1
|
Hassani Moghaddam M, Eskandarian Boroujeni M, Vakili K, Fathi M, Abdollahifar MA, Eskandari N, Esmaeilpour T, Aliaghaei A. Functional and structural alternations in the choroid plexus upon methamphetamine exposure. Neurosci Lett 2021; 764:136246. [PMID: 34530114 DOI: 10.1016/j.neulet.2021.136246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Choroid plexus (CP) is the principal source of cerebrospinal fluid. CP can produce and release a wide range of materials including growth factors, neurotrophic factors, etc. all of which play an important role in the maintenance and proper functioning of the brain. Methamphetamine (METH) is a CNS neurostimulant that causes brain dysfunction. Herein, we investigated the potential effects of METH exposure on CP structure and function. Stereological analysis revealed a significant alteration in CP volume, epithelial cells and capillary number upon METH treatment. Electron microscopy exhibited changes in ultrastructure. Moreover, the upregulation of neurotrophic factors such as BDNF and VEGF as well as autophagy and apoptosis gene following METH administration were observed. We also identified several signaling cascades related to autophagy. In conclusion, gene expression changes coupled with structural alterations of the CP in response to METH suggested METH-induced autophagy in CP.
Collapse
Affiliation(s)
- Meysam Hassani Moghaddam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Aliaghaei
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Basmadjian OM, Occhieppo VB, Marchese NA, Silvero C MJ, Becerra MC, Baiardi G, Bregonzio C. Amphetamine Induces Oxidative Stress, Glial Activation and Transient Angiogenesis in Prefrontal Cortex via AT 1-R. Front Pharmacol 2021; 12:647747. [PMID: 34012397 PMCID: PMC8126693 DOI: 10.3389/fphar.2021.647747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/30/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Amphetamine (AMPH) alters neurons, glia and microvessels, which affects neurovascular unit coupling, leading to disruption in brain functions such as attention and working memory. Oxidative stress plays a crucial role in these alterations. The angiotensin type I receptors (AT1-R) mediate deleterious effects, such as oxidative/inflammatory responses, endothelial dysfunction, neuronal oxidative damage, alterations that overlap with those observed from AMPH exposure. Aims: The aim of this study was to evaluate the AT1-R role in AMPH-induced oxidative stress and glial and vascular alterations in the prefrontal cortex (PFC). Furthermore, we aimed to evaluate the involvement of AT1-R in the AMPH-induced short-term memory and working memory deficit. Methods: Male Wistar rats were repeatedly administered with the AT1-R blocker candesartan (CAND) and AMPH. Acute oxidative stress in the PFC was evaluated immediately after the last AMPH administration by determining lipid and protein peroxidation. After 21 off-drug days, long-lasting alterations in the glia, microvessel architecture and to cognitive tasks were evaluated by GFAP, CD11b and von Willebrand immunostaining and by short-term and working memory assessment. Results: AMPH induced acute oxidative stress, long-lasting glial reactivity in the PFC and a working memory deficit that were prevented by AT1-R blockade pretreatment. Moreover, AMPH induces transient angiogenesis in PFC via AT1-R. AMPH did not affect short-term memory. Conclusion: Our results support the protective role of AT1-R blockade in AMPH-induced oxidative stress, transient angiogenesis and long-lasting glial activation, preserving working memory performance.
