1
|
Kang SJ, Kim JH, Kim DI, Roberts BZ, Han S. A pontomesencephalic PACAPergic pathway underlying panic-like behavioral and somatic symptoms in mice. Nat Neurosci 2024; 27:90-101. [PMID: 38177337 PMCID: PMC11195305 DOI: 10.1038/s41593-023-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2023] [Indexed: 01/06/2024]
Abstract
Panic disorder is characterized by uncontrollable fear accompanied by somatic symptoms that distinguish it from other anxiety disorders. Neural mechanisms underlying these unique symptoms are not completely understood. Here, we report that the pituitary adenylate cyclase-activating polypeptide (PACAP)-expressing neurons in the lateral parabrachial nucleus projecting to the dorsal raphe are crucial for panic-like behavioral and physiological alterations. These neurons are activated by panicogenic stimuli but inhibited in conditioned fear and anxiogenic conditions. Activating these neurons elicits strong defensive behaviors and rapid cardiorespiratory increase without creating aversive memory, whereas inhibiting them attenuates panic-associated symptoms. Chemogenetic or pharmacological inhibition of downstream PACAP receptor-expressing dorsal raphe neurons abolishes panic-like symptoms. The pontomesencephalic PACAPergic pathway is therefore a likely mediator of panicogenesis, and may be a promising therapeutic target for treating panic disorder.
Collapse
Affiliation(s)
- Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Hyun Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin Z Roberts
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Jang KI, Kim S, Lee C, Chae JH. Association between the loudness dependence of auditory evoked potentials and age in patients with schizophrenia and depression. J Int Med Res 2022; 50:3000605221109789. [PMID: 35808808 PMCID: PMC9274422 DOI: 10.1177/03000605221109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective Although serotonergic dysfunction is significantly associated with major
depressive disorder (MDD) and schizophrenia (SCZ), comparison of
serotonergic dysfunction in both diseases has received little attention.
Serotonin hypotheses have suggested diminished and elevated serotonin
activity in MDD and SCZ, respectively. However, the foundations underlying
these hypotheses are unclear regarding changes in serotonin
neurotransmission in the aging brain. The loudness dependence of auditory
evoked potentials (LDAEP) reflects serotonin neurotransmission. The present
study compared the LDAEP between patients with SCZ or MDD and healthy
controls (HCs). We further examined whether age was correlated with the
LDAEP and clinical symptoms. Methods This prospective clinical study included 105 patients with SCZ (n = 54) or
MDD (n = 51). Additionally, 35 HCs were recruited for this study. The LDAEP
was measured on the midline channels via 62 electroencephalography
channels. Results Patients with SCZ or MDD showed a significantly smaller mean LDAEP than those
in HCs. The LDAEP was positively correlated with age in patients with SCZ or
MDD. Conclusions Changes in central serotonergic activity could be indicated by evaluating the
LDAEP in patients with SCZ or MDD. Age-related reductions in serotonergic
activity may be screened using the LDAEP in patients with SCZ or MDD.
