1
|
Chandrashekar DV, Roules GC, Jagadeesan N, Panchal UR, Oyegbesan A, Imiruaye OE, Zhang H, Garcia J, Kaur K, Win S, Than TA, Kaplowitz N, Roosan MR, Han D, Sumbria RK. Hepatic LRP-1 plays an important role in amyloidosis in Alzheimer's disease mice: Potential role in chronic heavy alcohol feeding. Neurobiol Dis 2024; 199:106570. [PMID: 38885850 DOI: 10.1016/j.nbd.2024.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Hepatic lipoprotein receptor-related protein 1 (LRP-1) plays a central role in peripheral amyloid beta (Aβ) clearance, but its importance in Alzheimer's disease (AD) pathology is understudied. Our previous work showed that intragastric alcohol feeding to C57BL/6 J mice reduced hepatic LRP-1 expression which correlated with significant AD-relevant brain changes. Herein, we examined the role of hepatic LRP-1 in AD pathogenesis in APP/PS1 AD mice using two approaches to modulate hepatic LRP-1, intragastric alcohol feeding to model chronic heavy drinking shown by us to reduce hepatic LRP-1, and hepato-specific LRP-1 silencing. METHODS Eight-month-old male APP/PS1 mice were fed ethanol or control diet intragastrically for 5 weeks (n = 7-11/group). Brain and liver Aβ were assessed using immunoassays. Three important mechanisms of brain amyloidosis were investigated: hepatic LRP-1 (major peripheral Aβ regulator), blood-brain barrier (BBB) function (vascular Aβ regulator), and microglia (major brain Aβ regulator) using immunoassays. Spatial LRP-1 gene expression in the periportal versus pericentral hepatic regions was confirmed using NanoString GeoMx Digital Spatial Profiler. Further, hepatic LRP-1 was silenced by injecting LRP-1 microRNA delivered by the adeno-associated virus 8 (AAV8) and the hepato-specific thyroxine-binding globulin (TBG) promoter to 4-month-old male APP/PS1 mice (n = 6). Control male APP/PS1 mice received control AAV8 (n = 6). Spatial memory and locomotion were assessed 12 weeks after LRP-1 silencing using Y-maze and open-field test, respectively, and brain and liver Aβ were measured. RESULTS Alcohol feeding reduced plaque-associated microglia in APP/PS1 mice brains and increased aggregated Aβ (p < 0.05) by ELISA and 6E10-positive Aβ load by immunostaining (p < 0.05). Increased brain Aβ corresponded with a significant downregulation of hepatic LRP-1 (p < 0.01) at the protein and transcript level, primarily in pericentral hepatocytes (zone 3) where alcohol-induced injury occurs. Hepato-specific LRP-1 silencing significantly increased brain Aβ and locomotion hyperactivity (p < 0.05) in APP/PS1 mice. CONCLUSION Chronic heavy alcohol intake reduced hepatic LRP-1 expression and increased brain Aβ. The hepato-specific LRP-1 silencing similarly increased brain Aβ which was associated with behavioral deficits in APP/PS1 mice. Collectively, our results suggest that hepatic LRP-1 is a key regulator of brain amyloidosis in alcohol-dependent AD.
Collapse
Affiliation(s)
- Devaraj V Chandrashekar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - G Chuli Roules
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Nataraj Jagadeesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Urvashi R Panchal
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Adenike Oyegbesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Oghenetega E Imiruaye
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, United States
| | - Jerome Garcia
- Department of Biology, University of La Verne, La Verne, CA, United States
| | - Kamaljit Kaur
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Sanda Win
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tin A Than
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Neil Kaplowitz
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Moom R Roosan
- Pharmacy Practice, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States.
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States; Department of Neurology, University of California, Irvine, CA, United States.