Collapse
Affiliation(s)
- Osvaldo M Basmadjian
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria B Occhieppo
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia A Marchese
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Jazmin Silvero C
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Cecilia Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Occhieppo VB, Basmadjian OM, Bregonzio C. Brain angiotensin II in dopaminergic imbalance-derived pathologies: neuroinflammation and vascular responses. Neural Regen Res 2021; 16:504-505. [PMID: 32985475 PMCID: PMC7996039 DOI: 10.4103/1673-5374.293144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Victoria Belén Occhieppo
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Osvaldo Martin Basmadjian
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Marchese NA, Occhieppo VB, Basmadjian OM, Casarsa BS, Baiardi G, Bregonzio C. Angiotensin II modulates amphetamine-induced glial and brain vascular responses, and attention deficit via angiotensin type 1 receptor: Evidence from brain regional sensitivity to amphetamine. Eur J Neurosci 2019; 51:1026-1041. [PMID: 31646669 DOI: 10.1111/ejn.14605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
Amphetamine-induced neuroadaptations involve vascular damage, neuroinflammation, a hypo-functioning prefrontal cortex (PFC), and cognitive alterations. Brain angiotensin II, through angiotensin type 1 receptor (AT1 -R), mediates oxidative/inflammatory responses, promoting endothelial dysfunction, neuronal oxidative damage and glial reactivity. The present work aims to unmask the role of AT1 -R in the development of amphetamine-induced changes over glial and vascular components within PFC and hippocampus. Attention deficit was evaluated as a behavioral neuroadaptation induced by amphetamine. Brain microvessels were isolated to further evaluate vascular alterations after amphetamine exposure. Male Wistar rats were administered with AT1 -R antagonist, candesartan, followed by repeated amphetamine. After one week drug-off period, animals received a saline or amphetamine challenge and were evaluated in behavioral tests. Afterward, their brains were processed for cresyl violet staining, CD11b (microglia marker), GFAP (astrocyte marker) or von Willebrand factor (vascular marker) immunohistochemistry, and oxidative/cellular stress determinations in brain microvessels. Statistical analysis was performed by using factorial ANOVA followed by Bonferroni or Tukey tests. Repeated amphetamine administration increased astroglial and microglial markers immunoreactivity, increased apoptotic cells, and promoted vascular network rearrangement at the PFC concomitantly with an attention deficit. Although the amphetamine challenge improved the attentional performance, it triggers detrimental effects probably because of the exacerbated malondialdehyde levels and increased heat shock protein 70 expression in microvessels. All observed amphetamine-induced alterations were prevented by the AT1 -R blockade. Our results support the AT1 -R involvement in the development of oxidative/inflammatory conditions triggered by amphetamine exposure, affecting cortical areas and increasing vascular susceptibility to future challenges.
Collapse
Affiliation(s)
- Natalia Andrea Marchese
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria Belén Occhieppo
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Osvaldo Martin Basmadjian
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Brenda Solange Casarsa
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
5
|
The time course of blood brain barrier leakage and its implications on the progression of methamphetamine-induced seizures. Neurotoxicology 2018; 69:130-140. [PMID: 30282018 DOI: 10.1016/j.neuro.2018.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 01/16/2023]
Abstract
The initial goals of these experiments were to determine: 1) if blood-brain barrier (BBB) breakdown was a cause or an effect of METH-induced seizures; 2) all the brain regions where BBB is disrupted as seizures progress; and 3) the correlations between body temperature and vascular leakage and neurodegeneration. A fourth objective was added after initial experimentation to determine if sub-strain differences existed in adult male C57 B6 J (Jackson laboratories, JAX) versus C57 B6N (Charles River, CR) mice involving their susceptibility to BBB breakdown and seizure severity. With the 1st "maximal" intensity myoclonic-tonic seizure (MCT) varying degrees of IgG infiltration across the BBB (≤1 mm2) were prominent in olfactory system (OS) associated regions and in thalamus, hypothalamus and neocortex. IgG infiltration areas in the OS-associated regions of the bed nucleus of the stria terminalis, septum and more medial amygdala nuclei, and the hypothalamus were increased significantly by the time continuous behavioral seizures (CBS) developed. Mice receiving METH that had body temperatures of ≥40 °C had IgG infiltration along with MCT or CBS but peak body temperatures above 40 °C did not significantly increase IgG infiltration. Neurodegeneration seen at ≥6 h was restricted to the OS in both JAX and CR mice and was most prominent in the posteromedial cortical amygdaloid nucleus. Neurodegeneration in the anterior septum (tenia tecta) was seen only in the JAX mice. We hypothesize that METH-induced hypertension and hyperthermia lead to BBB breakdown and other vascular dysfunctions in the OS brain regions resulting in OS hyperexcitation. Excitation of the OS neural network then leads to the development of seizures. These seizures in turn exacerbate the energy depletions and the reactive oxygen stress produced by hyperthermia further damaging the BBB and vascular function. These events form a recurrent cycle that results in ever increasing seizure activity and neurotoxicity.