Collapse
Affiliation(s)
- Kuk-In Jang
- Cognitive Science Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Sungkean Kim
- Department of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jeong-Ho Chae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
de Oliveira RP, de Andrade JS, Spina M, Chamon JV, Silva PHD, Werder AK, Ortolani D, Thomaz LDSC, Romariz S, Ribeiro DA, Longo BM, Spadari RC, Viana MDB, Melo-Thomas L, Céspedes IC, da Silva RCB. Clozapine prevented social interaction deficits and reduced c-Fos immunoreactivity expression in several brain areas of rats exposed to acute restraint stress. PLoS One 2022; 17:e0262728. [PMID: 35239670 PMCID: PMC8893644 DOI: 10.1371/journal.pone.0262728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
In the present study, we evaluate the effect of acute restraint stress (15 min) of male Wistar rats on social interaction measurements and c-Fos immunoreactivity (c-Fos-ir) expression, a marker of neuronal activity, in areas involved with the modulation of acute physical restraint in rats, i.e., the paraventricular nucleus of the hypothalamus (PVN), median raphe nucleus (MnR), medial prefrontal cortex (mPFC), cingulate prefrontal cortex (cPFC), nucleus accumbens (NaC), hippocampus (CA3), lateral septum (LS) and medial amygdala (MeA). We considered the hypothesis that restraint stress exposure could promote social withdrawal induced by the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis, and increase c-Fos expression in these limbic forebrain areas investigated. In addition, we investigated whether pretreatment with the atypical antipsychotic clozapine (5 mg/kg; I.P.) could attenuate or block the effects of restraint on these responses. We found that restraint stress induced social withdrawal, and increased c-Fos-ir in these areas, demonstrating that a single 15 min session of physical restraint of rats effectively activated the HPA axis, representing an effective tool for the investigation of neuronal activity in brain regions sensitive to stress. Conversely, pretreatment with clozapine, prevented social withdrawal and reduced c-Fos expression. We suggest that treatment with clozapine exerted a preventive effect in the social interaction deficit, at least in part, by blocking the effect of restraint stress in brain regions that are known to regulate the HPA-axis, including the cerebral cortex, hippocampus, hypothalamus, septum and amygdala. Further experiments will be done to confirm this hypothesis.
Collapse
Affiliation(s)
| | - José Simões de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - Marianna Spina
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - João Vítor Chamon
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | | | - Ana Keyla Werder
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - Daniela Ortolani
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | | | - Simone Romariz
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP/SP), São Paulo, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - Beatriz Monteiro Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP/SP), São Paulo, Brazil
| | - Regina Célia Spadari
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
| | - Liana Melo-Thomas
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-Universityof Marburg, Marburg, Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB), Marburg, Marburg, Germany
| | - Isabel Cristina Céspedes
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Regina Cláudia Barbosa da Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos (SP), Brazil
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Fazekas CL, Bellardie M, Török B, Sipos E, Tóth B, Baranyi M, Sperlágh B, Dobos-Kovács M, Chaillou E, Zelena D. Pharmacogenetic excitation of the median raphe region affects social and depressive-like behavior and core body temperature in male mice. Life Sci 2021; 286:120037. [PMID: 34637795 DOI: 10.1016/j.lfs.2021.120037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
AIMS Median raphe region (MRR) is an important bottom-up regulatory center for various behaviors as well as vegetative functions, but detailed descriptions and links between the two are still largely unexplored. METHODS Pharmacogenetics was used to study the role of MRR in social (sociability, social interaction, resident intruder test) and emotional behavior (forced swim test) parallel with some vegetative changes (biotelemetry: core body temperature). Additionally, to validate pharmacogenetics, the effect of clozapine-N-oxide (CNO), the ligand of the artificial receptor, was studied by measuring (i) serum and brainstem concentrations of CNO and clozapine; (ii) MRR stimulation induced neurotransmitter release in hippocampus; (iii) CNO induced changes in body temperature and locomotor activity. KEY FINDINGS MRR stimulation decreased locomotion, increased friendly social behavior in the resident intruder test and enhanced depressive-like behavior. The latter was accompanied by diminished decrease in core body temperature. Thirty minutes after CNO injection clozapine was predominant in the brainstem. Nonetheless, peripheral CNO injection was able to induce glutamate release in the hippocampus. CNO had no immediate (<30 min) or chronic (repeated injections) effect on the body temperature or locomotion. SIGNIFICANCE We confirmed the role of MRR in locomotion, social and depressive-like behavior. Most interestingly, only depressive-like behavior was accompanied by changed body temperature regulation, which was also observed in human depressive disorders previously. This indicates clinical relevance of our findings. Despite low penetration, CNO acts centrally, but does not influence the examined basic parameters, being suitable for repeated behavioral testing.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary.
