1
|
Frankfurt M, Nassrallah Z, Luine V. Steroid Hormone Interaction with Dendritic Spines: Implications for Neuropsychiatric Disease. ADVANCES IN NEUROBIOLOGY 2023; 34:349-366. [PMID: 37962800 DOI: 10.1007/978-3-031-36159-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines, key sites for neural plasticity, are influenced by gonadal steroids. In this chapter, we review the effects of gonadal steroids on dendritic spine density in areas important to cognitive function, the hippocampus, and prefrontal cortex. Most of these animal model studies investigated the effects of estrogen in females, but we also include more recent data on androgen effects in both males and females. The underlying genomic and non-genomic mechanisms related to gonadal steroid-induced spinogenesis are also reviewed. Subsequently, we discuss possible reasons for the observed sex differences in many neuropsychiatric diseases, which appear to be caused, in part, by aberrant synaptic connections that may involve dendritic spine pathology. Overall, knowledge concerning the regulation of dendritic spines by gonadal hormones has grown since the initial discoveries in the 1990s, and current research points to a potential role for aberrant spine functioning in many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hempstead, NY, USA.
| | - Zeinab Nassrallah
- Department of Science Education Zucker School of Medicine, 500 Hofstra University, Hempstead, NY, USA
| | - Victoria Luine
- Department of Psychology, Hunter College, New York, NY, USA
| |
Collapse
|
2
|
Barbosa-Mendez S, Salazar-Juárez A. Prenatal and Postnatal Cocaine Enhances the Induction and Expression of Locomotor Sensitization to Nicotine in Male Rats. NICOTINE & TOBACCO RESEARCH : OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON NICOTINE AND TOBACCO 2022; 24:1861-1870. [PMID: 35856772 DOI: 10.1093/ntr/ntac174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Several studies mention that early consumption of cannabis, alcohol, or even cocaine is related to an increase in the prevalence of daily consumption of tobacco in adulthood. However, other factors, such as genetic comorbidity, social influences, and even molecular, neurochemical, and behavioral alterations induced by prenatal and postnatal cocaine exposure, could also explain these observations, since these factors together increase the vulnerability of the offspring to the reinforcing effects of nicotine. The objective of this study was to determine the effect of prenatal and postnatal exposure to cocaine on nicotine-induced locomotor sensitization in young and adult rats. AIMS AND METHODS The study was divided into two stages: prenatal and postnatal. In the prenatal stage, a group of pregnant female Wistar rats was administered cocaine daily from day GD0 to GD21 (cocaine preexposure group), and another group of pregnant female rats was administered saline daily (saline preexposure group). Of the litters resulting from the cocaine preexposed and saline preexposed pregnant female groups, in the postnatal stage, only the male rats were used for the recording of the locomotor activity induced by different doses of nicotine (0.2, 0.4, and 0.6 mg/kg) during the induction and expression of locomotor sensitization at different postnatal ages (30, 60, 90, and 120 days). RESULTS Prenatal and postnatal cocaine exposure enhanced nicotine-induced locomotor activity and locomotor sensitization. CONCLUSIONS This suggests that prenatal and postnatal cocaine exposure can result in increased vulnerability to other drugs of abuse, such as nicotine, in humans. IMPLICATIONS Several studies have shown that the abuse of a drug, such as cannabis, alcohol, or even cocaine, at an early age can progress to more severe levels of use of other drugs, such as nicotine, to adulthood. Our data are consistent with this hypothesis, since prenatal and postnatal cocaine exposure enhanced the nicotine-induced increase in locomotor activity and locomotor sensitization. This suggests that prenatal and postnatal exposure to cocaine enhances the drug's salience.
Collapse
Affiliation(s)
- Susana Barbosa-Mendez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría, Ciudad de México, 14370, México
| | - Alberto Salazar-Juárez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría, Ciudad de México, 14370, México
| |
Collapse
|
3
|
Taxier LR, Philippi SM, Fleischer AW, York JM, LaDu MJ, Frick KM. APOE4 homozygote females are resistant to the beneficial effects of 17β-estradiol on memory and CA1 dendritic spine density in the EFAD mouse model of Alzheimer's disease. Neurobiol Aging 2022; 118:13-24. [PMID: 35843109 PMCID: PMC10756028 DOI: 10.1016/j.neurobiolaging.2022.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
Female APOE4 carriers are at greatest risk of Alzheimer's disease (AD). The potent estrogen 17β-estradiol (E2) may mediate AD risk, as the onset of memory decline coincides with the menopausal transition. Whether APOE genotype mediates E2's effects on memory and neuronal morphology is poorly understood. We used the APOE+/+/5xFAD+/- (EFAD) mouse model to examine how APOE3 homozygote (E3FAD), APOE3/4 heterozygote (E3/4FAD), and APOE4 homozygote (E4FAD) genotypes modulate effects of E2 on object and spatial memory consolidation, dendritic spine density, and dorsal hippocampal estrogen receptor expression in 6-month-old ovariectomized EFAD mice. Dorsal hippocampal E2 infusion enhanced memory consolidation and increased CA1 apical spine density in E3FAD and E3/4FAD, but not E4FAD, mice. CA1 basal mushroom spines were also increased by E2 in E3FADs. E4FAD mice exhibited reduced CA1 and mPFC basal spine density, and increased dorsal hippocampal ERα protein, independent of E2. Overall, E2 benefitted hippocampal memory and structural plasticity in females bearing one or no APOE4 allele, whereas two APOE4 alleles impeded the memory-enhancing and spinogenic effects of E2.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Sarah M Philippi
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA; Current affiliation: Department of Neuroscience and Neuroscience Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron W Fleischer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Jason M York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA.
| |
Collapse
|
4
|
Luine V, Mohan G, Attalla S, Jacome L, Frankfurt M. Androgens Enhance Recognition Memory and Dendritic Spine Density in the Hippocampus and Prefrontal Cortex of Ovariectomized Female Rats. Neuroscience 2022:S0306-4522(22)00287-1. [PMID: 35671881 PMCID: PMC9719572 DOI: 10.1016/j.neuroscience.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 12/28/2022]
Abstract
Estrogen replacement has been repeatedly shown to enhance memory and increase dendritic spine density in the hippocampus and prefrontal cortex of ovariectomized (OVX) female rats. Given the potential deleterious effects of chronic estrogen administration, the present study assessed cognitive function using recognition memory tasks and measured dendritic spine density in the CA1 region of the hippocampus and medial prefrontal cortex after subchronic androgen replacement to adult OVX female rats. All androgens enhanced recognition memory in OVX rats, but object placement (OP) and object recognition (OR) results differed. Only testosterone enhanced OR. Testosterone had no effect on OP while dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT) and androstenedione (AD) enhanced OP. Dendritic spine density was increased by both TP and DHEA in both brain areas (DHT and AD were not tested). Lastly, we used the aromatase inhibitor, letrozole, to discriminate between potential androgenic and estrogenic effects of androgens on behavior. Letrozole alone did not alter recognition memory in OVX rats and did not block the effects of either TP or DHEA on recognition memory suggesting that effects were mediated via androgenic mechanisms. The present results expand previous information on gonadal hormone actions and show that, in addition to estrogens, androgens also improve memory and increase spine density in brains of OVX female rats. While requiring further investigation, these observations provide a basis for therapeutic interventions in the treatment of menopausal, age or disease related memory loss.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States.
| | - Govini Mohan
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Sara Attalla
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Luis Jacome
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, 160 Hofstra University, 400A Shapiro Family Hall, Hempstead, NY 11549, United States
| |
Collapse
|
5
|
Taxier LR, Philippi SM, York JM, LaDu MJ, Frick KM. The detrimental effects of APOE4 on risk for Alzheimer's disease may result from altered dendritic spine density, synaptic proteins, and estrogen receptor alpha. Neurobiol Aging 2022; 112:74-86. [PMID: 35051676 PMCID: PMC8976726 DOI: 10.1016/j.neurobiolaging.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
Women carriers of APOE4, the greatest genetic risk factor for late-onset Alzheimer's disease (AD), are at highest risk of developing AD, yet factors underlying interactions between APOE4 and sex are not well characterized. Here, we examined how sex and APOE3 or APOE4 genotypes modulate object and spatial memory, dendritic spine density and branching, and protein expression in 6-month-old male and female E3FAD and E4FAD mice (APOE+/+/5xFAD+/-). APOE4 negatively impacted object recognition and spatial memory, with male E3FADs exhibiting the best memory across 2 object-based tasks. In both sexes, APOE4 reduced basal dendritic spine density in the medial prefrontal cortex and dorsal hippocampus. APOE4 reduced dorsal hippocampal levels of PDS-95, synaptophysin, and phospho-CREB, yet increased levels of ERα. E4FAD females exhibited strikingly increased GFAP levels, in addition to the lowest levels of PSD-95 and pCREB. Overall, our results suggest that APOE4 negatively impacts object memory, dendritic spine density, and levels of hippocampal synaptic proteins and ERα. However, the general lack of sex differences or sex by genotype interactions suggests that the sex-specific effects of APOE4 on AD risk may be related to factors unexplored in the present study.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Sarah M Philippi
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Jason M York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA.