Collapse
|
6
|
Bowyer JF, Tranter KM, Sarkar S, George NI, Hanig JP, Kelly KA, Michalovicz LT, Miller DB, O'Callaghan JP. Corticosterone and exogenous glucose alter blood glucose levels, neurotoxicity, and vascular toxicity produced by methamphetamine. J Neurochem 2017; 143:198-213. [PMID: 28792619 DOI: 10.1111/jnc.14143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022]
Abstract
Our previous studies have raised the possibility that altered blood glucose levels may influence and/or be predictive of methamphetamine (METH) neurotoxicity. This study evaluated the effects of exogenous glucose and corticosterone (CORT) pretreatment alone or in combination with METH on blood glucose levels and the neural and vascular toxicity produced. METH exposure consisted of four sequential injections of 5, 7.5, 10, and 10 mg/kg (2 h between injections) D-METH. The three groups given METH in combination with saline, glucose (METH+Glucose), or CORT (METH+CORT) had significantly higher glucose levels compared to the corresponding treatment groups without METH except at 3 h after the last injection. At this last time point, the METH and METH+Glucose groups had lower levels than the non-METH groups, while the METH+CORT group did not. CORT alone or glucose alone did not significantly increase blood glucose. Mortality rates for the METH+CORT (40%) and METH+Glucose (44%) groups were substantially higher than the METH (< 10%) group. Additionally, METH+CORT significantly increased neurodegeneration above the other three METH treatment groups (≈ 2.5-fold in the parietal cortex). Thus, maintaining elevated levels of glucose during METH exposure increases lethality and may exacerbate neurodegeneration. Neuroinflammation, specifically microglial activation, was associated with degenerating neurons in the parietal cortex and thalamus after METH exposure. The activated microglia in the parietal cortex were surrounding vasculature in most cases and the extent of microglial activation was exacerbated by CORT pretreatment. Our findings show that acute CORT exposure and elevated blood glucose levels can exacerbate METH-induced vascular damage, neuroinflammation, neurodegeneration and lethality. Cover Image for this issue: doi. 10.1111/jnc.13819.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, Arkansas, USA
| | - Karen M Tranter
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, Arkansas, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, Arkansas, USA
| | - Nysia I George
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA
| | - Joseph P Hanig
- Center for Drug Evaluation and Research/FDA Silver Spring, Silver Spring, Maryland, USA
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, Morgantown, West Virginia, USA
| | - Lindsay T Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, Morgantown, West Virginia, USA
| | - Diane B Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, Morgantown, West Virginia, USA
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, Morgantown, West Virginia, USA
| |
Collapse
|
7
|
Bowyer JF, Sarkar S, Tranter KM, Hanig JP, Miller DB, O'Callaghan JP. Vascular-directed responses of microglia produced by methamphetamine exposure: indirect evidence that microglia are involved in vascular repair? J Neuroinflammation 2016; 13:64. [PMID: 26970737 PMCID: PMC4789274 DOI: 10.1186/s12974-016-0526-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/03/2016] [Indexed: 11/24/2022] Open
Abstract
Background Brain microglial activations and damage responses are most commonly associated with neurodegeneration or systemic innate immune system activation. Here, we used histological methods to focus on microglial responses that are directed towards brain vasculature, previously undescribed, after a neurotoxic exposure to methamphetamine. Methods Male rats were given doses of methamphetamine that produce pronounced hyperthermia, hypertension, and toxicity. Identification of microglia and microglia-like cells (pericytes and possibly perivascular cells) was done using immunoreactivity to allograft inflammatory factor 1 (Aif1 a.k.a Iba1) and alpha M integrin (Itgam a.k.a. Cd11b) while vasculature endothelium was identified using rat endothelial cell antigen 1 (RECA-1). Regions of neuronal, axonal, and nerve terminal degeneration were determined using Fluoro-Jade C. Results Dual labeling of vasculature (RECA-1) and microglia (Iba1) showed a strong association of hypertrophied cells surrounding and juxtaposed to vasculature in the septum, medial dorsal hippocampus, piriform cortex, and thalamus. The Iba1 labeling was more pronounced in the cell body while Cd11b more so in the processes of activated microglia. These regions have been previously identified to have vascular leakage after neurotoxic methamphetamine exposure. Dual labeling with Fluoro-Jade C and Iba1 indicated that there was minimal or no evidence of neuronal damage in the septum and hippocampus where many hypertrophied Iba1-labeled cells were found to be associated with vasculature. Although microglial activation around the prominent neurodegeneration was found in the thalamus, there were also many examples of activated microglia associated with vasculature. Conclusions The data implicate microglia, and possibly related cell types, in playing a major role in responding to methamphetamine-induced vascular damage, and possibly repair, in the absence of neurodegeneration. Identifying brain regions with hypertrophied/activated microglial-like cells associated with vasculature has the potential for identifying regions of more subtle examples of vascular damage and BBB compromise. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0526-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, AR, 72079, USA. .,National Center for Toxicological Research/FDA, 3900 NCTR Road, HFT-132, Jefferson, AR, 72079, USA.