| |
Collapse
|
2
|
Devaud LL, Alavi M, Jensen JP, Helms ML, Nipper MA, Finn DA. Sexually divergent changes in select brain proteins and neurosteroid levels after a history of ethanol drinking and intermittent PTSD-like stress exposure in adult C57BL/6J mice. Alcohol 2020; 83:115-125. [PMID: 30529168 DOI: 10.1016/j.alcohol.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 11/25/2022]
Abstract
Human studies reported that the number of past-year stressors was positively related to current drinking patterns, including binge drinking. In animal models, exposure to predator odor stress (PS), considered a model of traumatic stress, consistently increased ethanol intake. Recently, we reported that repeated PS significantly increased ethanol intake and had a synergistic interaction with prior binge drinking (binge group) in male but not in female C57BL/6J mice, when compared to mice without prior binge exposure (control group). The current studies utilized plasma and dissected prefrontal cortex (PFC) and hippocampal tissue from these animals and from age-matched naïve mice (naïve group). Western blots assessed relative protein levels of P450scc (an enzyme involved in the first step of steroidogenesis), of GABAA receptor α2 and α4 subunits, and of two proteins involved in synaptic plasticity - ARC (activity-regulated cytoskeletal protein) and synaptophysin. Gas chromatography-mass spectrometry simultaneously quantified 10 neurosteroid levels in plasma. A history of ethanol drinking and PS exposure produced brain regional and sex differences in the changes in proteins examined as well as in the pattern of neurosteroid levels versus (vs.) values in naïve mice. For instance, P450scc levels were significantly increased only in binge and control female PFC and hippocampus vs. naïve mice. Some neurosteroid levels were significantly altered by binge treatment in both males and females, whereas others were only significantly altered in males. These sexually divergent changes in neurosteroid and protein levels add to evidence for sex differences in the neurochemical systems influenced by traumatic stress and a history of ethanol drinking.
Collapse
|
3
|
Das J. SNARE Complex-Associated Proteins and Alcohol. Alcohol Clin Exp Res 2019; 44:7-18. [PMID: 31724225 DOI: 10.1111/acer.14238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
Alcohol addiction causes major health problems throughout the world, causing numerous deaths and incurring a huge economic burden to society. To develop an intervention for alcohol addiction, it is necessary to identify molecular target(s) of alcohol and associated molecular mechanisms of alcohol action. The functions of many central and peripheral synapses are impacted by low concentrations of ethanol (EtOH). While the postsynaptic targets and mechanisms are studied extensively, there are limited studies on the presynaptic targets and mechanisms. This article is an endeavor in this direction, focusing on the effect of EtOH on the presynaptic proteins associated with the neurotransmitter release machinery. Studies on the effects of EtOH at the levels of gene, protein, and behavior are highlighted in this article.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
4
|
Hacker B, Schultheiß C, Döring M, Kurzik-Dumke U. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies. Hum Mol Genet 2018; 27:1858-1878. [DOI: 10.1093/hmg/ddy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Benedikt Hacker
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Schultheiß
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Michael Döring
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ursula Kurzik-Dumke
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
5
|
Zahr NM, Pfefferbaum A, Sullivan EV. Perspectives on fronto-fugal circuitry from human imaging of alcohol use disorders. Neuropharmacology 2017; 122:189-200. [PMID: 28118989 DOI: 10.1016/j.neuropharm.2017.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
Descriptions of the cognitive functions affected by alcohol use disorders (AUD) often highlight dysfunction of executive processes such attention, inhibitory control, working memory, and cognitive flexibility. Such complex cognitive functions have historically been ascribed to the prefrontal cortex. AUD, however, disrupts extensive areas of the brain. Structural and functional MRI studies suggest a central role for degradation of circuitry originating in the prefrontal cortex including nodes in widespread brain regions. This review features fronto-fugal circuits affected by AUD including frontocerebellar, frontolimbic, and frontostriatal networks and their relations to the salient, enduring, and debilitating cognitive and motor deficits reported in AUD. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Neuroscience Department, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Neuroscience Department, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA
| |
Collapse
|
6
|
Henriksson R, Bäckman CM, Harvey BK, Kadyrova H, Bazov I, Shippenberg TS, Bakalkin G. PDYN, a gene implicated in brain/mental disorders, is targeted by REST in the adult human brain. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1226-32. [PMID: 25220237 DOI: 10.1016/j.bbagrm.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 11/29/2022]
Abstract
The dynorphin κ-opioid receptor system is implicated in mental health and brain/mental disorders. However, despite accumulating evidence that PDYN and/or dynorphin peptide expression is altered in the brain of individuals with brain/mental disorders, little is known about transcriptional control of PDYN in humans. In the present study, we show that PDYN is targeted by the transcription factor REST in human neuroblastoma SH-SY5Y cells and that that interfering with REST activity increases PDYN expression in these cells. We also show that REST binding to PDYN is reduced in the adult human brain compared to SH-SY5Y cells, which coincides with higher PDYN expression. This may be related to MIR-9 mediated down-regulation of REST as suggested by a strong inverse correlation between REST and MIR-9 expression. Our results suggest that REST represses PDYN expression in SH-SY5Y cells and the adult human brain and may have implications for mental health and brain/mental disorders.
