sides of animals undertaken chronic l-DOPA treatment, independent on dyskinetic behavior. Acute l-DOPA further attenuated the amplitude of the DA release in the control sides. In DA-depleted striata, no difference was found in potassium-evoked DA releases, and acute l-DOPA did not affect the amplitude. While immunoreactivity to serotonin uptake transporter was higher in lesioned striata of animals displaying dyskinetic behavior, no correlation could be documented between serotonin transporter-positive nerve fiber density and the amplitude of released DA. In conclusions, the amplitude of potassium-evoked DA release is attenuated in intact striatum after chronic intermittent l-DOPA treatment. No change in amplitude was found in DA-denervated sides of either dyskinetic or non-dyskinetic animals, while release kinetics were changed. This indicates the importance of studying DA release dynamics for the understanding of both beneficial and adverse effects of l-DOPA replacement therapy.
Collapse
Affiliation(s)
- Martin Lundblad
- Department of Integrative Medical Biology, Umeå University, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M. Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease. Mov Disord 2009; 23 Suppl 3:S548-59. [PMID: 18781672 DOI: 10.1002/mds.22062] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The basal ganglia (BG) are a highly organized network, where different parts are activated for specific functions and circumstances. The BG are involved in movement control, as well as associative learning, planning, working memory, and emotion. We concentrate on the "motor circuit" because it is the best understood anatomically and physiologically, and because Parkinson's disease is mainly thought to be a movement disorder. Normal function of the BG requires fine tuning of neuronal excitability within each nucleus to determine the exact degree of movement facilitation or inhibition at any given moment. This is mediated by the complex organization of the striatum, where the excitability of medium spiny neurons is controlled by several pre- and postsynaptic mechanisms as well as interneuron activity, and secured by several recurrent or internal BG circuits. The motor circuit of the BG has two entry points, the striatum and the subthalamic nucleus (STN), and an output, the globus pallidus pars interna (GPi), which connects to the cortex via the motor thalamus. Neuronal afferents coding for a given movement or task project to the BG by two different systems: (1) Direct disynaptic projections to the GPi via the striatum and STN. (2) Indirect trisynaptic projections to the GPi via the globus pallidus pars externa (GPe). Corticostriatal afferents primarily act to inhibit medium spiny neurons in the "indirect circuit" and facilitate neurons in the "direct circuit." The GPe is in a pivotal position to regulate the motor output of the BG. Dopamine finely tunes striatal input as well as neuronal striatal activity, and modulates GPe, GPi, and STN activity. Dopaminergic depletion in Parkinson's disease disrupts the corticostriatal balance leading to increased activity the indirect circuit and reduced activity in the direct circuit. The precise chain of events leading to increased STN activity is not completely understood, but impaired dopaminergic regulation of the GPe, GPi, and STN may be involved. The parkinsonian state is characterized by disruption of the internal balance of the BG leading to hyperactivity in the two main entry points of the network (striatum and STN) and excessive inhibitory output from the GPi. Replacement therapy with standard levodopa creates a further imbalance, producing an abnormal pattern of neuronal discharge and synchronization of neuronal firing that sustain the "off" and "on with dyskinesia" states. The effect of levodopa is robust but short-lasting and converts the parkinsonian BG into a highly unstable system, where pharmacological and compensatory effects act in opposing directions. This creates a scenario that substantially departs from the normal physiological state of the BG.