| |
Collapse
|
6
|
Pawluski JL, Hoekzema E, Leuner B, Lonstein JS. Less can be more: Fine tuning the maternal brain. Neurosci Biobehav Rev 2022; 133:104475. [PMID: 34864004 PMCID: PMC8807930 DOI: 10.1016/j.neubiorev.2021.11.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
PAWLUSKI, J.L., Hoekzema, E., Leuner, B., and Lonstein, J.S. Less can be more: Fine tuning the maternal brain. NEUROSCI BIOBEHAV REV (129) XXX-XXX, 2022. Plasticity in the female brain across the lifespan has recently become a growing field of scientific inquiry. This has led to the understanding that the transition to motherhood is marked by some of the most significant changes in brain plasticity in the adult female brain. Perhaps unexpectedly, plasticity occurring in the maternal brain often involves a decrease in brain volume, neurogenesis and glial cell density that presumably optimizes caregiving and other postpartum behaviors. This review summarizes what we know of the 'fine-tuning' of the female brain that accompanies motherhood and highlights the implications of these changes for maternal neurobehavioral health. The first part of the review summarizes structural and functional brain changes in humans during pregnancy and postpartum period with the remainder of the review focusing on neural and glial plasticity during the peripartum period in animal models. The aim of this review is to provide a clear understanding of when 'less is more' in maternal brain plasticity and where future research can focus to improve our understanding of the unique brain plasticity occurring during matrescence.
Collapse
Affiliation(s)
- Jodi L. Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.,Corresponding author: Jodi L. Pawluski, University of Rennes 1, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| | - Elseline Hoekzema
- Brain and Development Laboratory, Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Hoekzema Lab, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology & Department of Neuroscience Columbus, OH, USA
| | - Joseph S. Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Quigley JA, Logsdon MK, Turner CA, Gonzalez IL, Leonardo NB, Becker JB. Sex differences in vulnerability to addiction. Neuropharmacology 2021; 187:108491. [PMID: 33567305 PMCID: PMC7979496 DOI: 10.1016/j.neuropharm.2021.108491] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
This article reviews evidence for sex differences in vulnerability to addiction with an emphasis on the neural mechanisms underlying these differences. Sex differences in the way that the gonadal hormone, estradiol, interacts with the ascending telencephalic dopamine system results in sex differences in motivated behaviors, including drug-seeking. In rodents, repeated psychostimulant exposure enhances incentive sensitization to a greater extent in females than males. Estradiol increases females' motivation to attain psychostimulants and enhances the value of drug related cues, which ultimately increases their susceptibility towards spontaneous relapse. This, along with females' dampened ability to alter decisions regarding risky behaviors, enhances their vulnerability for escalation of drug use. In males, recent evidence suggests that estradiol may be protective against susceptibility towards drug-preference. Sex differences in the actions of estradiol are reviewed to provide a foundation for understanding how future research might enhance understanding of the mechanisms of sex differences in addiction-related behaviors, which are dependent on estradiol receptor (ER) subtype and the region of the brain they are acting in. A comprehensive review of the distribution of ERα, ERβ, and GPER1 throughout the rodent brain are provided along with a discussion of the possible ways in which these patterns differentially regulate drug-taking between the sexes. The article concludes with a brief discussion of the actions of gonadal hormones on the circuitry of the stress system, including the hypothalamic pituitary adrenal axis and regulation of corticotropin-releasing factor. Sex differences in the stress system can also contribute to females' enhanced vulnerability towards addiction.
Collapse
Affiliation(s)
- Jacqueline A Quigley
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Molly K Logsdon
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Christopher A Turner
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Ivette L Gonzalez
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - N B Leonardo
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Jill B Becker
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA.
| |
Collapse
|
8
|
Frankfurt M, Luine V, Bowman RE. A potential role for dendritic spines in bisphenol-A induced memory impairments during adolescence and adulthood. VITAMINS AND HORMONES 2020; 114:307-329. [PMID: 32723549 DOI: 10.1016/bs.vh.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental exposure to Bisphenol A (BPA), an endocrine disrupting chemical, alters many behaviors and neural parameters in rodents and non-human-primates. The effects of BPA are mediated via gonadal hormone, primarily, estrogen receptors, and are not limited to the perinatal period since recent studies show impairments further into development. The studies described in this chapter address the effects of BPA administration during early adolescence on memory and dendritic spine density in intact male and female rats as well as ovariectomized (OVX) rats in late adolescence and show that some of these adolescent induced changes endure into adulthood. In general, BPA impairs spatial memory and induces decreases in dendritic spine density in the hippocampus and the medial prefrontal cortex, two areas important for memory. The effects of adolescent BPA in intact females are compared to OVX females in an attempt to address the importance of estrogens in the mechanism(s) underlying the profound neuronal alterations occurring during adolescent development. In addition, potential mechanisms by which acute and chronic BPA induce structural alterations are discussed. These studies suggest a complex interaction between low doses of BPA, gonadal state and neural development.
Collapse
Affiliation(s)
- Maya Frankfurt
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| | | | | |
Collapse
|
9
|
Uriarte N, Ferreño M, Méndez D, Nogueira J. Reorganization of perineuronal nets in the medial Preoptic Area during the reproductive cycle in female rats. Sci Rep 2020; 10:5479. [PMID: 32214157 PMCID: PMC7096482 DOI: 10.1038/s41598-020-62163-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Perineuronal nets (PNNs) are aggregations of extracellular matrix associated with specific neuronal populations in the central nervous system, suggested to play key roles in neural development, synaptogenesis and experience-dependent synaptic plasticity. Pregnancy and lactation are characterized by a dramatic increase in neuroplasticity. However, dynamic changes in the extracellular matrix associated with maternal circuits have been mostly overlooked. We analyzed the structure of PNNs in an essential nucleus of the maternal circuit, the medial preoptic area (mPOA), during the reproductive cycle of rats, using the Wisteria floribunda (WFA) label. PNNs associated to neurons in the mPOA start to assemble halfway through gestation and become highly organized prior to parturition, fading through the postpartum period. This high expression of PNNs during pregnancy appears to be mediated by the influence of estrogen, progesterone and prolactin, since a hormonal simulated-gestation treatment induced the expression of PNNs in ovariectomized females. We found that PNNs associated neurons in the mPOA express estrogen receptor α and progesterone receptors, supporting a putative role of reproductive hormones in the signaling mechanisms that trigger the assembly of PNNs in the mPOA. This is the first report of PNNs presence and remodeling in mPOA during adulthood induced by physiological variables.