Collapse
Affiliation(s)
- Richard Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr, Baltimore, MD 21224, USA; Department of Clinical Neuroscience, Karolinska Institutet, Cell and Molecular Medicine, L8:01, 17176 Stockholm, Sweden; Department of Pharmaceutical Biosciences, Uppsala University, Uppsala Biomedical Centre, Box 591, Husargatan 3, 751 24 Uppsala, Sweden.
| | - Cristina M Bäckman
- Cellular Neurophysiology Section, Cellular Neurobiology Research Branch, NIDA-IRP, NIH, 333 Cassell Dr, Baltimore, MD 21224, USA
| | - Brandon K Harvey
- Neural Protection and Regeneration Section, Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Helena Kadyrova
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala Biomedical Centre, Box 591, Husargatan 3, 751 24 Uppsala, Sweden
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala Biomedical Centre, Box 591, Husargatan 3, 751 24 Uppsala, Sweden
| | - Toni S Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr, Baltimore, MD 21224, USA
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala Biomedical Centre, Box 591, Husargatan 3, 751 24 Uppsala, Sweden
| |
Collapse
|
7
|
Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 2012; 32:1884-97. [PMID: 22302827 DOI: 10.1523/jneurosci.3136-11.2012] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alcohol abuse causes widespread changes in gene expression in human brain, some of which contribute to alcohol dependence. Previous microarray studies identified individual genes as candidates for alcohol phenotypes, but efforts to generate an integrated view of molecular and cellular changes underlying alcohol addiction are lacking. Here, we applied a novel systems approach to transcriptome profiling in postmortem human brains and generated a systemic view of brain alterations associated with alcohol abuse. We identified critical cellular components and previously unrecognized epigenetic determinants of gene coexpression relationships and discovered novel markers of chromatin modifications in alcoholic brain. Higher expression levels of endogenous retroviruses and genes with high GC content in alcoholics were associated with DNA hypomethylation and increased histone H3K4 trimethylation, suggesting a critical role of epigenetic mechanisms in alcohol addiction. Analysis of cell-type-specific transcriptomes revealed remarkable consistency between molecular profiles and cellular abnormalities in alcoholic brain. Based on evidence from this study and others, we generated a systems hypothesis for the central role of chromatin modifications in alcohol dependence that integrates epigenetic regulation of gene expression with pathophysiological and neuroadaptive changes in alcoholic brain. Our results offer implications for epigenetic therapeutics in alcohol and drug addiction.
Collapse
|
8
|
Alexander GM, Graef JD, Hammarback JA, Nordskog BK, Burnett EJ, Daunais JB, Bennett AJ, Friedman DP, Suomi SJ, Godwin DW. Disruptions in serotonergic regulation of cortical glutamate release in primate insular cortex in response to chronic ethanol and nursery rearing. Neuroscience 2012; 207:167-81. [PMID: 22305886 DOI: 10.1016/j.neuroscience.2012.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/29/2022]
Abstract
Early-life stress has been shown to increase susceptibility to anxiety and substance abuse. Disrupted activity within the anterior insular cortex (AIC) has been shown to play a role in both of these disorders. Altered serotonergic processing is implicated in controlling the activity levels of the associated cognitive networks. We therefore investigated changes in both serotonin receptor expression and glutamatergic synaptic activity in the AIC of alcohol-drinking rhesus monkeys. We studied tissues from male rhesus monkeys raised under two conditions: Male rhesus monkeys (1) "mother reared" (MR) by adult females (n=9) or (2) "Nursery reared" (NR), that is, separated from their mothers and reared as a separate group under surrogate/peer-reared conditions (n=9). The NR condition represents a long-standing and well-validated nonhuman primate model of early life stress. All monkeys were trained to self-administer ethanol (4% w/v) or an isocaloric maltose-dextrin control solution. Subsets from each rearing condition were then given daily access to ethanol, water, or maltose-dextrin for 12 months. Tissues were collected at necropsy and were further analyzed. Using real time RT-PCR we found that ethanol-naive, NR monkeys had lower AIC levels of 5-HT(1A) and 5-HT(2A) receptor mRNA compared with ethanol-naive, MR animals. Although NR monkeys consumed more ethanol over the 12-month period compared with MR animals, both MR and NR animals expressed greater 5-HT(1A) and 5-HT(2A) receptor mRNA levels following chronic alcohol self-administration. The interaction between nursery-rearing conditions and alcohol consumption resulted in a significant enhancement of both 5-HT(1A) and 5-HT(2A) receptor mRNA levels such that lower expression levels observed in nursery-rearing conditions were not found in the alcohol self-administration group. Using voltage clamp recordings in the whole cell configuration we recorded excitatory postsynaptic currents in both ethanol-naive and chronic self-administration groups of NR and MR monkeys. Both groups that self-administered ethanol showed greater glutamatergic activity within the AIC. This AIC hyperactivity in MR alcohol-consuming monkeys was accompanied by an increased sensitivity to regulation by presynaptic 5-HT(1A) receptors that was not apparent in the ethanol-naive, MR group. Our data indicate that chronic alcohol consumption leads to greater AIC activity and may indicate a compensatory upregulation of presynaptic 5-HT(1A) receptors. Our results also indicate that AIC activity may be less effectively regulated by 5-HT in ethanol-naive NR animals than in NR monkeys in response to chronic ethanol self-administration. These data suggest possible mechanisms for increased alcohol seeking and possible addiction potential among young adults who had previously experienced early-life stress that include disruptions in both AIC activity and serotonin system dynamics.