Collapse
Affiliation(s)
- Jose A Obeso
- Department of Neurology and Neurosurgery, Clinica Universitaria and Medical School and Neuroscience Centre, CIMA, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kickler N, Lacombe E, Chassain C, Durif F, Krainik A, Farion R, Provent P, Segebarth C, Rémy C, Savasta M. Assessment of metabolic changes in the striatum of a rat model of parkinsonism: an in vivo (1)H MRS study. NMR IN BIOMEDICINE 2009; 22:207-212. [PMID: 19130495 DOI: 10.1002/nbm.1305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Degeneration of the dopaminergic neurons of the substantia nigra pars compacta in Parkinson's disease induces an abnormal activation of the glutamatergic neurotransmission system within the basal ganglia network and related structures. The aim of this study was to use proton MRS to show metabolic changes in the striatum of 6-hydroxydopamine-lesioned rats, a rodent animal model of Parkinson's disease. Animals were examined before and after extensive lesioning of the nigral dopaminergic neurons and after acute administration of L-3,4-dihydroxyphenylalanine. No significant alterations in glutamate concentrations, assessed by the MR signal dominated by glutamate with minor contributions from glutamine and gamma-aminobutyric acid, could be measured. The total choline/total creatine ratio was found to be reduced in the striatum of the ipsilateral hemisphere.
Collapse
Affiliation(s)
- N Kickler
- INSERM U836, Grenoble Institut des Neurosciences, BP 170, F-38042 Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Morgese MG, Cassano T, Gaetani S, Macheda T, Laconca L, Dipasquale P, Ferraro L, Antonelli T, Cuomo V, Giuffrida A. Neurochemical changes in the striatum of dyskinetic rats after administration of the cannabinoid agonist WIN55,212-2. Neurochem Int 2009; 54:56-64. [PMID: 19010365 PMCID: PMC2657321 DOI: 10.1016/j.neuint.2008.10.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 11/30/2022]
Abstract
Chronic use of levodopa, the most effective treatment for Parkinson's disease, causes abnormal involuntary movements named dyskinesias, which are linked to maladaptive changes in plasticity and disturbances of dopamine and glutamate neurotransmission in the basal ganglia. Dyskinesias can be modeled in rats with unilateral 6-hydroxydopamine lesions by repeated administration of low doses of levodopa (6 mg/kg, s.c.). Previous studies from our lab showed that sub-chronic treatment with the cannabinoid agonist WIN55,212-2 attenuates levodopa-induced dyskinesias at doses that do not interfere with physiological motor function. To investigate the neurochemical changes underlying WIN55,212-2 anti-dyskinetic effects, we used in vivo microdialysis to monitor extracellular dopamine and glutamate in the dorsal striatum of both the hemispheres of freely moving 6-hydroxydopamine-treated, SHAM-operated and intact rats receiving levodopa acutely or chronically (11 days), and studied how sub-chronic WIN55,212-2 (1 injection x 3 days, 20 min before levodopa) affected these neurochemical outputs. Our data indicate that: (1) the 6-hydroxydopamine lesion decreases dopamine turnover in the denervated striatum; (2) levodopa injection reduces extracellular glutamate in the side ipsilateral to the lesion of dyskinetic rats; (3) sub-chronic WIN55,212-2 prevents levodopa-induced glutamate volume transmission unbalances across the two hemispheres; and (4) levodopa-induced dyskinesias are inversely correlated with glutamate levels in the denervated striatum. These data indicate that the anti-dyskinetic properties of WIN55,212-2 are accompanied by changes of dopamine and glutamate outputs in the two brain hemispheres of 6-hydroxydopamine-treated rats.