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, AR, 72079, USA
| | - Karen M Tranter
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, AR, 72079, USA
| | - Joseph P Hanig
- Center for Drug Evaluation and Research/FDA, Silver Spring, MD, 20993, USA
| | - Diane B Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| |
Collapse
|
8
|
Bowyer JF, Hanig JP. Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity. Temperature (Austin) 2014; 1:172-82. [PMID: 27626044 PMCID: PMC5008711 DOI: 10.4161/23328940.2014.982049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
The adverse effects of amphetamine- (AMPH) and methamphetamine- (METH) induced hyperthermia on vasculature, peripheral organs and peripheral immune system are discussed. Hyperthermia alone does not produce amphetamine-like neurotoxicity but AMPH and METH exposures that do not produce hyperthermia (≥40°C) are minimally neurotoxic. Hyperthermia likely enhances AMPH and METH neurotoxicity directly through disruption of protein function, ion channels and enhanced ROS production. Forebrain neurotoxicity can also be indirectly influenced through the effects of AMPH- and METH- induced hyperthermia on vasculature. The hyperthermia and the hypertension produced by high doses amphetamines are a primary cause of transient breakdowns in the blood-brain barrier (BBB) resulting in concomitant regional neurodegeneration and neuroinflammation in laboratory animals. This BBB breakdown can occur in the amygdala, thalamus, striatum, sensory and motor cortex and hippocampus. Under these conditions, repetitive seizures greatly enhance neurodegeneration in hippocampus, thalamus and amygdala. Even when the BBB is less disrupted, AMPH- or METH- induced hyperthermia effects on brain vasculature may play a role in neurotoxicity. In this case, striatal and cortical vascular function are adversely affected, and even greater ROS, immune and damage responses are seen in the meninges and cortical surface vasculature. Finally, muscle and liver damage and elevated cytokines in blood can result when amphetamines produce hyperthermia. Proteins, from damaged muscle may activate the peripheral immune system and exacerbate liver damage. Liver damage can further increase cytokine levels, immune system activation and increase ammonia levels. These effects could potentially enhance vascular damage and neurotoxicity.
Collapse
|
9
|
McFadden LM, Hanson GR, Fleckenstein AE. The effects of methamphetamine self-administration on cortical monoaminergic deficits induced by subsequent high-dose methamphetamine administrations. Synapse 2013; 67:875-81. [PMID: 23893609 PMCID: PMC3962656 DOI: 10.1002/syn.21696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023]
Abstract
Preclinical models suggest that repeated high-dose methamphetamine (METH) exposures, administered in a "binge-like" pattern, acutely decrease norepinephrine (NE), and acutely and persistently decrease serotonin (5-hydroxytryptamine; 5HT) content in the frontal cortex. However, the impact of METH self-administration on this region is unknown. Because of the importance of the monoaminergic neurons in the frontal cortex to a variety of cognitive and addictive processes, effects of METH self-administration on cortical NE and 5HT content were assessed. Results revealed several novel findings. First, METH self-administration decreased cortical NE content as assessed 24 h after last exposure. Consistent with previous preclinical reports after a binge METH regimen, this decrease was reversed 8 days after the final METH exposure. Second, and in contrast to our previous reports involving the hippocampus or striatum, METH self-administration caused persistent decreases in 5HT content as assessed 8 days after the final METH exposure. Of note, the magnitude of this decrease (≈ 20%) was less than that observed typically after a binge METH treatment. Third, prior METH self-administration attenuated METH-induced serotonergic deficits as assessed 7 days, but not 1 h, following a neurotoxic METH regimen. No protection was observed when the binge exposure occurred 15 days after the last self-administration session. Taken together, these data demonstrate important and selective alterations in cortical serotonergic neuronal function subsequent to METH self-administration. These data provide a foundation to investigate complex questions involving "resistance" to the persistent deficits caused by neurotoxic METH exposure and frontal cortical function.