Collapse
Affiliation(s)
- Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Marcela Ferreño
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Diego Méndez
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Javier Nogueira
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay.
| |
Collapse
|
10
|
Barbosa-Méndez S, Salazar-Juárez A. Prenatal and postnatal cocaine exposure enhances the induction and expression of locomotor sensitization to cocaine in rats. Reprod Toxicol 2020; 93:235-249. [PMID: 32173415 DOI: 10.1016/j.reprotox.2020.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022]
Abstract
Prenatal and postnatal exposure to cocaine can affect the development and function of the central nervous system in offspring. It also produces changes in cocaine-induced dopamine release and increases cocaine self-administration and cocaine-induced conditioned place preference. Further, prenatal cocaine exposure involves greater risk for development of a substance use disorder in adolescents. Therefore, the objective of this study was to determine the effect of prenatal and postnatal cocaine exposure on locomotor sensitization in rats. A group of pregnant female Wistar rats were administered daily from day GD0 to GD21 with cocaine (cocaine pre-exposure group) and another group pregnant female rats were administered daily with saline (saline pre-exposure group). During lactation (PND0 to PND21) pregnant rats also received cocaine administration or saline, respectively. Of the litters resulting of the cocaine pre-exposed and saline pre-exposed pregnant female groups, only the male rats were used for the recording of the locomotor activity induced by different doses of cocaine (1, 5, 10, 20 and 40 mg/Kg/day) during the induction and expression of locomotor sensitization at different postnatal ages (30, 60, 90 and 120 days), representative of adolescence and adult ages. The study found that prenatal and postnatal cocaine exposure enhanced locomotor activity and locomotor sensitization, and such increase was dose- and age-dependent. This suggests that prenatal and postnatal cocaine exposure can result in increased vulnerability to cocaine abuse in young and adult humans.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimenta, Instituto Nacional de Psiquiatría, Ciudad de México, 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimenta, Instituto Nacional de Psiquiatría, Ciudad de México, 14370, Mexico.
| |
Collapse
|
11
|
Grattan DR, Ladyman SR. Neurophysiological and cognitive changes in pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:25-55. [PMID: 32736755 DOI: 10.1016/b978-0-444-64239-4.00002-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hormonal fluctuations in pregnancy drive a wide range of adaptive changes in the maternal brain. These range from specific neurophysiological changes in the patterns of activity of individual neuronal populations, through to complete modification of circuit characteristics leading to fundamental changes in behavior. From a neurologic perspective, the key hormone changes are those of the sex steroids, estradiol and progesterone, secreted first from the ovary and then from the placenta, the adrenal glucocorticoid cortisol, as well as the anterior pituitary peptide hormone prolactin and its pregnancy-specific homolog placental lactogen. All of these hormones are markedly elevated during pregnancy and cross the blood-brain barrier to exert actions on neuronal populations through receptors expressed in specific regions. Many of the hormone-induced changes are in autonomic or homeostatic systems. For example, patterns of oxytocin and prolactin secretion are dramatically altered to support novel physiological functions. Appetite is increased and feedback responses to metabolic hormones such as leptin and insulin are suppressed to promote a positive energy balance. Fundamental physiological systems such as glucose homeostasis and thermoregulation are modified to optimize conditions for fetal development. In addition to these largely autonomic changes, there are also changes in mood, behavior, and higher processes such as cognition. This chapter summarizes the hormonal changes associated with pregnancy and reviews how these changes impact on brain function, drawing on examples from animal research, as well as available information about human pregnancy.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Dorsal Hippocampal Actin Polymerization Is Necessary for Activation of G-Protein-Coupled Estrogen Receptor (GPER) to Increase CA1 Dendritic Spine Density and Enhance Memory Consolidation. J Neurosci 2019; 39:9598-9610. [PMID: 31628182 DOI: 10.1523/jneurosci.2687-18.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 09/03/2019] [Accepted: 10/13/2019] [Indexed: 11/21/2022] Open
Abstract
Activation of the membrane estrogen receptor G-protein-coupled estrogen receptor (GPER) in ovariectomized mice via the GPER agonist G-1 mimics the beneficial effects of 17β-estradiol (E2) on hippocampal CA1 spine density and memory consolidation, yet the cell-signaling mechanisms mediating these effects remain unclear. The present study examined the role of actin polymerization and c-Jun N-terminal kinase (JNK) phosphorylation in mediating effects of dorsal hippocampally infused G-1 on CA1 dendritic spine density and consolidation of object recognition and spatial memories in ovariectomized mice. We first showed that object learning increased apical CA1 spine density in the dorsal hippocampus (DH) within 40 min. We then found that DH infusion of G-1 increased both CA1 spine density and phosphorylation of the actin polymerization regulator cofilin, suggesting that activation of GPER may increase spine morphogenesis through actin polymerization. As with memory consolidation in our previous work (Kim et al., 2016), effects of G-1 on CA1 spine density and cofilin phosphorylation depended on JNK phosphorylation in the DH. Also consistent with our previous findings, E2-induced cofilin phosphorylation was not dependent on GPER activation. Finally, we found that infusion of the actin polymerization inhibitor, latrunculin A, into the DH prevented G-1 from increasing apical CA1 spine density and enhancing both object recognition and spatial memory consolidation. Collectively, these data demonstrate that GPER-mediated hippocampal spinogenesis and memory consolidation depend on JNK and cofilin signaling, supporting a critical role for actin polymerization in the GPER-induced regulation of hippocampal function in female mice.SIGNIFICANCE STATEMENT Emerging evidence suggests that G-protein-coupled estrogen receptor (GPER) activation mimics effects of 17β-estradiol on hippocampal memory consolidation. Unlike canonical estrogen receptors, GPER activation is associated with reduced cancer cell proliferation; thus, understanding the molecular mechanisms through which GPER regulates hippocampal function may provide new avenues for the development of drugs that provide the cognitive benefits of estrogens without harmful side effects. Here, we demonstrate that GPER increases CA1 dendritic spine density and hippocampal memory consolidation in a manner dependent on actin polymerization and c-Jun N-terminal kinase phosphorylation. These findings provide novel insights into the role of GPER in mediating hippocampal morphology and memory consolidation, and may suggest first steps toward new therapeutics that more safely and effectively reduce memory decline in menopausal women.
Collapse
|
13
|
Chemogenetic Suppression of Medial Prefrontal-Dorsal Hippocampal Interactions Prevents Estrogenic Enhancement of Memory Consolidation in Female Mice. eNeuro 2019; 6:eN-NWR-0451-18. [PMID: 31016230 PMCID: PMC6477593 DOI: 10.1523/eneuro.0451-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
The importance of the dorsal hippocampus (DH) in mediating the memory-enhancing effects of the sex-steroid hormone 17β-estradiol (E2) is well established. However, estrogen receptors (ERs) are highly expressed in other brain regions that support memory formation, including the medial prefrontal cortex (mPFC). The mPFC and DH interact to mediate the formation of several types of memory, and behavioral tasks that recruit the mPFC are enhanced by systemic E2 administration, making this region a prime candidate for investigating circuit-level questions regarding the estrogenic regulation of memory. Further, infusion of E2 directly into the DH increases dendritic spine density in both the DH and mPFC, and this effect depends upon rapid activation of cell-signaling pathways in the DH, demonstrating a previously unexplored interaction between the DH and mPFC that led us to question the role of the mPFC in object memory consolidation and the necessity of DH-mPFC interactions in the memory-enhancing effects of E2. Here, we found that infusion of E2 directly into the mPFC of ovariectomized mice increased mPFC apical spine density and facilitated object recognition and spatial memory consolidation, demonstrating that E2 in the mPFC increases spinogenesis and enhances on memory consolidation. Next, chemogenetic suppression of the mPFC blocked the beneficial effects of DH-infused E2 on memory consolidation, indicating that systems-level DH-mPFC interactions are necessary for the memory-enhancing effects of E2. Together, these studies provide evidence that E2 in the mPFC mediates memory formation, and reveal that the DH and mPFC act in concert to support the memory-enhancing effects of E2 in female mice.
Collapse
|
14
|
Bowman RE, Hagedorn J, Madden E, Frankfurt M. Effects of adolescent Bisphenol-A exposure on memory and spine density in ovariectomized female rats: Adolescence vs adulthood. Horm Behav 2019; 107:26-34. [PMID: 30465772 DOI: 10.1016/j.yhbeh.2018.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/25/2023]
Abstract
The endocrine disruptor, Bisphenol-A (BPA), alters many behavioral and neural parameters in rodents. BPA administration to gonadally intact adolescent rats increases anxiety, impairs spatial memory, and decreases dendritic spine density when measured in adulthood. Since BPA's action seems to be mediated through gonadal steroid receptors, the current experiments were done in ovariectomized (OVX) female rats to examine the effects on behavior and spine density of adolescent BPA exposure under controlled hormone conditions. OVX (postnatal day, PND, 21) female Sprague-Dawley rats (n = 66) received subcutaneous injections of BPA (40 μg/kg/bodyweight), 17β-Estradiol (E2, 50 μg/kg/bodyweight), or saline during adolescence (PND 38-49). Following the last injection brains were processed for Golgi impregnation (Exp1), behavioral and spine density in adolescence (Exp2), or in adulthood (Exp3). In Exp1, E2 increased spine density in CA1 pyramidal cells and BPA decreased spine density in granule cells of the dentate gyrus (DG). In Exp2, BPA impaired spatial memory on the object placement (OP) task, E2 increased spine density in CA1, BPA decreased spine density in the DG and the medial prefrontal cortex (mPFC). When measured in adulthood (Exp3), BPA impaired OP and object recognition (OR) performance, E2 increased spine density in CA1, and BPA decreased spine density in CA1, the mPFC and the DG. Results provide novel data on the effects of adolescent BPA in an OVX model and are compared to data in intact animals and within the context of understanding the importance of the profound neuronal alterations occurring during adolescent development.