| | - Manon Bellardie
- Institute of Experimental Medicine, Budapest, Hungary; INRAE Centre Val de Loire, CNRS, IFCE, Université de Tours, UMR 85 Physiologie de la Reproduction et des Comportements, France
| | - Bibiána Török
- Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Eszter Sipos
- Institute of Experimental Medicine, Budapest, Hungary
| | - Blanka Tóth
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Inorganic and Analytical Chemistry, Budapest, Hungary
| | - Mária Baranyi
- Institute of Experimental Medicine, Budapest, Hungary
| | | | | | - Elodie Chaillou
- INRAE Centre Val de Loire, CNRS, IFCE, Université de Tours, UMR 85 Physiologie de la Reproduction et des Comportements, France
| | - Dóra Zelena
- Institute of Experimental Medicine, Budapest, Hungary; Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
Hartline JT, Smith AN, Kabelik D. Serotonergic activation during courtship and aggression in the brown anole, Anolis sagrei. PeerJ 2017; 5:e3331. [PMID: 28533977 PMCID: PMC5436558 DOI: 10.7717/peerj.3331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/19/2017] [Indexed: 11/20/2022] Open
Abstract
The role of serotonin (5-hydroxytryptamine, 5-HT) in social behavior regulation is not fully understood. While 5-HT release in nuclei of the social behavior network has generally been associated with inhibition of aggressive behavior across multiple classes of vertebrates, less is known about its effects on sexual, especially non-copulatory courtship display behaviors. Furthermore, most research has examined effects at 5-HT release sites, while studies examining the behavioral relevance of source cell populations have generated contradictory findings. This study utilized immunohistochemistry to examine the colocalization of 5-HT with Fos, an immediate early gene product and marker of neural activity, in the raphe and superior reticular nuclei of male brown anoles (Anolis sagrei) exposed to either aggression, courtship, or control social interactions. Supporting previous research, copulation was associated with a decrease in 5-HT activity, while a novel link between 5-HT activity and latency to non-copulatory courtship was also found. Within the aggression group, intensity and frequency of behavior were both associated with decreased 5-HT activity. An effect of social context was also seen, with anoles exposed to either courtship or aggression encounters showing decreased 5-HT activity in certain raphe and superior reticular nuclei populations compared to controls. Interestingly, context effects and behavioral effects were seen at separate brain nuclei, suggesting the presence of separate systems with distinct functional roles.
Collapse
Affiliation(s)
- Jacob T Hartline
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| | - Alexandra N Smith
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| | - David Kabelik
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| |
Collapse
|
6
|
Ishiwata T. Role of serotonergic system in thermoregulation in rats. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Gurvich C, Maller JJ, Lithgow B, Haghgooie S, Kulkarni J. Vestibular insights into cognition and psychiatry. Brain Res 2013; 1537:244-59. [PMID: 24012768 DOI: 10.1016/j.brainres.2013.08.058] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022]
Abstract
The vestibular system has traditionally been thought of as a balance apparatus; however, accumulating research suggests an association between vestibular function and psychiatric and cognitive symptoms, even when balance is measurably unaffected. There are several brain regions that are implicated in both vestibular pathways and psychiatric disorders. The present review examines the anatomical associations between the vestibular system and various psychiatric disorders. Despite the lack of direct evidence for vestibular pathology in the key psychiatric disorders selected for this review, there is a substantial body of literature implicating the vestibular system in each of the selected psychiatric disorders. The second part of this review provides complimentary evidence showing the link between vestibular dysfunction and vestibular stimulation upon cognitive and psychiatric symptoms. In summary, emerging research suggests the vestibular system can be considered a potential window for exploring brain function beyond that of maintenance of balance, and into areas of cognitive, affective and psychiatric symptomology. Given the paucity of biological and diagnostic markers in psychiatry, novel avenues to explore brain function in psychiatric disorders are of particular interest and warrant further exploration.
Collapse
Affiliation(s)
- Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, The Alfred Hospital and Monash University Central Clinical School, Melbourne, VIC 3004, Australia.
| | | | | | | | | |
Collapse
|