Collapse
Affiliation(s)
- Lisa M McFadden
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| | | | | |
Collapse
|
10
|
Levi MS, Patton RE, Hanig JP, Tranter KM, George NI, James LP, Davis KJ, Bowyer JF. Serum myoglobin, but not lipopolysaccharides, is predictive of AMPH-induced striatal neurotoxicity. Neurotoxicology 2013; 37:40-50. [PMID: 23608161 DOI: 10.1016/j.neuro.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/19/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023]
Abstract
Determinants of amphetamine (AMPH)-induced neurotoxicity are poorly understood. The role of lipopolysaccharides (LPS) and organ injury in AMPH-induced neurotoxicity was examined in adult male Sprague-Dawley rats that were give AMPH and became hyperthermic during the exposure. Environmentally-induced hyperthermia (EIH) in the rat was compared to AMPH to determine whether AMPH-induced increases in LPS and peripheral toxicities were solely attributable to hyperthermia. Muscle, liver, and kidney function were determined biochemically at 3h or 1 day after AMPH or EIH exposure and histopathology at 1 day after treatment. Circulating levels of LPS were monitored (via limulus amoebocyte coagulation assay) during AMPH or EIH exposure. Blood LPS levels were detected in 40-50% of the AMPH and EIH rats, but the presence of LPS in the serum had no effect on organ damage or striatal dopamine depletions (neurotoxicity). In both CR and NCTR rats, serum bound urea nitrogen and creatinine levels increased at 3h after EIH or AMPH (2- to 3-fold above control) but subsided by 1 day. Alanine transaminase was increased (indicating liver dysfunction) by both AMPH and EIH at 3 h (2- to 10-fold above control) in CR rats, but the levels were not significantly different between the control and AMPH groups in NCTR animals. Mild liver necrosis was detected in 1 of 7 rats examined in the AMPH group and in 1 of 5 rats examined in the EIH group (only NCTR rats were examined). Serum myoglobin increased (indicating muscle damage) in both CR and NCTR rats at 3h and was more pronounced with AMPH (≈5-fold above control) than EIH. Our results indicate that: (1) "free" blood borne LPS often increases with EIH and AMPH but may not be necessary for striatal neurotoxicity and CNS immune responses; (2) liver or kidney dysfunction may result from muscle damage; however, it is not sufficient nor necessary to produce, but may exacerbate, neurotoxicity; (3) AMPH-induced serum myoglobin release is a potential biomarker and possibly a factor in AMPH-induced toxicity processes.