Collapse
Affiliation(s)
- Rachel E Bowman
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, United States of America.
| | - Jennifer Hagedorn
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, United States of America
| | - Emma Madden
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, United States of America
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States of America
| |
Collapse
|
15
|
Ploense KL, Vieira P, Bubalo L, Olivarria G, Carr AE, Szumlinski KK, Kippin TE. Contributions of prolonged contingent and non-contingent cocaine exposure to escalation of cocaine intake and glutamatergic gene expression. Psychopharmacology (Berl) 2018; 235:1347-1359. [PMID: 29234834 PMCID: PMC5924572 DOI: 10.1007/s00213-017-4798-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023]
Abstract
Similar to the pattern observed in people with substance abuse disorders, laboratory animals will exhibit escalation of cocaine intake when the drug is available over prolonged periods of time. Here, we investigated the contribution of behavioral contingency of cocaine administration on escalation of cocaine intake and gene expression in the dorsal medial prefrontal cortex (dmPFC) in adult male rats. Rats were allowed to self-administer intravenous cocaine (0.25 mg/infusion) under either limited cocaine-(1 h/day), prolonged cocaine-(6 h/day), or limited cocaine-(1 h/day) plus yoked cocaine-access (5 h/day); a control group received access to saline (1 h/day). One day after the final self-administration session, the rats were euthanized and the dmPFC was removed for quantification of mRNA expression of critical glutamatergic signaling genes, Homer2, Grin1, and Dlg4, as these genes and brain region have been previously implicated in addiction, learning, and memory. All groups with cocaine-access showed escalated cocaine intake during the first 10 min of each daily session, and within the first 1 h of cocaine administration. Additionally, the limited-access + yoked group exhibited more non-reinforced lever responses during self-administration sessions than the other groups tested. Lastly, Homer2, Grin1, and Dlg4 mRNA were impacted by both duration and mode of cocaine exposure. Only prolonged-access rats exhibited increases in mRNA expression for Homer2, Grin1, and Dlg4 mRNA. Taken together, these findings indicate that both contingent and non-contingent "excessive" cocaine exposure supports escalation behavior, but the behavioral contingency of cocaine-access has distinct effects on the patterning of operant responsiveness and changes in mRNA expression.
Collapse
Affiliation(s)
- Kyle L Ploense
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA.
| | - Philip Vieira
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Department of Psychology, California State University-Dominguez Hills, Carson, CA, 90747, USA
| | - Lana Bubalo
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Gema Olivarria
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Amanda E Carr
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Karen K Szumlinski
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Tod E Kippin
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
16
|
Gkioka E, Korou LM, Daskalopoulou A, Misitzi A, Batsidis E, Bakoyiannis I, Pergialiotis V. Prenatal cocaine exposure and its impact on cognitive functions of offspring: a pathophysiological insight. Rev Neurosci 2018; 27:523-34. [PMID: 26953708 DOI: 10.1515/revneuro-2015-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/07/2016] [Indexed: 11/15/2022]
Abstract
It is estimated that approximately 0.5%-3% of fetuses are prenatally exposed to cocaine (COC). The neurodevelopmental implications of this exposure are numerous and include motor skill impairments, alterations of social function, predisposition to anxiety, and memory function and attention deficits; these implications are commonly observed in experimental studies and ultimately affect both learning and IQ. According to previous studies, the clinical manifestations of prenatal COC exposure seem to persist at least until adolescence. The pathophysiological cellular processes that underlie these impairments include dysfunctional myelination, disrupted dendritic architecture, and synaptic alterations. On a molecular level, various neurotransmitters such as serotonin, dopamine, catecholamines, and γ-aminobutyric acid seem to participate in this process. Finally, prenatal COC abuse has been also associated with functional changes in the hormones of the hypothalamic-pituitary-adrenal axis that mediate neuroendocrine responses. The purpose of this review is to summarize the neurodevelopmental consequences of prenatal COC abuse, to describe the pathophysiological pathways that underlie these consequences, and to provide implications for future research in the field.
Collapse
|
17
|
Lewis CR, Baker AN, Fennig P, Conrad P, Hess L, Bastle RM, Olive MF. The effect of litter separation on methamphetamine-conditioned place preference in post-partum dams. Behav Pharmacol 2017; 28:489-492. [PMID: 28570298 PMCID: PMC5538911 DOI: 10.1097/fbp.0000000000000317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Methamphetamine (METH) abuse among women has recently increased to levels comparable to those observed in men. Although studies using animal models of addiction have begun to include more female subjects, examination of the effects of drugs of abuse on post-partum females is currently lacking. This is especially important in light of the significant hormonal and neurobiological changes that accompany pregnancy and rearing experiences. Furthermore, stress in a known factor in addiction vulnerability and the post-partum experience in the clinical population can be highly stressful. Here, we utilized the conditioned place preference paradigm to investigate the conditioned rewarding effects of METH either in virgin rats or in dams exposed to brief separation (15 min) or long separation (180 min) from the litter. We found that females in the brief separation group showed significantly greater METH conditioned place preference compared with both the long separation and virgin groups. No differences were found in locomotor activity during the conditioning sessions. These findings suggest that peripartum experience and brief litter separation may enhance the rewarding effects of METH.
Collapse
Affiliation(s)
- Candace R Lewis
- aDepartment of Psychology bSchool of Life Sciences, Interdisciplinary Neuroscience, Arizona State University, Tempe, Arizona, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Sripetchwandee J, Wongjaikam S, Krintratun W, Chattipakorn N, Chattipakorn SC. A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-β accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload. Neuroscience 2016; 332:191-202. [DOI: 10.1016/j.neuroscience.2016.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/01/2016] [Accepted: 07/02/2016] [Indexed: 01/19/2023]
|
19
|
Estradiol-Mediated Spine Changes in the Dorsal Hippocampus and Medial Prefrontal Cortex of Ovariectomized Female Mice Depend on ERK and mTOR Activation in the Dorsal Hippocampus. J Neurosci 2016; 36:1483-9. [PMID: 26843632 DOI: 10.1523/jneurosci.3135-15.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dendritic spine plasticity underlies the formation and maintenance of memories. Both natural fluctuations and systemic administration of 17β-estradiol (E2) alter spine density in the dorsal hippocampus (DH) of rodents. DH E2 infusion enhances hippocampal-dependent memory by rapidly activating extracellular signal-regulated kinase (ERK)-dependent signaling of mammalian target of rapamycin (mTOR), a key protein synthesis pathway involved in spine remodeling. Here, we investigated whether infusion of E2 directly into the DH drives spine changes in the DH and other brain regions, and identified cell-signaling pathways that mediate these effects. E2 significantly increased basal and apical spine density on CA1 pyramidal neurons 30 min and 2 h after infusion. DH E2 infusion also significantly increased basal spine density on pyramidal neurons in the medial prefrontal cortex (mPFC) 2 h later, suggesting that E2-mediated activity in the DH drives mPFC spinogenesis. The increase in CA1 and mPFC spine density observed 2 h after intracerebroventricular infusion of E2 was blocked by DH infusion of an ERK or mTOR inhibitor. DH E2 infusion did not affect spine density in the dentate gyrus or ventromedial hypothalamus, suggesting specific effects of E2 on the DH and mPFC. Collectively, these data demonstrate that DH E2 treatment elicits ERK- and mTOR-dependent spinogenesis on CA1 and mPFC pyramidal neurons, effects that may support the memory-enhancing effects of E2. SIGNIFICANCE STATEMENT Although systemically injected 17β-estradiol (E2) increases CA1 dendritic spine density, the molecular mechanisms regulating E2-induced spinogenesis in vivo are largely unknown. We found that E2 infused directly into the dorsal hippocampus (DH) increased CA1 spine density 30 min and 2 h later. Surprisingly, DH E2 infusion also increased spine density in the medial prefrontal cortex (mPFC), suggesting that estrogenic regulation of the DH influences mPFC spinogenesis. Moreover, inhibition of ERK and mTOR activation in the DH prevented E2 from increasing DH and mPFC spines, demonstrating that DH ERK and mTOR activation is necessary for E2-induced spinogenesis in the DH and mPFC. These findings provide novel insights into the molecular mechanisms through which E2 mediates dendritic spine density in CA1 and mPFC.