Collapse
Affiliation(s)
- G M Alexander
- Department of Neurobiology, Duke University Medical Center, Bryan Research Building, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Watanabe H, Henriksson R, Ohnishi YN, Ohnishi YH, Harper C, Sheedy D, Garrick T, Nyberg F, Nestler EJ, Bakalkin G, Yakovleva T. FOSB proteins in the orbitofrontal and dorsolateral prefrontal cortices of human alcoholics. Addict Biol 2009; 14:294-7. [PMID: 19523044 DOI: 10.1111/j.1369-1600.2009.00155.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transcription factor DeltaFosB is accumulated in the addiction circuitry, including the orbitofrontal and medial prefrontal cortices of rodents chronically exposed to ethanol or other drugs of abuse, and has been suggested to play a direct role in addiction maintenance. To address this hypothesis in the context of substance dependence in humans, we compared the immunoreactivities of FOSB proteins in the orbitofrontal and dorsolateral prefrontal cortices (OFC and DLPFC respectively) between controls and alcoholics using semiquantitative immunoblotting. In both structures, we detected three forms of FOSB, one of which was DeltaFOSB, but in neither case did their immunoreactivities differ between the groups. Our results indicate that the DeltaFOSB immunoreactivity in the human brain is very low, and that it is not accumulated in the OFC and DLPFC of human alcoholics, suggesting that it may not be directly involved in addiction maintenance, at least not in ethanol dependence.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dedova I, Harding A, Sheedy D, Garrick T, Sundqvist N, Hunt C, Gillies J, Harper CG. The importance of brain banks for molecular neuropathological research: The New South Wales Tissue Resource Centre experience. Int J Mol Sci 2009; 10:366-384. [PMID: 19333451 PMCID: PMC2662458 DOI: 10.3390/ijms10010366] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 12/28/2022] Open
Abstract
New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC) at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders.
Collapse
Affiliation(s)
- Irina Dedova
- Schizophrenia Research Institute, Sydney, NSW 2010, Australia
- The New South Wales Tissue Resource Centre, Discipline of Pathology, The University of Sydney, NSW 2006, Australia
| | - Antony Harding
- The New South Wales Tissue Resource Centre, Discipline of Pathology, The University of Sydney, NSW 2006, Australia
| | - Donna Sheedy
- The New South Wales Tissue Resource Centre, Discipline of Pathology, The University of Sydney, NSW 2006, Australia
| | - Therese Garrick
- The New South Wales Tissue Resource Centre, Discipline of Pathology, The University of Sydney, NSW 2006, Australia
| | - Nina Sundqvist
- Schizophrenia Research Institute, Sydney, NSW 2010, Australia
- The New South Wales Tissue Resource Centre, Discipline of Pathology, The University of Sydney, NSW 2006, Australia
| | - Clare Hunt
- The New South Wales Tissue Resource Centre, Discipline of Pathology, The University of Sydney, NSW 2006, Australia
| | - Juliette Gillies
- Schizophrenia Research Institute, Sydney, NSW 2010, Australia
- The New South Wales Tissue Resource Centre, Discipline of Pathology, The University of Sydney, NSW 2006, Australia
| | - Clive G Harper
- The New South Wales Tissue Resource Centre, Discipline of Pathology, The University of Sydney, NSW 2006, Australia
| |
Collapse
|