Collapse
Affiliation(s)
- Mark S Levi
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079-9502, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bowyer JF, Patterson TA, Saini UT, Hanig JP, Thomas M, Camacho L, George NI, Chen JJ. Comparison of the global gene expression of choroid plexus and meninges and associated vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity. BMC Genomics 2013; 14:147. [PMID: 23497014 PMCID: PMC3602116 DOI: 10.1186/1471-2164-14-147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/21/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The meninges (arachnoid and pial membranes) and associated vasculature (MAV) and choroid plexus are important in maintaining cerebrospinal fluid (CSF) generation and flow. MAV vasculature was previously observed to be adversely affected by environmentally-induced hyperthermia (EIH) and more so by a neurotoxic amphetamine (AMPH) exposure. Herein, microarray and RT-PCR analysis was used to compare the gene expression profiles between choroid plexus and MAV under control conditions and at 3 hours and 1 day after EIH or AMPH exposure. Since AMPH and EIH are so disruptive to vasculature, genes related to vasculature integrity and function were of interest. RESULTS Our data shows that, under control conditions, many of the genes with relatively high expression in both the MAV and choroid plexus are also abundant in many epithelial tissues. These genes function in transport of water, ions, and solutes, and likely play a role in CSF regulation. Most genes that help form the blood-brain barrier (BBB) and tight junctions were also highly expressed in MAV but not in choroid plexus. In MAV, exposure to EIH and more so to AMPH decreased the expression of BBB-related genes such as Sox18, Ocln, and Cldn5, but they were much less affected in the choroid plexus. There was a correlation between the genes related to reactive oxidative stress and damage that were significantly altered in the MAV and choroid plexus after either EIH or AMPH. However, AMPH (at 3 hr) significantly affected about 5 times as many genes as EIH in the MAV, while in the choroid plexus EIH affected more genes than AMPH. Several unique genes that are not specifically related to vascular damage increased to a much greater extent after AMPH compared to EIH in the MAV (Lbp, Reg3a, Reg3b, Slc15a1, Sct and Fst) and choroid plexus (Bmp4, Dio2 and Lbp). CONCLUSIONS Our study indicates that the disruption of choroid plexus function and damage produced by AMPH and EIH is significant, but the changes may not be as pronounced as they are in the MAV, particularly for AMPH. Expression profiles in the MAV and choroid plexus differed to some extent and differences were not restricted to vascular related genes.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, U,S, Food and Drug Administration, Jefferson, AR 72079-9502, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bowyer JF, Thomas M, Patterson TA, George NI, Runnells JA, Levi MS. A visual description of the dissection of the cerebral surface vasculature and associated meninges and the choroid plexus from rat brain. J Vis Exp 2012. [PMID: 23183685 PMCID: PMC3523424 DOI: 10.3791/4285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This video presentation was created to show a method of harvesting the two most important highly vascular structures, not residing within the brain proper, that support forebrain function. They are the cerebral surface (superficial) vasculature along with associated meninges (MAV) and the choroid plexus which are necessary for cerebral blood flow and cerebrospinal fluid (CSF) homeostasis. The tissue harvested is suitable for biochemical and physiological analysis, and the MAV has been shown to be sensitive to damage produced by amphetamine and hyperthermia. As well, the major and minor cerebral vasculatures harvested in MAV are of potentially high interest when investigating concussive types of head trauma. The MAV dissected in this presentation consists of the pial and some of the arachnoid membrane (less dura) of the meninges and the major and minor cerebral surface vasculature. The choroid plexus dissected is the structure that resides in the lateral ventricles as described by Oldfield and McKinley. The methods used for harvesting these two tissues also facilitate the harvesting of regional cortical tissue devoid of meninges and larger cerebral surface vasculature, and is compatible with harvesting other brain tissues such as striatum, hypothalamus, hippocampus, etc. The dissection of the two tissues takes from 5 to 10 min total. The gene expression levels for the dissected MAV and choroid plexus, as shown and described in this presentation can be found at GSE23093 (MAV) and GSE29733 (choroid plexus) at the NCBI GEO repository. This data has been, and is being, used to help further understand the functioning of the MAV and choroid plexus and how neurotoxic events such as severe hyperthermia and AMPH adversely affect their function.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research.