Collapse
|
20
|
Salzwedel AP, Grewen KM, Goldman BD, Gao W. Thalamocortical functional connectivity and behavioral disruptions in neonates with prenatal cocaine exposure. Neurotoxicol Teratol 2016; 56:16-25. [PMID: 27242332 DOI: 10.1016/j.ntt.2016.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/26/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
Abstract
Prenatal cocaine exposure (PCE) affects neurobehavioral development, however, disentangling direct drug-related mechanisms from contextual effects (e.g., socioeconomic status) has proven challenging in humans. The effects of environmental confounds are minimal immediately after birth thus we aimed to delineate neurobehavioral correlates of PCE in a large cohort of neonates (2-6weeks of age, N=152) with and without drug exposure using resting state functional magnetic resonance imaging (rsfMRI) and developmental assessments at 3months with the Bayley Scales of Infant & Toddler Development, 3rd edition. The cohort included healthy controls and neonates with similar poly-drug exposure±cocaine. We focused on the thalamus given its critical importance in early brain development and its unique positioning in the dopamine system. Our results revealed PCE-related hyper-connectivity between the thalamus and frontal regions and a drug-common hypo-connective signature between the thalamus and motor-related regions. PCE-specific neonatal thalamo-frontal connectivity was inversely related to cognitive and fine motor scores and thalamo-motor connectivity showed a positive relationship with composite (gross plus fine) motor scores. Finally, cocaine by selective-serotonin-reuptake-inhibitor (SSRI) interactions were detected, suggesting the combined use of these drugs during pregnancy could have additional consequences on fetal development. Overall, our findings provide the first delineation of PCE-related disruptions of thalamocortical functional connectivity, neurobehavioral correlations, and drug-drug interactions during infancy.
Collapse
Affiliation(s)
- Andrew P Salzwedel
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, USA; University of North Carolina Chapel Hill, Department of Radiology and Biomedical Research Imaging Center, Chapel Hill, NC 27599, USA
| | - Karen M Grewen
- University of North Carolina Chapel Hill, Department of Psychiatry, Neurobiology, and Psychology, Chapel Hill, NC 27599, USA.
| | - Barbara D Goldman
- University of North Carolina Chapel Hill, Department of Psychology and Neuroscience, FPG Child Development Institute, Chapel Hill, NC 27599, USA
| | - Wei Gao
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, USA; University of North Carolina Chapel Hill, Department of Radiology and Biomedical Research Imaging Center, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Slattery DA, Hillerer KM. The maternal brain under stress: Consequences for adaptive peripartum plasticity and its potential functional implications. Front Neuroendocrinol 2016; 41:114-28. [PMID: 26828151 DOI: 10.1016/j.yfrne.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
Abstract
The peripartum period represents a time during which all mammalian species undergo substantial physiological and behavioural changes, which prepare the female for the demands of motherhood. In addition to behavioural and physiological alterations, numerous brain regions, such as the medial prefrontal cortex, olfactory bulb, medial amygdala and hippocampus are subject to substantial peripartum-associated neuronal, dendritic and synaptic plasticity. These changes, which are temporally- and spatially-distinct, are strongly influenced by gonadal and adrenal hormones, such as estrogen and cortisol/corticosterone, which undergo dramatic fluctuations across this period. In this review, we describe our current knowledge regarding these plasticity changes and describe how stress affects such normal adaptations. Finally, we discuss the mechanisms potentially underlying these neuronal, dendritic and synaptic changes and their functional relevance for the mother and her offspring.
Collapse
Affiliation(s)
- David A Slattery
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
22
|
Pawluski JL, Lambert KG, Kinsley CH. Neuroplasticity in the maternal hippocampus: Relation to cognition and effects of repeated stress. Horm Behav 2016; 77:86-97. [PMID: 26122302 DOI: 10.1016/j.yhbeh.2015.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/16/2015] [Accepted: 06/04/2015] [Indexed: 12/28/2022]
Abstract
This article is part of a Special Issue "Parental Care". It is becoming clear that the female brain has an inherent plasticity that is expressed during reproduction. The changes that occur benefit the offspring, which in turn secures the survival of the mother's genetic legacy. Thus, the onset of maternal motivation involves basic mechanisms from genetic expression profiles, to hormone release, to hormone-neuron interactions, all of which fundamentally change the neural architecture - and for a period of time that extends, interestingly, beyond the reproductive life of the female. Although multiple brain areas involved in maternal responses are discussed, this review focuses primarily on plasticity in the maternal hippocampus during pregnancy, the postpartum period and well into aging as it pertains to changes in cognition. In addition, the effects of prolonged and repeated stress on these dynamic responses are considered. The maternal brain is a marvel of directed change, extending into behaviors both obvious (infant-directed) and less obvious (predation, cognition). In sum, the far-reaching effects of reproduction on the female nervous system provide an opportunity to investigate neuroplasticity and behavioral flexibility in a natural mammalian model.
Collapse
Affiliation(s)
- Jodi L Pawluski
- University of Rennes 1, IRSET-INSERM U1085, Campus Beaulieu, Rennes Cedex, France.
| | - Kelly G Lambert
- Department of Psychology, Randolph-Macon College, Ashland, VA 23005, USA.
| | - Craig H Kinsley
- Department of Psychology, Center for Neuroscience, University of Richmond, Richmond, VA 23173, USA.
| |
Collapse
|
23
|
Sagar V, Pilakka-Kanthikeel S, Atluri VSR, Ding H, Arias AY, Jayant RD, Kaushik A, Nair M. Therapeutical Neurotargeting via Magnetic Nanocarrier: Implications to Opiate-Induced Neuropathogenesis and NeuroAIDS. J Biomed Nanotechnol 2015; 11:1722-33. [PMID: 26502636 DOI: 10.1166/jbn.2015.2108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magnetite (Fe3O4) is the most commonly and extensively explored magnetic nanoparticles (MNPs) for drug-targeting and imaging in the field of biomedicine. Nevertheless, its potential application as safe and effective drug-carrier for CNS (Central Nervous System) anomalies is very limited. Previous studies have shown an entangled epidemic of opioid use and HIV infection and increased neuropathogenesis. Opiate such as morphine, heroine, etc. are used frequently as recreational drugs. Existing treatments to alleviate the action of opioid are less effective at CNS level due to impermeability of therapeutic molecules across brain barriers. Thus, development of an advanced nanomedicine based approach may pave the way for better treatment strategies. We herein report magnetic nanoformulation of a highly selective and potent morphine antagonist, CTOP (D-Pen-Cys-Tyr-DTrp-Orn-Thr-Pen-Thr-NH2), which is impenetrable to the brain. MNPs, synthesized in size range from 25 to 40 nm, were characterized by Transmission electron microscopy and assembly of MNPs-CTOP nanoformulations were confirmed by FTIR spectroscopy and fluorescent detection. Flow-cytometry analysis showed that biological efficacy of this nanoformulation in prevention of morphine induced apoptosis in peripheral blood mononuclear cells remains equivalent to that of free CTOP. Similarly, confocal microscopy reveals comparable efficacy of free and MNPs bound CTOP in protecting modulation of neuronal dendrite and spine morphology during morphine exposure and morphine-treated HIV infection. Further, typical transmigration assay showed increased translocation of MNPs across in vitro blood-brain barrier upon exposure of external magnetic force where barrier integrity remains unaltered. Thus, the developed nanoformulation could be effective in targeting brain by application of external magnetic force to treat morphine addiction in HIV patients.