Collapse
Affiliation(s)
- M G Morgese
- Department of Biomedical Sciences, University of Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Di Giovanni G, Esposito E, Di Matteo V. In vivo microdialysis in Parkinson's research. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:223-43. [PMID: 20411781 DOI: 10.1007/978-3-211-92660-4_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopamine (DA) neurons in the nigrostriatal system, which in turn produces profound neurochemical changes within the basal ganglia, representing the neural substrate for parkinsonian motor symptoms. The pathogenesis of the disease is still not completely understood, but environmental and genetic factors are thought to play important roles. Research into the pathogenesis and the development of new therapeutic intervention strategies that will slow or stop the progression of the disease in human has rapidly advanced by the use of neurotoxins that specifically target DA neurons. Over the years, a broad variety of experimental models of the disease has been developed and applied in diverse animal species. The two most common toxin models used employ 6-hydroxydopamine (6-OHDA) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenilpyridinium ion (MPTP/MPP+), either given systemically or locally applied into the nigrostriatal pathway, to resemble PD features in animals. Both neurotoxins selectively and rapidly destroy catecolaminergic neurons, although with different mechanisms. Since in vivo microdialysis coupled to high-performance liquid chromatography is an established technique for studying physiological, pharmacological, and pathological changes of a wide range of low molecular weight substances in the brain extracellular fluid, here we review the most prominent animal and human data obtained by the use of this technique in PD research.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, G. Pagano, Universitá degli Studi di Palermo, 90134, Palermo, Italy
| | | | | |
Collapse
|
23
|
Mulla IAL, Lowry JP, Serra PA, O'Neill RD. Development of a voltammetric technique for monitoring brain dopamine metabolism: compensation for interference caused by DOPAC electrogenerated during homovanillic acid detection. Analyst 2009; 134:893-8. [DOI: 10.1039/b810227a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Reinholz J, Skopp O, Breitenstein C, Bohr I, Winterhoff H, Knecht S. Compensatory weight gain due to dopaminergic hypofunction: new evidence and own incidental observations. Nutr Metab (Lond) 2008; 5:35. [PMID: 19046419 PMCID: PMC2615020 DOI: 10.1186/1743-7075-5-35] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 12/01/2008] [Indexed: 11/10/2022] Open
Abstract
There is increasing evidence for a role of dopamine in the development of obesity. More specifically, dopaminergic hypofunction might lead to (over)compensatory food intake. Overeating and resulting weight gain may be induced by genetic predisposition for lower dopaminergic activity, but might also be a behavioral mechanism of compensating for decreased dopamine signaling after dopaminergic overstimulation, for example after smoking cessation or overconsumption of high palatable food. This hypothesis is in line with our incidental finding of increased weight gain after discontinuation of pharmaceutical dopaminergic overstimulation in rats. These findings support the crucial role of dopaminergic signaling for eating behaviors and offer an explanation for weight-gain after cessation of activities associated with high dopaminergic signaling. They further support the possibility that dopaminergic medication could be used to moderate food intake.
Collapse
Affiliation(s)
- Julia Reinholz
- Department of Neurology, University of Muenster, Albert-Schweitzer-Strasse 33, 48129 Muenster, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Intrastriatal inhibition of aromatic amino acid decarboxylase prevents l-DOPA-induced dyskinesia: a bilateral reverse in vivo microdialysis study in 6-hydroxydopamine lesioned rats. Neurobiol Dis 2007; 29:210-20. [PMID: 17920284 DOI: 10.1016/j.nbd.2007.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/27/2007] [Accepted: 08/22/2007] [Indexed: 11/24/2022] Open
Abstract
l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia consists of involuntary choreiform and dystonic movements. Here we report whether intrastriatal l-DOPA itself is able to trigger dyskinetic behavior and which role the neurotransmitter dopamine (DA) and its metabolites play. Intrastriatal l-DOPA as well as DA administration at the 6-hydroxydopamine (6-OHDA) lesioned side led to a significant appearance of dyskinetic behavior, whereas DA metabolites were ineffective. Intrastriatal inhibition of the enzyme aromatic amino acid decarboxylase (AADC) by benserazide prevented the appearance of l-DOPA-induced dyskinetic movements at the lesioned side. Principle component analysis of DA and DA metabolite levels with dyskinesia scores after l-DOPA/benserazide (6/15 mg/kg) administration indicated a significant correlation only for DA, whereas DA metabolites did not show any significant correlation with the occurrence of dyskinetic behavior. We conclude that intrastriatal l-DOPA itself is not able to induce dyskinetic movements, whereas the increase of intrastriatal DA levels is instrumental for l-DOPA- and DA-induced dyskinetic behavior.
Collapse
|