| | | | | | | | | | | |
Collapse
|
13
|
Wisor JP, Schmidt MA, Clegern WC. Cerebral microglia mediate sleep/wake and neuroinflammatory effects of methamphetamine. Brain Behav Immun 2011; 25:767-76. [PMID: 21333736 DOI: 10.1016/j.bbi.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/27/2011] [Accepted: 02/04/2011] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine and modafinil exert their wake-promoting effects by elevating monoaminergic tone. The severity of hypersomnolence that occurs subsequent to induced wakefulness differs between these two agents. Microglia detects and modulates CNS reactions to agents such as D-methamphetamine that induce cellular stress. We therefore hypothesized that changes in the sleep/wake cycle that occur subsequent to administration of D-methamphetamine are modulated by cerebral microglia. In CD11b-herpes thymidine kinase transgenic mice (CD11b-TK(mt-30)), activation of the inducible transgene by intracerebroventricular (icv) ganciclovir results in toxicity to CD11b-positive cells (i.e. microglia), thereby reducing cerebral microglial cell counts. CD11b-TK(mt-30)and wild type mice were subjected to chronic icv ganciclovir or vehicle administration with subcutaneous mini-osmotic pumps. D-methamphetamine (1 and 2 mg/kg), modafinil (30 and 100 mg/kg) and vehicle were administered intraperitoneally to these animals. In CD11b-TK(mt-30) mice, but not wild type, icv infusion of ganciclovir reduced the duration of wake produced by D-methamphetamine at 2 mg/kg by nearly 1h. Nitric oxide synthase (NOS) activity, studied ex vivo, and NOS expression were elevated in CD11b-positive cerebral microglia from wild type mice acutely exposed to d-methamphetamine. Additionally, CD11b-positive microglia, but not other cerebral cell populations, exhibited changes in sleep-regulatory cytokine expression in response to d-METH. Finally, CD11b-positive microglia exposed to d-methamphetamine in vitro exhibited increased NOS activity relative to pharmacologically-naïve cells. CD11b-positive microglia from the brains of neuronal NOS (nNOS)-knockout mice failed to exhibit this effect. We propose that the effects of D-METH on sleep/wake cycles are mediated in part by actions on microglia, including possibly nNOS activity and cytokine synthesis.
Collapse
Affiliation(s)
- Jonathan P Wisor
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, WWAMI Medical Education Program, Washington State University, Spokane, WA 99202, USA.
| | | | | |
Collapse
|
14
|
Thomas M, George NI, Saini UT, Patterson TA, Hanig JP, Bowyer JF. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure. Synapse 2011; 64:579-93. [PMID: 20340164 DOI: 10.1002/syn.20763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.
Collapse
Affiliation(s)
- Monzy Thomas
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079-9502, USA
| | | | | | | | | | | |
Collapse
|
15
|
Ueno M, Imadome K, Iwakawa M, Anzai K, Ikota N, Imai T. Vascular homeostasis regulators, Edn1 and Agpt2, are upregulated as a protective effect of heat-treated zinc yeast in irradiated murine bone marrow. JOURNAL OF RADIATION RESEARCH 2010; 51:519-525. [PMID: 20921820 DOI: 10.1269/jrr.10005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
PURPOSE To elucidate the mechanism underlying the in vivo radioprotection activity by Zn-containing, heat-treated Saccharomyces cerevisiae yeast (Zn-yeast). MATERIALS AND METHODS Zn-yeast suspension was administered into C3H/He mice immediately after whole body irradiation (WBI) at 7.5 Gy. Bone marrow was extracted from the mice 6 hours after irradiation and analyzed on a microarray. Expression changes in the candidate responsive genes differentially expressed in treated mice were re-examined by qRT-PCR. The bone marrow was also examined pathologically at 6 h, 3, 7, and 14 days postirradiation. RESULTS Thirty-six genes, including Edn1 and Agpt2, were identified as candidate responsive genes in irradiated mouse bone marrow treated with Zn-yeast by showing a greater than three-fold change compared with control (no irradiation and no Zn-yeast) mice. The expressions of Cdkn1a, Bax, and Ccng, which are well known as radioresponsive genes, were upregulated in WBI mice and Zn-yeast treated WBI mice. Pathological examination showed the newly formed microvessels lined with endothelial cells, and small round hematopoietic cells around vessels in bone marrow matrix of mice administered with Zn-yeast after WBI, while whole-body irradiated mice developed fatty bone marrow within 2 weeks after irradiation. CONCLUSION This study identified a possible mechanism for the postirradiation protection conferred by Zn-yeast. The protective effect of Zn-yeast against WBI is related to maintaining the bone marrow microenvironment, including targeting endothelial cells and cytokine release.
Collapse
Affiliation(s)
- Megumi Ueno
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | |
Collapse
|