Collapse
|
24
|
Glasper ER, LaMarca EA, Bocarsly ME, Fasolino M, Opendak M, Gould E. Sexual experience enhances cognitive flexibility and dendritic spine density in the medial prefrontal cortex. Neurobiol Learn Mem 2015; 125:73-9. [DOI: 10.1016/j.nlm.2015.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/31/2022]
|
25
|
Ma J, Duan Y, Qin Z, Wang J, Liu W, Xu M, Zhou S, Cao X. Overexpression of αCaMKII impairs behavioral flexibility and NMDAR-dependent long-term depression in the medial prefrontal cortex. Neuroscience 2015; 310:528-40. [PMID: 26415772 DOI: 10.1016/j.neuroscience.2015.09.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/02/2015] [Accepted: 09/20/2015] [Indexed: 01/24/2023]
Abstract
The medial prefrontal cortex (mPFC) participates in the behavioral flexibility. As a major downstream molecule in the NMDA receptor signaling, alpha-Ca(2+)/calmodulin-dependent protein kinase II (αCaMKII) is crucial for hippocampal long-term potentiation (LTP) and hippocampus-related memory. However, the role of αCaMKII in mPFC-related behavioral flexibility and mPFC synaptic plasticity remains elusive. In the present study, using chemical-genetic approaches to temporally up-regulate αCaMKII activity, we found that αCaMKII-F89G transgenic mice exhibited impaired behavioral flexibility in Y-water maze arm reversal task. Notably, in vitro electrophysiological analysis showed normal basal synaptic transmission, LTP and depotentiation, but selectively impaired NMDAR-dependent long-term depression (LTD) in the mPFC of αCaMKII-F89G transgenic mice. In accordance with the deficit in NMDAR-dependent LTD, αCaMKII-F89G transgenic mice exhibited impaired AMPAR internalization during NMDAR-dependent chemical LTD expression in the mPFC. Furthermore, the above deficits in behavioral flexibility, NMDAR-dependent LTD and AMPAR internalization could all be reversed by 1-naphthylmethyl (NM)-PP1, a specific inhibitor of exogenous αCaMKII-F89G activity. Taken together, our results for the first time indicate that αCaMKII overexpression in the forebrain impairs behavioral flexibility and NMDAR-dependent LTD in the mPFC, and supports the notion that there is a close relationship between NMDAR-dependent LTD and behavioral flexibility.
Collapse
Affiliation(s)
- J Ma
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Y Duan
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Z Qin
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - J Wang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - W Liu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - M Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - S Zhou
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - X Cao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
26
|
Frankfurt M, Luine V. The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Horm Behav 2015; 74:28-36. [PMID: 25993604 PMCID: PMC4573337 DOI: 10.1016/j.yhbeh.2015.05.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Memory processing is presumed to depend on synaptic plasticity, which appears to have a role in mediating the acquisition, consolidation, and retention of memory. We have studied the relationship between estrogen, recognition memory, and dendritic spine density in the hippocampus and medial prefrontal cortex, areas critical for memory, across the lifespan in female rodents. The present paper reviews the literature on dendritic spine plasticity in mediating both short and long term memory, as well as the decreased memory that occurs with aging and Alzheimer's disease. It also addresses the role of acute and chronic estrogen treatments in these processes.
Collapse
Affiliation(s)
- Maya Frankfurt
- Department of Science Education, Hofstra-North Shore LIJ School of Medicine, USA.
| | | |
Collapse
|
27
|
DePoy LM, Gourley SL. Synaptic Cytoskeletal Plasticity in the Prefrontal Cortex Following Psychostimulant Exposure. Traffic 2015; 16:919-40. [PMID: 25951902 DOI: 10.1111/tra.12295] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 02/01/2023]
Abstract
Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption and habit-like drug seeking despite adverse consequences. These cognitive changes may reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here, we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices ('mPFC' and 'oPFC', respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regard to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents.
Collapse
Affiliation(s)
- Lauren M DePoy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
Bowman RE, Luine V, Diaz Weinstein S, Khandaker H, DeWolf S, Frankfurt M. Bisphenol-A exposure during adolescence leads to enduring alterations in cognition and dendritic spine density in adult male and female rats. Horm Behav 2015; 69:89-97. [PMID: 25554518 PMCID: PMC6116732 DOI: 10.1016/j.yhbeh.2014.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 12/16/2014] [Accepted: 12/20/2014] [Indexed: 01/01/2023]
Abstract
We have previously demonstrated that adolescent exposure of rats to bisphenol-A (BPA), an environmental endocrine disrupter, increases anxiety, impairs spatial memory, and decreases dendritic spine density in the CA1 region of the hippocampus (CA1) and medial prefrontal cortex (mPFC) when measured in adolescents in both sexes. The present study examined whether the behavioral and morphological alterations following BPA exposure during adolescent development are maintained into adulthood. Male and female, adolescent rats received BPA, 40μg/kg/bodyweight, or control treatments for one week. In adulthood, subjects were tested for anxiety and locomotor activity, spatial memory, non-spatial visual memory, and sucrose preference. Additionally, stress-induced serum corticosterone levels and dendritic spine density in the mPFC and CA1 were measured. BPA-treated males, but not females, had decreased arm visits on the elevated plus maze, but there was no effect on anxiety. Non-spatial memory, object recognition, was also decreased in BPA treated males, but not in females. BPA exposure did not alter spatial memory, object placement, but decreased exploration during the tasks in both sexes. No significant group differences in sucrose preference or serum corticosterone levels in response to a stress challenge were found. However, BPA exposure, regardless of sex, significantly decreased spine density of both apical and basal dendrites on pyramidal cells in CA1 but had no effect in the mPFC. Current data are discussed in relation to BPA dependent changes, which were present during adolescence and did, or did not, endure into adulthood. Overall, adolescent BPA exposure, below the current reference safe daily limit set by the U.S.E.P.A., leads to alterations in some behaviors and neuronal morphology that endure into adulthood.
Collapse
Affiliation(s)
- Rachel E Bowman
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, USA.
| | - Victoria Luine
- Department of Psychology, Hunter College, CUNY, New York, NY 10065, USA
| | | | - Hameda Khandaker
- Department of Psychology, Hunter College, CUNY, New York, NY 10065, USA
| | - Sarah DeWolf
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, USA
| | - Maya Frankfurt
- Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549, USA
| |
Collapse
|
29
|
Sripetchwandee J, Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. DPP-4 Inhibitor and PPARγ Agonist Restore the Loss of CA1 Dendritic Spines in Obese Insulin-resistant Rats. Arch Med Res 2014; 45:547-52. [DOI: 10.1016/j.arcmed.2014.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023]
|
30
|
Bowman RE, Luine V, Khandaker H, Villafane JJ, Frankfurt M. Adolescent bisphenol-A exposure decreases dendritic spine density: role of sex and age. Synapse 2014; 68:498-507. [PMID: 24975924 DOI: 10.1002/syn.21758] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022]
Abstract
Bisphenol-A (BPA), a common environmental endocrine disruptor, modulates estrogenic, androgenic, and antiandrogenic effects throughout the lifespan. We recently showed that low dose BPA exposure during adolescence increases anxiety and impairs spatial memory independent of sex. In this study, six week old Sprague Dawley rats (n=24 males, n=24 females) received daily subcutaneous injections (40 µg/kg bodyweight) of BPA or vehicle for one week. Serum corticosterone levels in response to a 1 h restraint stress and spine density were examined at age 7 (cohort 1) and 11 (cohort 2) weeks. Adolescent BPA exposure did not alter stress dependent corticosterone responses but decreased spine density on apical and basal dendrites of pyramidal cells in the medial prefrontal cortex (mPFC) and hippocampal CA1 region (CA1). Sex differences in spine density were observed on basal dendrites of the mPFC and CA1 with females having greater spine density than males. This sex difference was further augmented by both age and treatment, with results indicating that BPA-dependent decreases in spine density were more pronounced in males than females on mPFC basal dendrites. Importantly, the robust neuronal alterations were observed in animals exposed to BPA levels below the current U.S.E.P.A. recommended safe daily limit. These results are the first demonstrating that BPA given during adolescence leads to enduring effects on neural morphology at adulthood. Given that humans are routinely exposed to low levels of BPA through a variety of sources, the decreased spine density reported in both male and female rats after BPA exposure warrants further investigation.
Collapse
Affiliation(s)
- Rachel E Bowman
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut, 06825
| | | | | | | | | |
Collapse
|
31
|
Grewen K, Burchinal M, Vachet C, Gouttard S, Gilmore JH, Lin W, Johns J, Elam M, Gerig G. Prenatal cocaine effects on brain structure in early infancy. Neuroimage 2014; 101:114-23. [PMID: 24999039 DOI: 10.1016/j.neuroimage.2014.06.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 01/18/2023] Open
Abstract
Prenatal cocaine exposure (PCE) is related to subtle deficits in cognitive and behavioral function in infancy, childhood and adolescence. Very little is known about the effects of in utero PCE on early brain development that may contribute to these impairments. The purpose of this study was to examine brain structural differences in infants with and without PCE. We conducted MRI scans of newborns (mean age = 5 weeks) to determine cocaine's impact on early brain structural development. Subjects were three groups of infants: 33 with PCE co-morbid with other drugs, 46 drug-free controls and 40 with prenatal exposure to other drugs (nicotine, alcohol, marijuana, opiates, SSRIs) but without cocaine. Infants with PCE exhibited lesser total gray matter (GM) volume and greater total cerebral spinal fluid (CSF) volume compared with controls and infants with non-cocaine drug exposure. Analysis of regional volumes revealed that whole brain GM differences were driven primarily by lesser GM in prefrontal and frontal brain regions in infants with PCE, while more posterior regions (parietal, occipital) did not differ across groups. Greater CSF volumes in PCE infants were present in prefrontal, frontal and parietal but not occipital regions. Greatest differences (GM reduction, CSF enlargement) in PCE infants were observed in dorsal prefrontal cortex. Results suggest that PCE is associated with structural deficits in neonatal cortical gray matter, specifically in prefrontal and frontal regions involved in executive function and inhibitory control. Longitudinal study is required to determine whether these early differences persist and contribute to deficits in cognitive functions and enhanced risk for drug abuse seen at school age and in later life.
Collapse
Affiliation(s)
- Karen Grewen
- University of North Carolina, Department of Psychiatry, Chapel Hill, NC 27599, USA.
| | - Margaret Burchinal
- University of North Carolina, Frank Porter Graham Child Development Institute, Chapel Hill, NC 27599, USA
| | - Clement Vachet
- University of Utah, Scientific Computing and Imaging Institute, Salt Lake City, UT 84112, USA
| | - Sylvain Gouttard
- University of Utah, Scientific Computing and Imaging Institute, Salt Lake City, UT 84112, USA
| | - John H Gilmore
- University of North Carolina, Department of Psychiatry, Chapel Hill, NC 27599, USA
| | - Weili Lin
- University of North Carolina, Biomedical Research Imaging Center, Chapel Hill, NC 27599, USA
| | - Josephine Johns
- University of North Carolina, Department of Psychiatry, Chapel Hill, NC 27599, USA
| | - Mala Elam
- University of North Carolina, Department of Psychiatry, Chapel Hill, NC 27599, USA
| | - Guido Gerig
- University of Utah, Scientific Computing and Imaging Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
32
|
Abstract
Although data from both animals and humans suggests that adult cocaine use can have long term effects on behavior, it is unknown if prior cocaine use affects future maternal behavior in nulliparous females. In the current study, cocaine or saline was administered to adult female rats for 10 days, the animals were withdrawn from cocaine for 7 days, and the females were then exposed to donor pups to induce the expression of maternal behavior. Nulliparous females sensitized to cocaine were more likely to retrieve pups, spent more time caring for the pups, and were more likely to express full maternal behavior on day 8 of pup exposure. The fMRI data revealed significant effects of pup exposure in the hippocampal CA1 region, and effects of cocaine in the anterior thalamus and periaqueductal gray. Prior adult cocaine use may have lasting effects on offspring care, and this effect is not dependent on pup mediated effects or the endocrine changes of gestation and lactation. The present findings provide support for the hypothesis that maternal motivation to exhibit maternal behavior is enhanced by prior cocaine sensitization, possibly due to cross sensitization between cocaine and the natural reward of maternal behavior.
Collapse
|
33
|
Villalba RM, Smith Y. Differential striatal spine pathology in Parkinson's disease and cocaine addiction: a key role of dopamine? Neuroscience 2013; 251:2-20. [PMID: 23867772 DOI: 10.1016/j.neuroscience.2013.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/03/2013] [Indexed: 01/19/2023]
Abstract
In the striatum, the dendritic tree of the two main populations of projection neurons, called "medium spiny neurons (MSNs)", are covered with spines that receive glutamatergic inputs from the cerebral cortex and thalamus. In Parkinson's disease (PD), striatal MSNs undergo an important loss of dendritic spines, whereas aberrant overgrowth of striatal spines occurs following chronic cocaine exposure. This review examines the possibility that opposite dopamine dysregulation is one of the key factors that underlies these structural changes. In PD, nigrostriatal dopamine degeneration results in a significant loss of dendritic spines in the dorsal striatum, while rodents chronically exposed to cocaine and other psychostimulants, display an increase in the density of "thin and immature" spines in the nucleus accumbens (NAc). In rodent models of PD, there is evidence that D2 dopamine receptor-containing MSNs are preferentially affected, while D1-positive cells are the main targets of increased spine density in models of addiction. However, such specificity remains to be established in primates. Although the link between the extent of striatal spine changes and the behavioral deficits associated with these disorders remains controversial, there is unequivocal evidence that glutamatergic synaptic transmission is significantly altered in both diseased conditions. Recent studies have suggested that opposite calcium-mediated regulation of the transcription factor myocyte enhancer factor 2 (MEF2) function induces these structural defects. In conclusion, there is strong evidence that dopamine is a major, but not the sole, regulator of striatal spine pathology in PD and addiction to psychostimulants. Further studies of the role of glutamate and other genes associated with spine plasticity in mediating these effects are warranted.
Collapse
Affiliation(s)
- R M Villalba
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Road NE, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Road NE, Atlanta, GA 30329, USA.
| | | |
Collapse
|
34
|
Pilakka-Kanthikeel S, Atluri VSR, Sagar V, Saxena SK, Nair M. Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PLoS One 2013; 8:e62241. [PMID: 23653680 PMCID: PMC3639992 DOI: 10.1371/journal.pone.0062241] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/19/2013] [Indexed: 11/19/2022] Open
Abstract
Parenteral use of drugs; such as opiates exert immunomodulatory effects and serve as a cofactor in the progression of HIV-1 infection, thereby potentiating HIV related neurotoxicity ultimately leading to progression of NeuroAIDS. Morphine exposure is known to induce apoptosis, down regulate cAMP response element-binding (CREB) expression and decrease in dendritic branching and spine density in cultured cells. Use of neuroprotective agent; brain derived neurotropic factor (BDNF), which protects neurons against these effects, could be of therapeutic benefit in the treatment of opiate addiction. Previous studies have shown that BDNF was not transported through the blood brain barrier (BBB) in-vivo.; and hence it is not effective in-vivo. Therefore development of a drug delivery system that can cross BBB may have significant therapeutic advantage. In the present study, we hypothesized that magnetically guided nanocarrier may provide a viable approach for targeting BDNF across the BBB. We developed a magnetic nanoparticle (MNP) based carrier bound to BDNF and evaluated its efficacy and ability to transmigrate across the BBB using an in-vitro BBB model. The end point determinations of BDNF that crossed BBB were apoptosis, CREB expression and dendritic spine density measurement. We found that transmigrated BDNF was effective in suppressing the morphine induced apoptosis, inducing CREB expression and restoring the spine density. Our results suggest that the developed nanocarrier will provide a potential therapeutic approach to treat opiate addiction, protect neurotoxicity and synaptic density degeneration.
Collapse
Affiliation(s)
- Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Venkata Subba Rao Atluri
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Vidya Sagar
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | | | - Madhavan Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
35
|
Oaks AW, Frankfurt M, Finkelstein DI, Sidhu A. Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function. PLoS One 2013; 8:e60378. [PMID: 23560093 PMCID: PMC3613356 DOI: 10.1371/journal.pone.0060378] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022] Open
Abstract
Expression of A53T mutant human alpha-synuclein under the mouse prion promoter is among the most successful transgenic models of Parkinson's disease. Accumulation of A53T alpha-synuclein causes adult mice to develop severe motor impairment resulting in early death at 8–12 months of age. In younger, pre-symptomatic animals, altered motor activity and anxiety-like behaviors have also been reported. These behavioral changes, which precede severe neuropathology, may stem from non-pathological functions of alpha-synuclein, including modulation of monoamine neurotransmission. Our analysis over the adult life-span of motor activity, anxiety-like, and depressive-like behaviors identifies perturbations both before and after the onset of disease. Young A53T mice had increased distribution of the dopamine transporter (DAT) to the membrane that was associated with increased striatal re-uptake function. DAT function decreased with aging, and was associated with neurochemical alterations that included increased expression of beta-synuclein and gamma synuclein. Prior to normalization of dopamine uptake, transient activation of Tau kinases and hyperphosphorylation of Tau in the striatum were also observed. Aged A53T mice had reduced neuron counts in the substantia nigra pars compacta, yet striatal medium spiny neuron dendritic spine density was largely maintained. These findings highlight the involvement of the synuclein family of proteins and phosphorylation of Tau in the response to dopaminergic dysfunction of the nigrostriatal pathway.
Collapse
Affiliation(s)
- Adam W. Oaks
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Maya Frankfurt
- Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Anita Sidhu
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
36
|
Zucchi FCR, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, Kovalchuk I, Kovalchuk O, Metz GAS. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS One 2013; 8:e56967. [PMID: 23451123 PMCID: PMC3579944 DOI: 10.1371/journal.pone.0056967] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/18/2013] [Indexed: 12/21/2022] Open
Abstract
The gestational state is a period of particular vulnerability to diseases that affect maternal and fetal health. Stress during gestation may represent a powerful influence on maternal mental health and offspring brain plasticity and development. Here we show that the fetal transcriptome, through microRNA (miRNA) regulation, responds to prenatal stress in association with epigenetic signatures of psychiatric and neurological diseases. Pregnant Long-Evans rats were assigned to stress from gestational days 12 to 18 while others served as handled controls. Gestational stress in the dam disrupted parturient maternal behaviour and was accompanied by characteristic brain miRNA profiles in the mother and her offspring, and altered transcriptomic brain profiles in the offspring. In the offspring brains, prenatal stress upregulated miR-103, which is involved in brain pathologies, and downregulated its potential gene target Ptplb. Prenatal stress downregulated miR-145, a marker of multiple sclerosis in humans. Prenatal stress also upregulated miR-323 and miR-98, which may alter inflammatory responses in the brain. Furthermore, prenatal stress upregulated miR-219, which targets the gene Dazap1. Both miR-219 and Dazap1 are putative markers of schizophrenia and bipolar affective disorder in humans. Offspring transcriptomic changes included genes related to development, axonal guidance and neuropathology. These findings indicate that prenatal stress modifies epigenetic signatures linked to disease during critical periods of fetal brain development. These observations provide a new mechanistic association between environmental and genetic risk factors in psychiatric and neurological disease.
Collapse
Affiliation(s)
- Fabiola C. R. Zucchi
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Mato Grosso State, Caceres, Mato Grosso, Brazil
| | - Youli Yao
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Isaac D. Ward
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - David M. Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Benzies
- Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerlinde A. S. Metz
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
37
|
Pawluski JL, Valença A, Santos AIM, Costa-Nunes JP, Steinbusch HWM, Strekalova T. Pregnancy or stress decrease complexity of CA3 pyramidal neurons in the hippocampus of adult female rats. Neuroscience 2012; 227:201-10. [PMID: 23036618 DOI: 10.1016/j.neuroscience.2012.09.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/04/2012] [Accepted: 09/22/2012] [Indexed: 12/23/2022]
Abstract
Pregnancy is a time of distinct neural, physiological and behavioral plasticity in the female. It is also a time when a growing number of women are vulnerable to stress and experience stress-related diseases, such as depression and anxiety. However, the impact of stress during gestation on the neurobiology of the mother has yet to be determined, particularly with regard to changes in the hippocampus; a brain area that plays an important role in stress-related diseases. Therefore, the aim of the present study was to understand how stress and reproductive state may alter dendritic morphology of CA1 and CA3 pyramidal neurons in the hippocampus. To do this, adult age-matched pregnant and virgin female Wistar rats were divided into two conditions: (1) control and (2) stress. Females in the stress condition were restrained for 1h/day for the last 2 weeks of gestation and at matched time-points in virgin females. Females were sacrificed the day after the last restraint session and brains were processed for Golgi impregnation. Dendritic length and number of branch points were quantified for apical and basal regions of CA1 and CA3 pyramidal neurons. Results show that regardless of reproductive state, stressed females had significantly shorter apical dendrites and fewer apical branch points in CA3 pyramidal cells. In addition, pregnant females, regardless of stress exposure, had less complex CA3 pyramidal neurons, as measured by Sholl analysis. No differences between conditions were seen in morphology of CA1 pyramidal neurons. This work shows that both repeated restraint stress and pregnancy affect dendritic morphology by decreasing complexity of CA3, but not CA1, neurons in the hippocampus.
Collapse
Affiliation(s)
- J L Pawluski
- School for Mental Health and Neuroscience, Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Luine VN, Frankfurt M. Estrogens facilitate memory processing through membrane mediated mechanisms and alterations in spine density. Front Neuroendocrinol 2012; 33:388-402. [PMID: 22981654 PMCID: PMC3496031 DOI: 10.1016/j.yfrne.2012.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/20/2012] [Accepted: 07/19/2012] [Indexed: 01/27/2023]
Abstract
Estrogens exert sustained, genomically mediated effects on memory throughout the female life cycle, but here we review new studies documenting rapid effects of estradiol on memory, which are exerted through membrane-mediated mechanisms. Use of recognition memory tasks in rats shows that estrogens enhance memory consolidation within 1h. 17α-Estradiol is more potent than 17β-estradiol, and the dose response relationship between estrogens and memory is an inverted U shape. Use of specific estrogen receptor (ER) agonists suggests mediation by an ERβ-like membrane receptor. Enhanced memory is associated with increased spine density and altered noradrenergic activity in the medial prefrontal cortex and hippocampus within 30 min of administration. The environmental chemical, bisphenol-A, rapidly antagonizes enhancements in memory in both sexes possibly through actions on spines. Thus, estradiol and related compounds exert rapid alterations in cognition through non-genomic mechanisms, a finding which may provide a basis for better understanding and treating memory impairments.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY 10065, USA.
| | | |
Collapse
|
39
|
Inagaki T, Frankfurt M, Luine V. Estrogen-induced memory enhancements are blocked by acute bisphenol A in adult female rats: role of dendritic spines. Endocrinology 2012; 153:3357-67. [PMID: 22569790 PMCID: PMC3380314 DOI: 10.1210/en.2012-1121] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute effects of bisphenol (BPA), an environmental chemical, on estradiol (17α or β-E2)-dependent recognition memory and dendritic spines in the medial prefrontal cortex and hippocampus were investigated in adult female rats. Ovariectomized rats received BPA 30 min before or immediately after a sample trial (viewing objects), and retention trials were performed 4 h later. Retention trials tested discrimination between old and new objects (visual memory) or locations (place memory). When given immediately after the sample trial, BPA, 1-400 μg/kg, did not alter recognition memory, but 1 and 40 μg/kg BPA, respectively, blocked 17β-E2-dependent increases in place and visual memory. When ovariectomized rats were tested with 17α-E2, 1 μg/kg BPA blocked place memory, but up to 40 μg did not block visual memory. BPA, given to cycling rats at 40 μg/kg, blocked visual, but not place, memory during proestrus when 2 h intertrial delays were given. Spine density was assessed at times of memory consolidation (30 min) and retention (4 h) after 17β-E2 or BPA + 17β-E2. In prefrontal cortex, BPA did not alter E2-dependent increases. In the hippocampus, BPA blocked E2 increases in basal spines at 4 h and was additive with E2 at 30 min. Thus, these novel data show that doses of BPA, below the current Environmental Protection Agency safe limit of 50 μg/kg, rapidly alter neural functions dependent on E2 in adult female rats.
Collapse
Affiliation(s)
- T Inagaki
- Department of Psychology, Hunter College of City University of New York, 695 Park Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
40
|
Eilam-Stock T, Serrano P, Frankfurt M, Luine V. Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behav Neurosci 2011; 126:175-85. [PMID: 22004261 DOI: 10.1037/a0025959] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exposure to Bisphenol-A (BPA), an endocrine disruptor used in plastics, occurs in the United States on a daily basis. Recent studies suggest exposure during development causes memory deficits later in life; however, the ramifications of exposure in adulthood are unclear. We examined the effects of acute BPA administration (40 μg/kg) on memory and synaptic plasticity in adult male rats. BPA significantly impaired both visual and spatial memory and decreased dendritic spine density on pyramidal cells in CA1 and the medial prefrontal cortex (mPFC). Additionally, BPA significantly decreased PSD-95, a synaptic marker, in the hippocampus and increased cytosolic pCREB, a transcription factor, in mPFC. Together, these findings show that a single dose of BPA, below the USEPA reference safe daily limit of 50 μg/kg/day, may block the formation of new memories by interfering with neural plasticity processes in the adult brain.
Collapse
Affiliation(s)
- Tehila Eilam-Stock
- Department of Psychology, Hunter College, The City University of New York, New York, NY 10065, USA
| | | | | | | |
Collapse
|